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A static electric field generates circulating currents at the surfaces of a magnetoelectric insulator.
The anomalous Hall part of the surface conductivity tensor describing such bound currents can
change by multiples of e2/h depending on the insulating surface preparation, and a bulk calculation
does not fix its quantized part. To resolve this ambiguity, we develop a formalism for calculating the
full surface anomalous Hall conductivity in a slab geometry. We identify a Berry-curvature term,
closely related to the expression for the bulk anomalous Hall conductivity, whose value can change
by quantized amounts by adjusting the surface Hamiltonian. In addition, the surface anomalous
Hall conductivity contains a nongeometric part that does not depend on the surface preparation.

I. INTRODUCTION

Certain surface properties of crystals are strongly con-
strained by the bulk, and as a result they are very robust
with respect to local perturbations. An example is the
areal charge density σsurf bound to an insulating surface
of a polar insulator. For an unreconstructed defect-free
surface with outward normal n̂ it is given by [1]

σsurf =

(
P +

eR

Vc

)
· n̂, (1)

where P is the bulk electric polarization, R is a lattice
vector, and Vc is the volume of a unit cell. According
to the Berry-phase theory [2], P is only defined modulo
eR/Vc, since it is possible to change its value by that
amount by adjusting the phases of the Bloch wave func-
tions. Equation (1) assumes that a definite choice of
gauge has been made so that a unique value of P has
been established. (Here the word “gauge” refers to the
freedom to adjust the phases of the Bloch eigenstates or,
more generally, to perform a unitary transformation at
each k among the occupied Bloch states [3].) The second
term in Eq. (1) amounts to an integer number of electrons
per surface unit cell. Its presence is required because it is
in principle possible to prepare the insulating surface in
different ways such that the macroscopic charge per sur-
face cell changes by a multiple of the elementary charge e.
Thus, the quantized part of σsurf depends on the details
at the surface but the nonquantized part does not.

In this work, we consider a similar situation that arises
in insulating crystals that display the linear magnetoelec-
tric (ME) effect, whereby an applied magnetic field B
induces an electric polarization P , and conversely an ap-
plied electric field E induces a magnetization M [4, 5].
The linear ME tensor is defined as

αab =
∂Pa
∂Bb

∣∣∣∣
E=0

=
∂Mb

∂Ea

∣∣∣∣
B=0

. (2)

The full ME response contains both frozen-ion and
lattice-mediated contributions, and each can be further

decomposed into spin and orbital parts. In the following,
we focus exclusively on the frozen-ion orbital response.

The bulk magnetization generated by a static electric
field gives rise to surface currents

K = M × n̂. (3)

In the case of an insulating surface, this is the full cur-
rent response. It is described at linear order by a 2 × 3
surface conductivity tensor σsurf

ab = ∂Ka/∂Eb, and the
surface anomalous Hall conductivity (AHC) is defined as
the antisymmetric part of the 2× 2 block that describes
the surface current generated by an in-plane electric field.
Writing the surface AHC in vector form as σAH

surf n̂ where

σAH
surf = −1

2
εcdbσ

surf
cd n̂b, (4)

the surface anomalous Hall current density becomes

KAH = σAH
surf n̂× E. (5)

From Eqs. (2) and (3) we find

σsurf
cd =

∂Kc

∂Ed
=

∂

∂Ed
εceaMen̂a = εceaαden̂a, (6)

and plugging this expression into Eq. (4) leads to

σAH
surf = −1

2
Tr(α) +

1

2
αabn̂an̂b. (7)

Separating the ME tensor on the right-hand side into an
isotropic trace piece and a traceless part,

αab = αisoδab + α̃ab, (8)

we arrive at the relation

σAH
surf := −αiso +

1

2
α̃abn̂an̂b. (9)

We use the special symbol := to indicate that while the
left-hand-side is uniquely defined for a given surface ter-
mination, the right-hand side carries a quantum of inde-
terminacy, since the bulk quantity αiso is gauge invariant
only modulo e2/h [6, 7].
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Once a definite value has been chosen for the multival-
ued quantity αiso, Eq. (9) can be rewritten as

σAH
surf = −αiso +m

e2

h
+

1

2
α̃abn̂an̂b. (10)

Different choices of the integer m in the middle term
correspond to different surface preparations exhibiting
values of the surface AHC that differ by a multiple of the
quantum of conductance.1 This integer can be changed,
in principle, by stitching a quantum anomalous Hall layer
to the surface [7, 8] or otherwise changing the surface
Hamiltonian, or by means of an adiabatic pumping cycle
characterized by a nonzero second Chern number [10, 11].
It follows that only the nonquantized part of the surface
AHC is a bulk property, in close analogy with Eq. (1)
for the surface charge. These features are described by
the phenomenology of axion electrodynamics [6, 12], and
αiso is sometimes referred to as the axion ME coupling.

We are now ready to formulate the main question be-
hind the present work. Suppose we have a ME insulator
(it should break both inversion and time reversal symme-
try), and we consider a specific insulating surface. How
can we calculate the surface AHC, not just up to a quan-
tum but exactly? Since we are given a definite surface
Hamiltonian, there should be a definite answer without
any quantum of ambiguity. We shall answer this question
by developing a formalism that allows one to calculate the
surface AHC unambiguoulsy using a slab geometry.

