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A prime characterization of many-body localized (MBL) systems is the entanglement of their
eigenstates; in contrast to the typical ergodic phase whose eigenstates are volume law, MBL eigen-
states obey an area law. In this work, we show that a spin-disordered Hubbard model has both a
large number of area-law eigenstates as well as a large number of eigenstates whose entanglement
scales logarithmically with system size (log-law). This model provides a microscopic Hamiltonian
which is neither ergodic nor many-body localized. We establish these results through a combination
of analytic arguments based on the eta-pairing operators combined with a numerical analysis of
eigenstates. In addition, we describe and simulate a dynamic time evolution approach starting from
product states through which one can separately probe the area law and log-law eigenstates in this
system.

I. INTRODUCTION

Pioneered by the seminal works of Basko1 and Gornyi2,
the many-body localization (MBL) transition is defined
as a dynamical phase transition which happens at finite
energy density for a disordered and isolated many-body
interacting system. Conceptually, MBL is when Ander-
son localization3,4 survives inter-particle interactions. In
MBL systems, under unitary time evolution, local ob-
servables fail to thermalize to their ergodic values.

Typical MBL models are disordered spin chains with
short-ranged interactions in one dimension5–32. More
recently, systems with itinerant degrees of freedom
have been explored including disordered Hubbard or t-J
models33–36. This focus has been partially motivated by
cold-atom experiments37–40.

Phenomenologically, the full MBL (FMBL) phase is
characterized by a complete set of local integrals of mo-
tion (LIOM)11,41–52, or the existence of a small bond-
dimension unitary tensor network (UTN) which diago-
nalizes the MBL Hamiltonian11,53. A key application of
the LIOMs or UTN is to explain the entanglement be-
havior of the MBL system. They imply that the entan-
glement of eigenstates are area law and that entangle-
ment grows logarithmically under time evolution after a
quench54.

In this work, we report on a microscopic Hamilto-
nian which goes beyond the FMBL or ergodic phases.
We show that this microscopic Hamiltonian has both
constant (area law) as well as logarithmically entangled
(log law) eigenstates. These eigenstates are interspersed
throughout the spectrum (i.e. they don’t make up a mo-
bility edge). We then show how to probe separately the
area-law and log-law eigenstates through time-evolution
from simple product states giving potential access to
these different types of states through cold-atom experi-
ments.

∗ These authors contributed equally to this work.

Figure 1. Schematic phase diagram of the spin-disordered
Hubbard chain at large disorder in the 2D plane labeled by
quantum numbers j and m. The eta-pairing raising operator
η+ acts as η+|E,Sz

total, j,m〉 = |E+U, Sz
total, j,m+1〉 moving

eigenstates horizontally in this figure. The particle-hole trans-
formation maps |E,Sz

total, j,m〉 to |E − 2mU,Sz
total, j,−m〉,

equivalent to a mirror symmetry about m = 0. In the
Sz
total = 0 sector, the top left corner of the triangle is the

vacuum state. Region I (blue) are reference states which are
destroyed by η− (left edge) or η+ (right edge) and contain a
mixture of area-law and log-law states. Region II (pink) is
the region where all eigenstates’ entanglement entropies have
logarithmic correction due to repeated application of η+ (left
edge) or η− (right edge).

A. Overview of Results

We consider a one-dimensional Hubbard model with
spin disorder

H = −t
∑
iσ

(c†iσci+1σ+h.c.)+
∑
i

Uni↑ni↓+
∑
i

hiS
z
i , (1)

where Szi = (ni↑ − ni↓)/2, and the disordered magnetic
field hi ∈ [−W,W ] is sampled uniformly. We focus on
the case of U = 1, t = 1.

To scaffold this discussion, we first note that Eq. (1)
has a pseudo-spin SU(2) symmetry55,56 (see Sec. II),
which allows us to label our eigenstates by four quantum
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numbers |E,Sztotal, j,m〉 including the energy E, total Sz
and two quantum numbers j and m associated with the
pseudo-spin symmetry. Because this symmetry is a con-
tinuous non-abelian symmetry, we don’t expect to have a
fully-MBL phase57,58. Unless otherwise noted, we work
with Sztotal = 0 (although our results generically apply
to all Sztotal) and separately consider the entanglement of
eigenstates in different quantum number sectors. Fig. 1 is
a diagram of available quantum numbers and this figure
will set the framework in which we discuss our results.