The manuscript is organized as follows. We begin in
Sec. II by calculating, at linear order, the local current
response of an insulator to a static homogeneous elec-
tric field. The local AHC, defined as the antisymmetric
part of this local conductivity tensor, is then separated
into geometric and nongeometric parts. Starting from
the expression for the local AHC, we obtain in Sec. III
an expression for the surface AHC of a slab, which we
again separate into geometric and nongeometric parts.
In Sec. IV we calculate numerically the surface AHC for
slabs of tight-binding (TB) models and compare the re-
sults, via Eq. (10), with independent calculations of the
bulk ME tensor. We conclude in Sec. V with a summary,
and leave a lengthier derivation to an appendix.

1 There are two scenarios compatible with Eq. (10). If the integer
m is the same for all crystal facets, the entire surface is insulating
and the term me2/h gives an isotropic contribution to the surface
AHC [8]. If adjacent facets have different m values, there are
chiral conducting channels along the connecting hinges [9].

II. LOCAL ANOMALOUS HALL
CONDUCTIVITY

A. Linear-response calculation

The local conductivity and local AHC are defined as

σab(r) =
∂ja(r)

∂Eb

∣∣∣∣
E=0

(11)

and

σAH
c (r) = −1

2
εabcσab(r), (12)

respectively. E denotes a static homogeneous electric
field and j(r) is the microscopic induced current density,
whose anomalous Hall part reads jAH(r) = σAH(r)× E.

We wish to calculate the local AHC for an insulat-
ing medium at zero temperature described by a single-
particle Hamiltonian Ĥ. The current operator is

ĵ(r) = −e
2

(|r〉〈r|v̂ + v̂|r〉〈r|) , (13)

where v̂ = (1/i~)[r̂, Ĥ] is the velocity operator and e > 0
is the elementary charge. The current density is given by

j(r) = Tr
[
P̂ ĵ(r)

]
= −eRe 〈r|v̂P̂ |r〉, (14)

where P̂ denotes the projection operator onto the occu-
pied states. An expression for the local conductivity (11)
can now be obtained by differentiating Eq. (14) with re-

spect to E. For that purpose we write Ĥ = Ĥ0 + eE · r̂
where Ĥ0 is the unperturbed Hamiltonian, and note that
since [r̂a, r̂b] = 0 the operator v̂ reduces to (1/i~)[r, Ĥ0].

Hence the electric field enters Eq. (14) via P̂ only,2 lead-

ing to σab(r) = (−e)Re 〈r|v̂a∂Eb P̂ |r〉, and inserting this
expression in Eq. (12) we arrive at

σAH(r) =
e

2
Re 〈r|v̂ × ∂E P̂ |r〉. (15)

Finally, from first-order perturbation theory we get

∂E P̂ = −e
∑
v,c

(
|c〉 〈c|r̂|v〉

Ecv
〈v|+ |v〉 〈v|r̂|c〉

Ecv
〈c|
)
, (16)

where |v〉 and |c〉 denote occupied and empty energy
eigenstates respectively, and Ecv = Ec − Ev. Equa-
tions (15) and (16) give the full local AHC; below, we
separate it into geometric and nongeometric parts.

2 We are ignoring local-field corrections, which introduce a depen-
dence of Ĥ0 on E through the self-consistent charge density. Such
terms are not difficult to derive, but they are absent from our
non-self-consistent TB calculations.
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B. Separation of the local AHC into geometric and
nongeometric parts

Consider the isotropic ME response of a bounded sam-
ple, defined as

aiso =
1

3

3∑
a=1

∂ma

∂Ea
(17)

in terms of the orbital moment

m =
1

2

∫
r × j(r) d3r. (18)

For a globally insulating crystallite of volume V , aiso/V
converges in the V → ∞ limit to one of the multiple
values of αiso, with the specific value depending on the
surface preparation [8]. Plugging Eq. (18) into Eq. (17)
and comparing with the definition of the local AHC in
Eq. (12) we find

aiso = − 1

3

∫
r · σAH(r) d3r. (19)

This relation will be used below to isolate the geometric
and nongeometric contributions to the local AHC, but
first we need some results from the microscopic theory of
the orbital ME response in insulators [13, 14].

The quantum-mechanical expression for the bulk ME
tensor αab comprises an isotropic geometric term known
as the Chern-Simons (CS) term, and a nongeometric term
known as the Kubo or cross-gap (cg) term that has both
isotropic and anisotropic parts [13, 14]. The relation be-
tween those two terms and the decomposition in Eq. (8)
can be summarized as follows,

αab =

αcg
ab︷ ︸︸ ︷(

αCS + αcg
iso

)
δab + α̃ab︸ ︷︷ ︸

αiso

. (20)

The expressions for αCS and αcg
ab take the form of integrals

over the Brillouin zone (BZ), and can be found in Refs. 13
and 14. In the case of αCS the integrand only contains the
unperturbed cell-periodic Bloch functions and their first
k derivatives. It is a gauge-dependent quantity, but after
integration over the entire BZ it becomes gauge invariant
modulo e2/h. The expression for αcg

ab contains in addition
the perturbed wavefunctions and the velocity operator,
and is fully gauge invariant at each point in the BZ.

The ME tensor aab = (∂mb/∂Ea)B=0 of a finite crys-
tallite can be similarly decomposed into geometric and
nongeometric terms [13]. Because surface contributions
are now included, the geometric part aCS of the isotropic
piece aiso is unique for a given surface preparation. It is
given by [13]

aCS = −2πe2

3h
εabcIm Tr

[
P̂0r̂aP̂0r̂bP̂0r̂c

]
=

2πe2

3h
εabc

∫
rc Im 〈r|P̂0r̂aQ̂0r̂bP̂0|r〉 d3r, (21)

where P̂0 =
∑
v |v〉〈v| and Q̂0 = 1̂ − P̂0 are the ground-

state projector and its complement, respectively. Com-
paring with Eq. (19), we are led to identify a geometric
(CS) contribution to the local AHC given by

σAH
CS (r) =

e2

h
C(r), (22a)

C(r) = −2πIm 〈r|P̂0r̂Q̂0 × Q̂0r̂P̂0|r〉. (22b)

One can obtain the nongeometric (cross-gap) part of
the local AHC in a similar way, starting from the nonge-
ometric part of the orbital ME coupling of a crystallite.
This is done in Appendix A, and as expected the result
is that the cross-gap local AHC is equal to the difference
between the full local AHC (15) and the CS term above,

σAH
cg (r) = σAH(r)− σAH

CS (r). (23)

Equations (15), (22), and (23) are the main results of
this section.

C. Discussion

The appearence of a nongeometric term in the local
AHC may seem surprising at first, since the intrinsic
macroscopic AHC of a bulk crystal or slab is known to
be purely geometric: it is given by the BZ integral of the
Berry curvature of the occupied Bloch states [15]. The
explanation, as we will see Sec. III D, is that the non-
geometric term always integrates to zero across the full
width of a slab, dropping out from the net AHC of the
slab. As will become clear in the following, that term
does contribute to the AHC of a single surface.

The nongeometric part of the local AHC was over-
looked in some previous studies [7, 16], where the local
AHC was formulated as a spatially-resolved Berry curva-
ture. As for the geometric part, the expression in Eq. (22)
is consistent with the previous literature. Consider a flat
crystallite lying on the (x, y) plane, and integrate the
quantity Cz(r) given by Eq. (22b) over all z to obtain a
dimensionless quantity Cz(x, y). This is precisely the “lo-
cal Chern number” introduced in Ref. 17. For a slab, the
average of Eq. (22a) over a 2D cell at fixed z is essentially
identical to the “layer-resolved AHC” of Ref. 7.

In the next section we calculate the layer-resolved
AHC including both geometric and nongeometric con-
tributions, and use it to evaluate the surface AHC.

III. SURFACE ANOMALOUS HALL
CONDUCTIVITY

A. Evaluation in a slab geometry

Consider an insulating slab with the outward normal
n̂ = ẑ of the top surface pointing along a reciprocal-
lattice vector b3. We assume that the slab thickness L is
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much larger than the lattice constant c = 2π/|b3| in the
surface-normal direction. We also assume a defect-free
surface, and introduce a “layer-resolved” AHC for the
slab by averaging the z component of the local AHC (12)
over a surface unit cell at fixed z,

σAH
slab(z) =

1

Ac

∫
Ac

σAH
z (x, y, z) dx dy. (24)

The net AHC of a slab is given by

σAH
slab =

∫
σAH
slab(z) dz, (25)

where the range of integration is chosen to span the full
width of the slab, including the exponential tails of the
wavefunctions outside the two surface regions. For an in-
sulating slab the result is quantized in units of e2/h [15],

σAH
slab =

e2

h
Cslab, (26)

where the integer Cslab is the Chern number of the slab
(see Sec. III D). In order for this equation to be mean-
ingful, we are assuming that the slab is cut from a bulk
insulator for which all three of the bulk Chern indices
Cj [18] are zero.

As a first step towards calculating the surface AHC,
we filter out the atomic-scale oscillations in the layer-
resolved AHC by performing a “sliding-window average”
over one vertical lattice constant,

σAH
slab(z) =

1

c

∫ z+c/2

z−c/2
σAH
slab(z′) dz′. (27)

Because we assumed C3 = 0, this coarse-grained AHC
must vanish exponentially in the bulklike interior region
of the slab, and it can only become nonzero near the two
surfaces. The macroscopic AHC of the top surface can
now be expressed as

σAH
surf =

∫
z0

σAH
slab(z) dz, (28)

with z0 chosen in the bulklike region of the slab, and the
upper limit of integration placed at an arbitrary point in

the vaccum region above the top surface. The AHC of
the bottom surface is (e2/h)Cslab − σAH

surf .
For numerical work, it is more convenient to recast

Eq. (28) as

σAH
surf =

∫
σAH
slab(z)framp(z − z0) dz, (29)

where the range of integration spans the full width of the
slab, and framp is a ramp-up function defined as

framp(z) =


0, for z < −c/2
z/c+ 1/2, for − c/2 < z < c/2

1, for z > c/2

. (30)

To summarize, Eq. (29) gives the surface AHC in
terms of the layer-resolved AHC of Eq. (24), for which
we provide an explicit formula below.