From the pseudo-spin algebra, one can analytically
build towers of excited states of increasing m using the
eta-pairing raising and lower operators η+ and η−55,56;
every application of η+ moves states horizontally in
Fig. 1. The blue line (region I) are the eigenstates at
the bottom of the towers which we call reference states.
We then consider eigenstates in region II which are gen-
erated from a reference state by the application of ηN+ for
a given constant N . A common feature of this group of
excited states is the large number of double occupancies.
We will show that all such eigenstates have, at least, an
additive logarithmic correction to their von Neumann en-
tanglement entropy with respect to the reference state;
this violates the area-law entanglement for a typical MBL
phase. We accomplish this by identifying a particular
sector of the reduced density matrix for these states that
leads to the logarithmic correction (see Sec. III). This
extends results of Ref. 59 which recently showed such
corrections in the case of the vacuum state (top left of
Fig. 1) with applications to a non-disordered Hubbard
model. Additionally, we show that any eigenstate which
is made of only singlons has an exact logarithmic correc-
tion.

We then numerically consider a number of disorder re-
alizations of the Hamiltonian in Eq. (1) for L = 8 at
large W using the slope of the cut average entanglement
(SCAEE), introduced in Ref. 17. We find that the refer-
ence eigenstates contain a mixture of area-law and log-
law states and that the full spectrum of eigenstates in
region II do indeed exhibit a logarithmic increase in en-
tanglement (see Sec. IV).

Having characterized the eigenstates, we then discuss
how to separately probe the localization physics both
from area-law states as well as from log-law states dynam-
ically using time evolution (see Sec. V). This would al-
low cold-atom experiments to directly probe this physics.
We identify two extreme cases of product states – all sin-
gle occupancies at quarter filling which occupy primar-
ily area law states, and all double occupancies at half
filling which occupy log-law states. We find that in for-
mer case the entanglement entropy grows logarithmically
and the charge imbalance does not relax as is typical in
a MBL system, while in the latter the entanglement en-
tropy grows as a power law (but not linear) fashion and
the charge imbalance tends to fully relax, which is delo-
calized but not ergodic.

II. INTRODUCTION TO PSEUDO-SPIN
ALGEBRA

A. Pseudo-spin SU(2) symmetry

It is easy to see that the spin disorder breaks the spin
rotation symmetry of H. To prove that the pseudo-spin
SU(2) symmetry is intact, one can introduce the eta-
pairing operators55,56, with notations for 1D specifically.

η− =
∑
i

(−1)ici↑ci↓, η+ = η†−, η0 =
1

2
(N̂ − L), (2)

where L is the number of sites and has to be even, and N̂
is the operator for total number of electrons in the sys-
tem. The eta-pairing operators generate a SU(2) algebra
because

[η0, η±] = ±η±, [η+, η−] = 2η0. (3)

To prove that pseudo-spin symmetry is preserved, one
can straightforwardly check that

[H, η±] = ±Uη±, [H, η0] = 0, [H, ~η2] = 0, (4)

where the total pseudo-spin operator ~η2 is

~η2 =
1

2
(η+η− + η−η+) + η20 . (5)

Therefore, {H,Sztotal, ~η2, η0} is a complete set of com-
muting observables. For simplicity, we will denote the
eigenstate of {~η2, η0} as |j,m〉, with

~η2|j,m〉 = j(j + 1)|j,m〉, η0|j,m〉 = m|j,m〉, (6)

where |m| ≤ j.
Because of Eq. (3) and (4), η± are a pair of ladder

operators for η0 and the Hamiltonian H. Consider a
simultaneous eigenstate |E,Sztotal, j,m〉. Applying η+ to
this eigenstate will lead to |E + U, Sztotal, j,m + 1〉, and
vice versa for η−.

B. Particle-hole transformation

The particle-hole (PH) transformation

ci↑ → (−1)ic†i↓, ci↓ → (−1)ic†i↑ (7)

has some consequences for the eigenstates.
Firstly, Szi is invariant under the PH transformation.

Secondly, we have

η± → η∓, η0 → −η0, ~η2 → ~η2. (8)

Thirdly, the Hamiltonian H transforms as

H → H − 2Uη0. (9)

Therefore, from the wave function’s perspective, an
eigenstate |E,Sztotal, j,m〉 under the PH transformation
becomes |E−2mU,Sztotal, j,−m〉. Both these eigenstates
will have the same entanglement; therefore, both the
right and left edge of Fig. 1 can be considered reference
states.
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III. ENTANGLEMENT ENTROPY OF
ETA-PAIRING STATES

The pseudo-spin SU(2) algebra has direct influence on
the eigenstates’ energy and entanglement entropy. Given
a reference eigenstate |ψref〉 of H, one can build a tower
of highly excited states with η+,

|ψN 〉 = ANηN+ |ψref〉, N ∈ N+, (10)

where AN is the normalization factor. With increasing
N , |ψN 〉 has increasing energy and number of doublons,
until annihilated. We will call these excited states the
eta-pairing states, and only consider the reference state
|ψref〉 which can be annihilated by η− and has relatively
small number of electrons (see Appendix A for details).

In this section, we prove two things: (A) eta-pairing
states (with large enough N) have, at least, a logarith-
mically increasing entanglement with respect to its refer-
ence state and (B) eta-pairing states (with large enough
N) whose reference state consist of only singlons have
exactly a logarithmically increasing entanglement.