B. Layer-resolved anomalous Hall conductivity

We evaluate the layer-resolved AHC by inserting
Eq. (15) for the local AHC into Eq. (24). The ground-
state projector expressed in terms of the valence eigen-
states of the slab reads

P̂0 =
1

N

∑
kv

|ψkv〉〈ψkv| (31)

(the summation in k = (kx, ky) is over a uniform mesh of
N points covering the surface BZ), and we need its linear
change under an in-plane electric field,

∂E P̂ =
1

N

∑
kv

eik·r̂
(
|∂̃Eukv〉〈ukv|+ |ukv〉〈∂̃ukv|

)
e−ik·r̂.

(32)
Here |ukv〉 is the cell-periodic part of |ψkv〉, and

|∂̃Eukv〉 = ie
∑
c

|ukc〉
~vkcv
E2

kcv

(33)

is the projection of |∂Eukv〉 onto the conduction bands,
with vkcv = 〈ukc|v̂k|ukv〉 and v̂k = e−ik·r̂v̂eik·r̂. Equa-
tion (32) is essentially the same as Eq. (16), but adapted
to a slab geometry. Putting everything together and let-
ting N →∞ we arrive at

σAH
slab(z) =

e

4πh

∫
d2k

∫
Ac

dx dy
∑
v

Re
[
〈r|~v̂k ×

(
|∂̃Eukv〉〈ukv|r〉+ |ukv〉〈∂̃Eukv|r〉

)]
z
, (34)

where the integral in k is over the surface BZ. C. Separation of the layer-resolved AHC into
geometric and nongeometric parts

To find the geometric part of the layer-resolved AHC
we repeat the above steps, simply replacing Eq. (15) for
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the full local AHC with Eq. (22) for the geometric part.

Inserting Eq. (31) for P̂0 in Eq. (22b) gives

Cz(r) = − 4π

N2
Im

∑
kk′vv′

ψ∗kv(r)ψk′v′(r)〈ψkv′ |x̂Q̂0ŷ|ψkv〉.

(35)

Writing Q̂0 as (1/N)
∑

kc |ψkc〉〈ψkc| and using the iden-
tity 〈ψkv|r̂j |ψk′c〉 = iN〈ukv|∂kjukc〉δkk′ valid for off-
diagonal position matrix elements [19], we obtain

Cz(r) = −4π

N
Im
∑
k

u∗kv(r)ukv′(r)F xykv′v (36)

where

F xykv′v =
∑
c

〈∂kxukv′ |ukc〉〈ukc|∂kyukv〉 = (Fyxkvv′)
∗

(37)

is the metric-curvature tensor [3]. Inserting Eq. (36) in
Eq. (22a) for σAH

CS (r) and plugging the result in Eq. (24)
for the layer-resolved AHC yields, for N →∞,

σAH
slab,CS(z) = − e

2

πh

∫
Im Tr [Ok(z)F xyk ] d2k. (38)

The trace is over the valence bands, and

Okvv′(z) =

∫
Ac

u∗kv(x, y, z)ukv′(x, y, z) dx dy (39)

is a layer-resolved overlap matrix.
Equation (38) can be brought to a more transparent

form by decomposing the metric-curvature tensor into
Hermitean and anti-Hermitean parts in the band indices

as F xyknm = Rxyknm + (1/2i)Ω̃xyknm, where

Rxyknm =
1

2
F xyknm +

1

2
(F xykmn)

∗
(40)

is the quantum metric and

Ω̃xyknm = iF xyknm + (iF xykmn)
∗

(41)

is the gauge-covariant Berry curvature, related to the
Berry connection Aaknm = i〈ukn|∂kaukm〉 and to the non-
covariant Berry curvature Ωxyknm = ∂kxA

y
knm − ∂kyAxknm

by

Ω̃xyknm = Ωxyknm − i [Axk, A
y
k]
nm

. (42)

Since the matricesOk(z), Rxyk , and Ω̃xyk are all Hermitean
and the trace of the product of two Hermitean matrices
is real, Rxyk drops out from Eq. (38), which reduces to

σAH
slab,CS(z) =

e2

2πh

∫
Tr
[
Ok(z)Ω̃xyk

]
d2k. (43)

This expression for the CS layer-resolved AHC in terms
of the layer-resolved overlap matrix and the non-Abelian
Berry curvature is the central result of this section.

Equation (43), which essentially agrees with Eq. (12)
of Ref. 7,3 only accounts for part of the layer-resolved
AHC, whose full amount is given by Eq. (34). According
to Eq. (23) for the local AHC, the remainder is the non-
geometric (or cross-gap) part of the layer-resolved AHC,

σAH
slab,cg(z) = σAH

slab(z)− σAH
slab,CS(z). (44)

To review, the surface AHC is calculated from Eq. (29),
where we insert either Eq. (34) to obtain the grand total,
or Eq. (43) to find the geometric part.

D. Discussion

It was already mentioned in Sec. II C that although the
nongeometric part of the layer-resolved AHC can give a
net contribution to the surface AHC, its contribution to
the AHC of the entire slab vanishes. To establish this
result, let us show that the geometric part of the slab
AHC coincides with the total.

We begin with the total slab AHC. Inserting Eq. (34)
for the layer-resolved AHC into Eq. (25) yields

σAH
slab = − e2

2πh

∫
d2k Im

∑
vc

~2vxkvcv
y
kcv

E2
kcv

−(x↔ y). (45)

Using ~vkvc = −iEkcvAkvc to remove the energy denom-
inator and noting that Im

∑
kvv′ A

x
kvv′A

y
kv′v = 0, the

sum over conduction bands c can be replaced by a sum
over all bands n (the term n = v vanishes). Comparing
with the Berry curvature Ωxykv = −2Im

∑
n 6=v A

x
kvnA

y
knv

we arrive at Eq. (26) for the total slab AHC, with the
slab Chern number given by [15]

Cslab =
1

2π

∫
d2k

∑
v

Ωxykv. (46)

To obtain the gometric part of the slab AHC, insert
Eq. (42) into Eq. (43) and plug the result into Eq. (25).
Using

∫
Okvv′(z) dz = δvv′ we get σAH

slab,CS = Cslab(e2/h),

which is the same as the total slab AHC. Thus, Eq. (44)
must integrate to zero across the entire slab.

The net amount of AHC contributed by the cross-gap
term (44) across a single surface region is equal to

σAH
surf,cg = −αcg

iso +
1

2
α̃abn̂an̂b, (47)

and the CS term (43) contributes the additional amount

σAH
surf,CS = −αCS +m

e2

h
. (48)

Together, they make up the full surface AHC of Eq. (10).

3 To obtain the expression in Ref. 7 for the CS layer-resolved AHC
starting from the CS local AHC, one can repeat the derivation
of Eq. (43) with a single modification: in Eq. (22b) for C(r),

exchange P̂0 and Q̂0 and remove the minus sign. It can be eas-
ily verified that this “particle-hole transformation” leaves C(r)
unchanged, as expected on physical grounds.
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IV. NUMERICAL RESULTS

In the following we present the results of slab calcu-
lations of the surface AHC for two different TB models,
and compare the results with bulk calculations of the or-
bital ME tensor [13]. First, let us briefly describe our TB
implementation of the surface AHC expressions.

A. Tight-binding formulation of the surface AHC

In the TB context, the integration over z in Eq. (29)
for the surface AHC gets replaced by a summation over
a layer index l. The ramp-up function is evaluated at
the discrete layer coordinates z(l), and the layer-resolved
AHC becomes σAH

slab(l).
In Eq. (34) for the layer-resolved AHC, |r〉 is replaced

by |i〉 representing a TB orbital φi(r) = 〈r|i〉, the inte-
gration

∫
Ac
dx dy is replaced by a summation

∑
i∈l over

the orbitals within one surface unit cell in layer l, and the
matrix elements of the velocity operator are evaluated by
making the diagonal approximation 〈i|r̂|j〉 = τiδij for the
position operator in the TB basis [20].

In Eq. (43) for the CS layer-resolved AHC the overlap
matrix becomes

Okvv′(l) =
∑
i∈l

u∗kv(i)ukv′(i), (49)

and the non-Abelian Berry curvature can be evaluated
from Eqs. (37) and (41) with the help of the identity

〈ukc|∂kukv〉 = −〈ukc|~v̂k|ukv〉
Ekcv

. (50)

B. Anisotropic cubic-lattice model

As our first test case, we consider a model of a ME insu-
lator with no symmetry. This provides the most challeng-
ing case for the theory, since all nine components of the
ME tensor are nonzero and different from one another.
The resulting surface AHC has both CS and cross-gap
contributions, and it varies with the surface orientation.

We choose the TB model described in Appendix A
of Ref. 13. This is a spinless model defined on a cu-
bic lattice, with one orbital per site and eight sites per
cell, where inversion and time-reversal symmetry are bro-
ken by assigning random on-site energies and complex
first-neighbor hoppings of fixed magnitude. We take the
model parameters listed in Table A.1 of Ref. 13, and
choose the two lowest bands to be the valence bands. As
in that work, all parameters are kept fixed except for one
hopping phase ϕ which is scanned from 0 to 2π, and the
results are plotted as a function of this phase ϕ.

This model is intended as a model for a conventional
ME insulator, in which the isotropic response aiso/V of an
insulating crystallite is very small relative to the quantum

0 2 4 5 6 10 12 14
layer l

-0.4

-0.2

0.0

0.2

0.4

σ
A

H
sl

ab
(×

10
−

3
e2 h

)

total

CS

FIG. 1. Coarse-grained layer-resolved AHC [Eq. (51)] for a
sixteen-atom-thick slab of the cubic-lattice model with ϕ = π.

e2/h. The surface AHC of such a system is most natu-
rally described by setting m = 0 in Eqs. (10) and (48)
while choosing αiso and αCS in the range [−e2/2h, e2/2h].
(In the next subsection, we will consider a model with
the opposite characteristics, i.e., with a large isotropic
ME response of the order of e2/h.)