To accomplish this, we decompose |ψref 〉 =
∑
t |ψt〉

into a linear superposition of terms labeled by property
t which is preserved under the application of ηN+ . Addi-
tionally, the reduced density matrix is block diagonal in
blocks labeled by t, i.e. ρt = trB |ψt〉〈ψt|. It then follows
that the entanglement entropy is a sum of these individ-
ual blocks. To determine the change of entanglement, we
need consider only how the entanglement of each term
|ψt〉 changes.

To prove (A), the property t is the spin polarization
in the subsystem A. We consider only the term where
SA,z is maximally polarized (i.e. SA,z = K/2 for a sys-
tem of K electrons) and show that this term has a log-
arithmically increasing entanglement. To prove (B), the
property t is the singlon number in subsystem A and we
can show that every term has a logarithmically increas-
ing entanglement. Proving the logarithmic increase in
entanglement uses a similar approach to Ref. 59. In the
subsections below we detail these claims.

A. Maximally Polarized Sector

In this subsection, we show that, for any eta-pairing
eigenstate in region II of Fig. 1, the entanglement en-
tropy grows at least logarithmically, whose contribution
comes from the maximally polarized sector in the reduced
density matrix.

Consider an eta-pairing state built on a many-body
reference state with K electrons. Without loss of gener-
ality, let Sz = 0. Decompose |ψref 〉 into terms of fixed
SA,z. Notice that the operation of η+ only adds doublons
to a basis vector and therefore, can’t change the value of
SA,z except by destroying the state. Since Sz is fixed,
SB,z will not change either when η+ is applied. When
we trace out B to calculate the reduced density matrix

of A, the terms |ψt′〉〈ψt| where t 6= t′ will vanish because
|ψt′〉 and |ψt〉 have different values SB,z. As a result, the
reduced density matrix will be block diagonal according
to SA,z.

Take a reference state with K electrons for the disor-
dered Hubbard model.

|ψref〉 =
∑

(i1,σ1),··· ,(iK ,σK)

α(i1,σ1),··· ,(iK ,σK)c
†
i1,σ1
· · · c†iK ,σK

|0〉,

(11)
which satisfies K � L/2 and η−|ψref〉 = 0. We consider
the block in the reduced density matrix with maximum
SA,z for which there is K/2 spin-up electrons in A and
K/2 spin-down electrons in B.

|ψK/2〉 =
∑

(i1,↑),··· ,(iK ,↓)
α(i1,↑),··· ,(iK ,↓)c

†
i1,↑, · · · , c

†
iK ,↓|0〉

(12)

=
∑

i∈I,j∈J
αi,j{c†i↑}{c

†
j↓}|0〉. (13)

I is the set of site sequences with only spin-up electrons.

{c†i↑} is the product of c†↑ from a particular site sequence

i. Similar notation is used for J and {c†j↓} for the case
of spin-down electrons. We then perform a Schmidt de-
composition on |ψK/2〉.

|ψK/2〉 =
∑

i∈I,j∈J
αi,j{c†i↑}{c

†
j↓}|0〉 (14)

=
∑

i∈I,j∈J

∑
k

uikdkkvkj{c†i↑}{c
†
j↓}|0〉 (15)

=
∑
k

dkk(
∑
i∈I

uik{c†i↑})(
∑
j∈J

vkj{c†j↓})|0〉 (16)

=
∑
k

αk|k↑,A〉|k↓,B〉 (17)

Notice that we construct Schmidt vectors with K/2
spin-up singlons in A and K/2 spin-down singlons in B.
By using the same contour integral technique as Ref. 59,
the reduced density matrix has the following form.

ρsingleA = trB [ANηN+ |ψK/2〉〈ψK/2|ANηN− ]

= (ANN !)2
∮
o

∮
o

dz1dz
∗
2

(2π)2

∑
k

α2
k〈k↓,B |

ez
∗
2η−,B

(z∗2)N+1

ez1η+,B

zN+1
1

|k↓,B〉ez1η+,A |k↑,A〉〈k↑,A|ez
∗
2η−,A

(18)

ρsingleA = (ANN !)2
∮
o

∮
o

dz1dz
∗
2

(2π)2

∑
k

α2
k

(1 + z1z
∗
2)LB−K/2

(z1z∗2)N+1

ez1η+,A |k↑,A〉〈k↑,A|ez
∗
2η−,A

(19)
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where

η−,A/B =
∑
i∈A/B

(−1)ici↑ci↓, η+,A/B = η†−,A/B . (20)

After carrying out the contour integrals, we get

ρsingleA =
∑
k

α2
k

∑
n

λn|N − n, k↑,A〉〈N − n, k↑,A| (21)

λn =
CN−nLA−K/2C

n
LB−K/2

CNL−K
, (22)

|N − n, k↑,A〉 = ALA

N−nη
N−n
+,A |k↑,A〉. (23)

where Ckn = n!/[k!(n − k)!] is the combinatorial num-

ber, ALA

N−n is a normalization constant given by Eq. (B7)
by replacing L with the subsystem size LA. It is crucial
to choose the maximum polarized sector so that |k↑,A〉 is
a reference state of η+,A.

The entanglement entropy can be calculated as follows

S = −
∑
k,n

α2
kλn ln

(
α2
kλn

)
(24)

= −
∑
k,n

α2
kλn ln

(
α2
k

)
−
∑
k,n

α2
kλn ln(λn) (25)

= −
∑
k

α2
k ln
(
α2
k

)
− βA

∑
n

λn ln(λn) (26)

= Sref − βA
∑
n

λn ln(λn) (27)

where Sref = −
∑
k α

2
k ln
(
α2
k

)
, βA =

∑
α2
k =

∑
k d

2
kk.

Since the sum of the square of the singular values is
equal to the Frobenius norm of the matrix, it follows
that βA =

∑
i∈I,j∈J α

2
i,j . Eq. (27) is checked numerically

with system size L = 8 and reference electron number
K = 2 in Fig. 12.

Naturally, we are interested in the limit of highly ex-
cited states, large system size and large heat bath size.
Therefore we take the limit of LB � LA, N � LA−K/2,
and LA � K/2. In this case, one can simplify S − Sref

using the Stirling approximation, replace the summation
by an integral, and finally apply a saddle point approxi-
mation, which leads to

S − Sref ≈
βA
2

(1 + ln[2πν(1− ν)(LA −K/2)]) (28)

where ν = N/(L − K) indicates the portion of avail-
able sites taken by double occupancies. Notice that
the symmetric appearance of ν(1 − ν) with respect to
1
2 is a consequence of the particle-hole symmetry (see
Fig. 15). We can clearly see the logarithmic contribution
of ln (LA −K/2) to the total von Neumann entanglement
entropy.

B. Reference states with only singlons

In this subsection, we show that, for any eta-pairing
eigenstate in region II of Fig. 1 whose reference state
contains only singlons, the entanglement entropy grows
exactly logarithmically in the thermodynamic limit.

Given a reference |ψref 〉 with only singlons, we decom-
pose it into terms of fixed singlon number i in subsystem
A. Notice that the operation of η+ only adds doublons
to a basis vector and therefore, can’t change the value of
i except by destroying the state. Since the total singlon
number is fixed in the reference state, the singlon num-
ber in subsystem B will not change either when η+ is
applied. When we trace out B to calculate the reduced
density matrix of A, the terms |ψt′〉〈ψt| where t 6= t′

will vanish because |ψt′〉 and |ψt〉 have different values in
terms of singlon number in subsystem B. As a result, the
reduced density matrix will be block diagonal according
to the singlon number i in subsystem A.

Take a many particle reference state in the form of
Eq. (B1) with all K electrons to be singlons. We con-
sider the component |ψi〉 with i singlons in subsystem A.
Following the same calculation as in the previous subsec-
tion, we perform a Schmidt decomposition and have

|ψi〉 =
∑
k

αi,k|ki〉|kK−i〉 (29)

where we construct Schmidt vectors of i singlons in A
and K − i singlons in B.

Using the same contour integral technique, one can
show that the reduced density matrix from this reference
state has the following form.

ρsinglei,A =
∑
k,n

α2
i,kλi,n|φAi,n〉〈φAi,n| (30)

where λi,n =
Cn

LB−(K−i)C
N−n
LA−i

CN
L−K

and |φAi,n〉 is a set of or-

thonormal basis.
It follows that the entanglement entropy has the form.

Ssingle
i,A = Si,ref − βi,A

∑
n

λi,n lnλi,n (31)

where Si,ref = −
∑
i,k α

2
i,k lnα2

i,k, βi,A =
∑
α2
i,n =∑

(i1,σ1),··· ,(iK ,σK) α
2
(i1,σ1),··· ,(iK ,σK) with the constraint

that there are i singlons in A and K − i singlons in B.
Summing up the entanglement entropy contribution

from different singlon number i sectors, the total entan-
glement entropy is

Stotal =
∑
i

Si,ref −
∑
i,n

βi,Aλi,n lnλi,n (32)

Eq. (32) is consistent with numerical result with sys-
tem size L = 8 and reference electron number K = 2 in
Fig. 13.
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In the thermodynamic limit of LB � LA, N � LA −
K, LA � K, and N + K < L, we can apply Stirling
approximation and saddle point approximation to each

Ssingle
i,A , which implies an additive scaling of ln(LA − i)

to the entanglement entropy. The result is true for all
i ≤ K sectors as long as the reference state has only
singlon occupancies. Therefore, the total entanglement
entropy of the eta-pairing states built on reference states
with only singlon occupancies will have logarithmically
more entanglement entropy than the reference states.