We construct a slab with a thickness of sixteen atomic
layers (eight lattice constants) along z. The layer-
resolved AHC displays strong oscillations from one layer
to the next, which we filter out by averaging over two
consecutive layers,

σAH
slab(l + 1/2) =

1

2

[
σAH
slab(l) + σAH

slab(l + 1)
]
. (51)

This quantity is plotted as the solid line in Fig. 1 for
ϕ = π, and the dashed line shows the CS contribution
the CS layer-resolved AHC was calculated for a different
TB model in Ref. 7, and is shown in Fig. 2 therein). Both
quantities are nonzero in the surface regions only, quickly
dropping to almost zero within four subsurface layers.
The fact that the two curves in Fig. 1 are not perfectly
odd about the center of the slab can be attributed to the
lack of mirror symmetry in the model. We have checked
that both

∑
l σ

AH
slab(l) and

∑
l σ

AH
slab,CS(l) vanish identi-

cally, as should be the case for a slab with Cslab = 0, so
that the macroscopic surface AHC is equal and opposite
for the two surfaces. On a given surface, the CS part
of the AHC has the opposite sign compared to the to-
tal. The cross-gap contribution therefore prevails, as in
ordinary ME insulators [8].

The macroscopic AHC of the top surface is plotted ver-
sus ϕ as the solid line in the top panel of Fig. 2, where
the CS contribution is again shown as a dashed line. For
comparison, we plot as filled (total) and empty (CS) cir-
cles the quantities on the right-hand side of Eqs. (10)
and (48), respectively (with m = 0). The precise agree-
ment validates our expression for the surface AHC, and
its decomposition into geometric and nongeometric parts.
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0.0
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n̂ = ẑ
σ

A
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(×
10
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3
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)

0 π/2 π 3π/2 2π

ϕ

-0.9

-0.6

-0.3

0.0

0.3

n̂ = x̂

FIG. 2. AHC of the top surface (upper panel) and of the right
surface (lower panel) of sixteen-layer slabs of the cubic-lattice
model cut along z and x respectively, as a function of the
cyclic parameter ϕ. The solid (dashed) lines denote the total
(CS) surface AHC. Circles represent the quantity appearing
on the right-hand-side of Eq. (9), with filled and empty circles
denoting the total and the CS piece, respectively.

In the lower panel of Fig. 2 we show results for a slab
cut along x. The total surface AHC is different from that
on the upper panel, as expected for an anisotropic model
from the last term in Eq. (47). The CS surface AHC is
the same in both panels, confirming that its nonquan-
tized part does not depend on the surface orientation, as
expected from Eq. (48).

C. Layered Haldane model

We now turn to a model for which αiso and αCS are
not always small compared to the quantum e2/h, so that
the branch choice in Eqs. (10) and (48) becomes ambigu-
ous. We choose the TB model introduced in Ref. 11.
This is a layered model on a hexagonal lattice, with four
orbitals per cell. It can be obtained by stacking Haldane-
model [21] layers with alternating parameters, and then
coupling them via interlayer hopping terms. The model
acts as a quantum pump of axion ME coupling: a slow

0 π/2 π 3π/2 2π

φ

0.0

-0.5

-1.0

σ
A

H
su

rf
(e

2 h
)

FIG. 3. Cyclic evolution of the Hamiltonian of a ten-layer
slab of the layered Haldane model, during which the isotropic
ME coupling αCS of the bulk crystal changes by e2/h. The
AHC of the top surface is plotted as a solid line, and the black
and grey circles denote two different branches of −αCS. For
a given choice of branch, Eq. (48) is satisfied throughout the
cycle with the value of m increasing by one at φc = 3π/2.

periodic variation in its parameters can gradually change
αiso by e2/h over one cycle. Below, we monitor the evo-
lution of the surface AHC during one pumping cycle.

We begin by noting that the cross-gap contribution to
the ME tensor vanishes identically for this model. The
reason can be found in Ref. 14, where a set of conditions
were derived under which αcg

ab vanishes in certain four-
band models having some kind of particle-hole symme-
try. Those conditions hold for several models proposed
in the literature including the present one, so that the
total surface AHC (10) reduces to the CS part (48).

We construct a slab containing ten hexagonal layers
stacked along z. The pumping cycle is parametrized by
an angle φ that modulates the model parameters accord-
ing to Eqs. (57c) and (61) in Ref. 11. As in Sec. III.D
of that work, we consider the situation where the entire
slab, including the surfaces, returns to its initial state at
the end of the cycle,

Ĥslab(φ = 2π) = Ĥslab(φ = 0). (52)

The quantities σAH
surf(φ) and −αCS(φ) are plotted in

Fig. 3 as solid lines and filled circles, respectively; the lat-
ter is a multivalued quantity, and two different branches
are shown as black and grey circles. Equation (48) as-
sumes that a specific branch has been chosen, and we
pick the one represented by the black circles. With that
choice, Eq. (48) is satisfied with m = 0 for 0 < φ < 3π/2
and with m = 1 for 3π/2 < φ < 2π.