IV. NUMERICAL EVALUATION OF
ENTANGLEMENT

In the previous section, we proved that there is, at
least, an additive logarithmic increase in entanglement
from the reference state in various contexts. While this
rules out that eta-pairing states are area law, these proofs
are not sufficient to determine the actual entanglement
entropy because we don’t know the entanglement of the
reference state nor whether the increase in entanglement
is greater then logarithmic. In this section we take steps
to answer these questions numerically.

0

1

2

3

S

0 1 2 3 4 5 6

lnLA

0

1

2

3

S
−
S
r
e
f

Figure 2. Top: Entanglement entropy S(LA) of ANη
N
+ |ψref 〉

for various N (starting at N = 0 for the bottom curve) with
|ψref 〉 as a single disordered realization of the open-boundary
condition two-particle ground state of Eq. (1) with W = 4, t =
1 and U = 1. Bottom: Entanglement entropy difference
between ANη

N
+ |ψref 〉 and |ψref 〉 for various N .

The simplest reference states we can consider are
ground states. We consider the ground state of Hamil-
tonian in Eq. (1) for W = 4 in the sector where total
Sz = 0 and K = 2 for M = 400 total sites. This state
is close to the top of region I in Fig. 1. We apply η+
many times and see a clear logarithmic increase in en-
tanglement (see Fig. 2). Strictly speaking, under open

boundary conditions, pseudo-spin symmetry is no longer
exact, but this does not seem to be a problem at large
system sizes. While our proof in Sec. III A does not for-
bid a faster growth of entanglement, we do not see it in
this case.

We then consider the entanglement entropy of eigen-
states in the middle of the spectrum. We consider the
entanglement of these states for a system of size L = 8.
For various disorder strengths, we compute the cut aver-
aged entanglement entropy (CAEE) and the slope of the
cut-averaged entanglement entropy (SCAEE)17. Note
that the SCAEE equals to 1 at all LA for an infinite-
temperature volume law state and zero for large enough
LA for an area law state. See Fig. 3 for a histogram
of these results. We find the SCAEE consistent with a
volume law at small disorder strengths. At larger dis-
order strength, though, there is a broad distribution of
the SCAEE with some states exhibiting area-law behav-
ior and some states exhibiting sub-volume non-area law
behavior. Together with the unusual behavior of CAEE
in Fig. 19, it suggests a possible non-ergodic, non-MBL
phase in the model. More details on the disorder depen-
dence of entanglement can be found in Appendix. F.

0.0 0.2 0.4 0.6 0.8 1.0

SCAEE

0

5

10

15

20

25

P

L = 8, ` = 2

W=1

W=5

W=8

W=12

W=20

Figure 3. Probability density of SCAEE at W = 1, 5, 8, 12, 20,
for L = 8 and a subsystem size of LA = 2.

To understand this better, we start by considering the
probability density of the SCAEE in reference states of
various quantum-number sectors at subsystem size LA =
2 for system size L = 8 (see Fig. 4). We find a bimodal
distribution with one of the peaks centered at zero and
the other peak at a non-zero value much less than 1 again
suggesting a mix of area-law and sub-volume law states
(see Fig. 4(bottom), Fig. 16, Fig. 17). We check this by
considering the disordered average entanglement for both
peaks. The peak centered at zero is clearly area-law while
the other peak is consistent with logarithmically growing
entanglement (see Fig. 4).

We then proceed to consider the difference in entan-
glement between the reference states and the eta-pairing
states. The numerical results (see Fig. 5) are consistent
with all states have a logarithmic increase in entangle-
ment. This is interesting given that this is in a regime



6

where the proof is not applicable and much of the en-
tanglement comes from sectors other then the maximally
polarized. See Fig. 14 for the non-disordered average ver-
sion of this curve.
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Figure 4. Top: The SCAEE histograms at reference states
corresponding to (from left to right) j = 0, 1, 2, 3 with L = 8,
subsystem size l = 2, Sz = 0 and W = 14. Bottom: Mean
cut-averaged entanglement entropy (CAEE) vs. lnLA for dif-
ferent reference states [j = 0 (blue curve), j = 1 (orange
curve), j = 2 (green curve), j = 3 (red curve)] for the eigen-
states with SCAEE value on the left (right) side of the dashed
line corresponding to the left (right) figure.
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Figure 5. The entanglement entropy difference vs. ln(LA) for
L = 8, Sz = 0, and W = 14 at different quantum number
sectors[j = 4 (black curve), j = 3 (yellow curve), j = 2 (blue
curve), j = 1 (red curve)]. The entanglement entropy for each
quantum number sector is averaged over the entropy of all the
eigenstates in the sector obtained from exact diagonalization.