The actual value of m at each φ depends on the par-
ticular gauge choice, but the important point is that
Eq. (48) cannot be satisfied keeping m fixed for all φ.
Equation (52) implies σAH

surf(φ = 2π) = σAH
surf(φ = 0), and

the only way this can be reconciled with the pumping of
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H
su
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FIG. 4. The same quantities as in Fig. 3, but now for a
cyclic evolution of the Hamiltonian of the surface layers only,
keeping the Hamiltonian of the rest of the slab fixed.

CS axion coupling in the bulk region,

αCS(φ = 2π) = αCS(φ = 0) +
e2

h
, (53)

is if the integer m in Eq. (48) increases by one during the
cycle. This change in the quantized part of the surface
AHC is caused by a topological phase transition at the
surface: the energy gap of the surface bands closes at
φc = 3π/2, forming a Weyl point in (kx, ky, φ)-space that
transfers a quantum of Berry-curvature flux between the
valence and conduction bands as φ crosses φc [11].

It is also possible to change the quantized part of the
surface AHC by adjusting only the surface Hamiltonian.
This is illustrated in Fig. 4, where we held the Hamilto-
nian of all subsurface layers fixed at φ = 0, but modu-
lated the onsite energy of the top and bottom layers by
φ according to Eq. (57c) in Ref. 11. Now the bulk ME
coupling αCS is held at zero for all φ, as indicated by the
black circles. The surface AHC vanishes during half of
the cycle leading to m = 0 in Eq. (48), and it becomes
−e2/h during the other half where m = −1. At the crit-
ical points φc = π/2 and φc = 3π/2, the surface states
become gapless.

V. SUMMARY

In this work we have derived practical expressions for
calculating the full surface AHC of an insulating slab,
including the quantized part that depends on the surface
preparation. That quantized part resides in a geometric
term written in terms of the gauge-covariant Berry cur-
vature matrix of the slab wave functions. The full surface
AHC contains an additional nongeometric term. Like the
nonquantized part of the geometric surface AHC, that
term is only apparently a surface property, but is in fact
fully determined by the bulk ME tensor [13, 14].

Numerical TB calculations were carried out to show
that our expressions satisfy the phenomenological rela-
tion in Eq. (10) between the surface AHC and the bulk
ME coupling. The ability to change the surface AHC by
multiples of e2/h by adjusting the surface Hamiltonian
was illustrated for a layered Haldane model.

The formalism developed in this work provides a sim-
pler way of determining the quantized part of the sur-
face AHC than an alternative approach based on hybrid
Wannier functions [11]. It could be particularly useful for
characterizing the nontrivial surface topology in second-
order three-dimensional topological insulators with chiral
hinge states [9, 22].
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Appendix A: Derivation of Eq. (23) for the cross-gap
local AHC

The orbital moment (18) of a finite sample in a static
electric field can be decomposed as [13]

m(E) = mCS(E) +mcg(E), (A1a)

mCS(E) = −2πe2

3h
εijlIm Tr

[
P̂ r̂iP̂ r̂jP̂ r̂l

]
E, (A1b)

mcg
i (E) =

πe

h
εijlIm Tr

[
P̂ r̂jQ̂Ĥ0Q̂r̂l − Q̂r̂jP̂ Ĥ0P̂ r̂l

]
.

(A1c)

As in Sec. II A, P̂ denotes the projection operator onto
the occupied states in the presence of the field, Q̂ = 1̂−P̂ ,
and Ĥ0 is the unperturbed Hamiltonian. Note that the
CS term has an explicit linear dependence on E, while
the cross-gap (cg) term only depends on E implicitly via
the projection operators. With the above decomposition,
the isotropic ME coupling (17) becomes

aiso = aCS
iso + acgiso, (A2)

with aCS
iso given by Eq. (21) and

acgiso = −1

3

∫
riεijl

∂Tj(r,E)

∂El

∣∣∣∣
E=0

d3r, (A3)

where

Tj(r,E) =
πe

h
Im 〈r|P̂ r̂jQ̂Ĥ0Q̂− Q̂r̂jP̂ Ĥ0P̂ |r〉. (A4)

Comparing Eq. (A3) with Eq. (19) for aiso we conclude
that the cross-gap local AHC is given by

σAH
cg,i(r) = εijl

∂Tj(r,E)

∂El

∣∣∣∣
E=0

. (A5)
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Our remaining task is to show that this expression is
equivalent to Eq. (23).

We begin by plugging Eq. (A4) into Eq. (A5). This
generates a total of six terms,

σAH
cg,i(r) =

πe

h
εijlIm 〈r|

[
−P̂0r̂j

(
Ĥ0Q̂0P̂l

)
− P̂0r̂j

(
P̂lQ̂0Ĥ0

)
+ P̂lr̂jĤ0Q̂0

−Q̂0r̂j

(
Ĥ0P̂0P̂l

)
− Q̂0r̂j

(
P̂lP̂0Ĥ0

)
+ P̂lr̂jĤ0P̂0

]
|r〉, (A6)

where we used the fact that Ĥ0 commutes with both P̂0

and Q̂0, and introduced the notation P̂l = ∂El P̂ = −∂ElQ̂
for the Cartesian components of ∂E P̂ . Using Eq. (16) for
that operator, the individual terms in Eq. (A6) become