Finally, we note that for a reference state of only sin-
glons, Eq. (32) exactly implies the (logarithmic) increase
in entanglement. While our reference states don’t typi-
cally have only singlons, we can check the efficacy of this

formula as a function of the number of non-singlons in
our system. We find (see Fig. 6) that the formula still is
applicable with small deviations when the average num-
ber of non-singlons is close to zero.
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non-singlon expectation
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Figure 6. Entanglement entropy difference for L = 8, Sz = 0
and W = 14 between Eq. (32) and the exact entanglement en-
tropy vs. average non-singlon number in the quantum number
sector j = 3,m = 0. The entanglement entropy difference is
averaged over all LA. When the non-singlon number is close
to zero, Eq. (32) provides a good description for the total
entanglement entropy.

V. TIME EVOLUTION AFTER QUANTUM
QUENCH

We have given evidence for a Hamiltonian which has
both area-law and log-law eigenstates. Here we show
how these different eigenstates can be probed using time-
evolution. In the process this will give further evidence
for the two types of states as well as supply a physical
picture for why we might expect this difference.

To accomplish this, our goal will be to find states that
are simple to prepare, such as product states, that have
overlap with primarily area-law or log-law eigenstates
and then consider the effect of time-evolution on these
states. We will consider two product states: a quarter
filled singlon state, shown in Fig. 8(top), and a half filled
doublon state, shown in Fig. 8(bottom).

For a product state |p〉 (in the occupation basis) the
number of single occupancies n1 and double occupancies
n2 fix the expected value of the quantum numbers (j,m),

〈p|η0|p〉 = − (L− n1 − 2n2)

2
(33)

and

〈p|~η2|p〉 =
L− n1 − 2n2

2

(
L− n1 − 2n2

2
+ 1

)
+ n2.

(34)

Quarter filled singlon state: To find area-law states
we must focus away from states with overlap in region
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Figure 7. SCAEE vs. doublon expectation value for L = 8,
l = 2, Sz = 0 and W = 14 in quantum number sector j =
2,m = −2. For doublon expectation value close to zero, we
see area-law entanglement.

II (which can’t be area-law) and instead on those with
high overlap with the reference states. A product state
|p〉 with only single occupancy, is always an eigenstate
of {~η2, η0} of eigenvalues (L−n1

2 ,−L−n1

2 ) and therefore
is a linear superposition of only reference states in one
quantum number sector. Moreover, of those states, we
find (see Fig. 7) that states with low doublon number
are area law states. An area law state should be ‘many-
body localized’ and so we generically expect that time
evolution starting in such states should not equilibrate.

Half filled doublon state: On the other hand, to find
log-law states, we can look for product states which have
high overlap in region II. While the average single and
double occupancy doesn’t fix the quantum number sector
it localizes it around a given quantum number sector. For
n2 <

L
2 , as n2 increases, 〈η0〉 grows towards 0, while 〈~η2〉

decreases towards L
2 . For n2 >

L
2 , as n2 increases, 〈η0〉

approaches L
2 , while 〈~η2〉 increases towards L

2 (L2 +1). For
either case, one can see that the half-filled doublon state
is composed of eta-pairing states high up on long pseudo-
spin ladders, which have logarithmic corrections to their
entanglement entropy. As a log-law state we expect less
localization than a MBL state.

Both of the product states start with zero entangle-
ment entropy, and highly imbalanced charge distributions
between even and odd sites. By considering the time evo-
lution of doublon number in both quarter filling and half
filling settings, we can verify that the doublon number is
largely localized (see Fig. 9).

With these two initial product states, we investigate
the time evolution of von Neumann entanglement en-
tropy, and charge imbalance

I =

∑
j(−1)j(nj↑ + nj↓)∑

j(nj↑ + nj↓)
. (35)

We also look at staggered magnetization in Appendix E.

(A) Quarter filling

(B) Half filling

Figure 8. A: A schematic diagram for the quarter filled sin-
glon state used in unitary time evolution. B: A schematic
diagram for half filled doublon state used in unitary time evo-
lution. Both states have a charge imbalance per electron of
1.

The main goal is to see the rate of entanglement entropy
growth and whether the charge imbalance relaxes.
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Figure 9. Ensemble averaged number of doublon for W =
14, L = 8 with quarter filled singlon state and half filled dou-
blon states. Same samples are used as in the first column of
Fig. 10. The initial doublon number is zero for the quarter
filled state and four for the half filled state.

The real time evolution simulations are carried out sep-
arately for L = 8, which uses the exact diagonalization
(ED) method, and for L = 12 and L = 24, which uses the
time-evolving block decimation (TEBD) method based
on the open source ITensor library60. We consider dis-
order strengths W = 14. Under each simulation, the
entanglement entropy, charge imbalance and staggered
magnetization are averaged over disorder realizations.