−Im 〈r|P̂0r̂j

(
Ĥ0Q̂0P̂l

)
|r〉 =

eEc
Ecv

Im [〈r|v′〉〈v′|r̂j |c〉〈c|r̂l|v〉〈v|r〉] , (A7a)

−Im 〈r|P̂0r̂j

(
P̂lQ̂0Ĥ0

)
|r〉 =

eEc
Ecv

Im [〈r|v′〉〈v′|r̂j |v〉〈v|r̂l|c〉〈c|r〉] , (A7b)

Im 〈r|P̂lr̂jĤ0Q̂0|r〉 = −eEc′
Ecv

Im [〈r|c〉〈c|r̂l|v〉〈v|r̂j |c′〉〈c′|r〉]−
eEc′

Ecv
Im [〈r|v〉〈v|r̂l|c〉〈c|r̂j |c′〉〈c′|r〉] , (A7c)

−Im 〈r|Q̂0r̂j

(
Ĥ0P̂0P̂l

)
|r〉 =

eEv
Ecv

Im [〈r|c′〉〈c′|r̂j |v〉〈v|r̂l|c〉〈c|r〉] , (A7d)

−Im 〈r|Q̂0r̂j

(
P̂lP̂0Ĥ0

)
|r〉 =

eEv
Ecv

Im [〈r|c′〉〈c′|r̂j |c〉〈c|r̂l|v〉〈v|r〉] , (A7e)

Im 〈r|P̂lr̂jĤ0P̂0|r〉 = −eEv′
Ecv

Im [〈r|c〉〈c|r̂l|v〉〈v|r̂j |v′〉〈v′|r〉]−
eEv′

Ecv
Im [〈r|v〉〈v|r̂l|c〉〈c|r̂j |v′〉〈v′|r〉] , (A7f)

where a summation over repeated band indices is im-
plied. We wish to bring the sum of all these terms into a
“cross-gap” form, where dipole matrix elements only con-
nect occupied and empty states. Four of the eight terms
above already have that form and they can be combined
in pairs, (A7a) with the second term in (A7f) and the
first term in (A7c) with (A7d), to get

e(Ec + Ev′)

Ecv
Im [〈r|v′〉〈v′|r̂j |c〉〈c|r̂l|v〉〈v|r〉]

+
e(Ev + Ec′)

Ecv
Im [〈r|c′〉〈c′|r̂j |v〉〈v|r̂l|c〉〈c|r〉] . (A8)

In the remaining four terms, we use the completeness
relation to bring them to the desired form. First we re-

place |v′〉〈v′| with 1̂ − |c′〉〈c′| in (A7b) and |c′〉〈c′| with

1̂− |v′〉〈v′| in (A7e). The two terms containing 1̂ can be
reduced to

− rjIm [〈r|c′〉〈c′|r̂l|c〉〈c|r〉] = 0, (A9)

leaving

− eEc
Ecv

Im [〈r|c′〉〈c′|r̂j |v〉〈v|r̂l|c〉〈c|r〉]

− eEv
Ecv

Im [〈r|v′〉〈v′|r̂j |c〉〈c|r̂l|v〉〈v|r〉] . (A10)

Next we combine the second term in (A7c) with the first

in (A7f) using Ĥ0 = Ev′ |v′〉〈v′|+ Ec′ |c′〉〈c′|,

e

Ecv
Im
[
〈r|Ĥ0r̂j |v〉〈v|r̂l|c〉〈c|r〉+ 〈r|Ĥ0r̂j |c〉〈c|r̂l|v〉〈v|r〉

]
− e

Ecv
Im [Ec′〈r|c′〉〈c′|r̂j |v〉〈v|r̂l|c〉〈c|r〉+ Ev′〈r|v′〉〈v′|r̂j |c〉〈c|r̂l|v〉〈v|r〉] . (A11)

Writing Ĥ0r̂j as r̂jĤ0 − i~v̂j and then cancelling two terms according to Eq. (A9), the first line becomes

− e~
Ecv

Re [〈r|v̂j |v〉〈v|r̂l|c〉〈c|r〉+ 〈r|v̂j |c〉〈c|r̂l|v〉〈v|r〉] .
(A12)
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Collecting terms in Eq. (A6) for the cross-gap local AHC we find, after some cancellations,

σAH
cg,i(r) =− e2

2Ecv
εijlRe [〈r|v̂j |v〉〈v|r̂l|c〉〈c|r〉+ 〈r|v̂j |c〉〈c|r̂l|v〉〈v|r〉]

+
πe2

h
εijlIm [〈r|v′〉〈v′|r̂j |c〉〈c|r̂l|v〉〈v|r〉 − 〈r|c′〉〈c′|r̂j |v〉〈v|r̂l|c〉〈c|r〉] . (A13)

Comparing the first line with Eq. (16) for ∂E P̂ and using projection operators in the second line, we arrive at

σAH
cg (r) =

e

2
Re 〈r|v̂ × ∂E P̂ |r〉+

πe2

h
Im
[
〈r|P̂0r̂Q̂0 × Q̂0r̂P̂0|r〉 − 〈r|Q̂0r̂P̂0 × P̂0r̂Q̂0|r〉

]
. (A14)

As noted earlier3 the last two terms in this expression are equal to one another, resulting in Eq. (23).
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