We find (see Fig. 10, Fig. 11) that the quarter filled
singlon case exhibits logarithmic growth in entanglement
entropy and a charge imbalance that, after an initial de-
cay, never relaxes stabilizing around a non-zero value.
This is as expected for a many-body localized state. On
the other hand, the half filled doublon case exhibits a
power-law growth of entanglement as well as a charge-
imbalance which decays quickly to zero. Although this
is suggestive of thermalization, the slope of the entangle-
ment is significantly below the expected linear growth of
an ergodic phase. We attribute this difference to the log-
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arithmic as opposed to volume-law entanglement of the
eigenstates. Further evidences from the disorder depen-
dence of dynamics are presented in Appendix. G.
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ln
S
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0 2 4
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−2 0 2

ln t

Figure 10. Ensemble averaged von Neumann entropy S for
W = 14 with quarter filled singlon and half filled doublon
initial product states. First column: L = 8, exact diag-
onalization and periodic boundary conditions. Results are
averaged over 400 (top) and 150 (bottom) samples respec-
tively. Second column: L = 12, TEBD, and open boundary
conditions. Results were averaged over 210 samples. Third
column: L = 24, TEBD, and open boundary conditions. Re-
sults were averaged over 200 (top) samples and 210 (bottom)
samples respectively. For the quarter filling case (blue curves),
the entropy grows logarithmically with respect to time. For
the half filling case (red curves), the entropy grows as a power
law with t, with the power law exponent equal to 0.25 for
L = 8, 0.29 for L = 12 and 0.26 for L = 24.
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Figure 11. Ensemble averaged charge imbalance I using the
same samples and parameters as Fig. 10.

There is a simple physical picture consistent with these
results. Since double occupancy has Sz = 0, spin-up and
spin-down electrons can hop together through a second
order process, which leads to full charge delocalization in
the half filled setting. However, single occupancies can
not hop freely due to spin disorder, which prevents full

charge delocalization in the quarter filling case. Under
the spin disorder potential, the double occupancy tends
to hop together and creates charge relaxation.

From the above analysis, it is clear that the quar-
ter filled singlon product state acts many-body localized
while the half filled doublon product state is neither fully
ergodic nor MBL. Moreover, via time-evolution we see
that we can directly probe the area-law and log-law parts
of the spectrum opening up the possibility that this effect
can be seen experimentally.

VI. CONCLUSION

Overall, then we have two pieces of evidence - entangle-
ment and dynamics - which suggests the spin-disordered
Hubbard model is neither in the MBL phase nor in the
ergodic phase. Instead, at large disorder, it has both area
and log-law eigenstates throughout the spectrum.

From Fig. 3 and Fig. 19, we see that there appear to
be three qualitatively different types of eigenstates in this
model as we tune disorder. At L = 8 and small disorder
(i.e. W ≤ 4), we find a slope of the cut-averaged entan-
glement entropy (SCAEE) at LA = 2 which is peaked
near one, the expected value for an infinite temperature
volume law in the thermodynamic limit. At W & 6 there
is a qualitative change in the distribution of eigenstates.
Instead, the distribution is peaked at a low SCAEE even-
tually approaching a value near 0.1 at larger disorder (i.e.
W ≈ 15). This suggests a plurality of eigenstates which
are neither volume law nor area law, which would (for
large LA and L) corresponds to a SCAEE of zero. Fur-
ther validation of a phase transition out of the ergodic
phase is suggested by a maxima in the standard devia-
tion of the CAEE (see Fig. 19). At disorder W ≥ 9, an
additional peak at near-zero SCAEE suggests a fraction
of the states are also area-law (we anticipate such a peak
would extend to lower W for larger LA, L).

We better probe the nature of these eigenstates at large
disorder by considering the eigenstates in regions I and
II from Fig. 1. In region I, we separately consider the
SCAEE of the eigenstates in various quantum number
sectors. We again (see Fig. 4) find a bimodal distribu-
tion for the SCAEE of eigenstates. By considering the
eigenstates in the peak away from zero, we see their en-
tanglement is best fit by a logarithmically growing en-
tanglement (Fig. 4(right)). The area law states in region
I can be probed dynamically by choosing an all singlon
product state. Such a state only has overlap in one quan-
tum number sector in region I and is biased toward the
area-law states (see Fig. 7). We consider the time evolu-
tion of a quarter-filled and half-filled singlon state. We
find that both states have entanglement entropy which
scales logarithmically in time (as anticipated for a MBL
state) and whose charge imbalance and staggered mag-
netization respectively do not equilibrate (see Fig. 10,
Fig. 11, Fig. 21, Fig. 22). This behavior is consistent
with the area-law nature of the states seen in entangle-
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ment.
Instead in region II, area law states are analytically

forbidden (see Sec. III). Here, we considered the differ-
ence in entanglement between a given quantum number
sector in region II and its respective reference state in re-
gion I. We find for a two-electron ground state (an area
law state) and N = 400 that the states in region II differ
logarithmically (see Fig. 2). For smaller N = 8 but for
all eigenstates, we also see a difference which is best fit
by a logarithmic entanglement (see Fig. 5). Given the
log-law and area-law nature of region I this means that
region II contain log-law states. By dynamically time
evolving with a product state of half-filled doublons, we
probe eigenstates in quantum number sectors with m = 0
which have overlap in region II. This state’s entanglement
scales polynomially but not linearly under time evolution
(see Fig. 10) and has a charge imbalance I which appears
to eventually equilibrate (see Fig. 11).

Our work provides a microscopic Hamiltonian that
demonstrates the possible existence of a non-ergodic,
non-MBL phase in a one-dimensional system. Such
phases will not have local integrals of motion nor small
unitary tensor networks. This work opens up the pos-
sibility of different entanglement structures beyond the
area-law of many body localized state in disordered sys-
tems.
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Appendix A: Reference states

Note that a reference state has the property that

η−|ψref〉 = 0. (A1)

This implies that any eigenstate which has overlap with
any product state of only singlons is a reference state.
This follows because we know that η+η− acted on a non-
reference eigenstate gives back the eigenstate and since
η± only affects doublons, any single-occupancy-only con-
figuration will be annihilated by η−.

For a K-electron eigenstate |ψref〉 which can be anni-

hilated by η−, we have

η0|ψref〉 = −L−K
2
|ψref〉, (A2)

Because of Eq. (3), it then follows that

~η2|ψref〉 = (η+η− − η0 + η20)|ψref〉, (A3)

which can be reduced to

~η2|ψref〉 =
L−K

2

(
L−K

2
+ 1

)
|ψref〉, (A4)

meaning that |ψref〉 has pseudo-spin quantum number of
(L−K2 ,−L−K2 ) for (~η2, η0), which then can be raised by
η+ for at most (L−K) times.

Appendix B: Normalization factor of eta-pairing
states built from many particle reference state

Assume that we have a K-particle eigenstate of the
spin-disordered Hubbard model as

|ψref〉 =
∑

(i1,σ1),··· ,(iK ,σK)

α(i1,σ1),··· ,(iK ,σK)c
†
i1,σ1
· · · c†iK ,σK

|0〉,

(B1)
which satisfies K � L/2 and η−|ψref〉 = 0

On top of this eigenstate, one can also build a tower of
eta-pairing states as

|ψN 〉 = ANηN+
∑

(i1,σ1),··· ,(iK ,σK)

α(i1,σ1)···(iK ,σK)c
†
i1,σ1
· · · c†iK ,σK

|0〉.

(B2)
But now it becomes too complicated to calculate the nor-
malization factor directly.

To move forward, one should consider Eq. (3), (A2),
and (A4). It is clear that

η−η+|ψref〉 = (L−K)|ψref〉, (B3)

and

η2−η
2
+|ψref〉 = 2(L−K)(L−K − 1)|ψref〉, (B4)

Using mathematical induction, is quite easy to show that

ηN− η
N
+ |ψref〉 = CNL−K(N !)2|ψref〉, (B5)

which means that

1

A2
N

= 〈ψref|ηN− ηN+ |ψref〉 = CNL−K(N !)2. (B6)

So we finally arrive at

AN =

√
(L−N −K)!

(L−K)!N !
. (B7)
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Appendix C: Additional numerical evidence on
eta-pairing state entanglement entropy
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Figure 12. Entanglement entropy from maximum polarized
sector vs. subsystem size LA for eta-pairing state with ηN+
[N = 0 (blue curve), N = 1 (green curve),N = 2 (orange
curve), N = 3 (black curve)]. The numerical data is indicated
by ∗ and is consistent with the lines generated by Eq. (27).
The sample is selected from reference state with average sin-
glon number equal to 0.036, which is far away from the ref-
erence state electron number K = 2. System size L = 8,
polarization Sz = 0 and disorder strength W = 14.
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Figure 13. Entanglement entropy vs. subsystem size LA for
eta-pairing with ηN+ [N = 0 (blue curve), N = 1 (orange
curve), N = 2 (green curve), N = 3 (red curve)]. The nu-
merical data is indicated by ∗ and it is consistent with the
lines generated by Eq. (32). The sample is selected from ref-
erence state with average singlon number almost equal to the
reference state electron number K = 2. System size L = 8,
polarization Sz = 0 and disorder strength W = 14.
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Figure 14. The entanglement entropy difference vs. ln(LA)
for all states in the quantum number sector j = 3,m = 0 for
L = 8, Sz = 0 and W = 14. The entanglement entropy for
each quantum number sector is averaged over the entropy of
all the eigenstates in that sector.
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Figure 15. Entanglement entropy difference between different
quantum number sectors and their reference states [j = 4
(blue curve), j = 3 (green curve), j = 2 (red curve)] vs.
ln[ν(1−ν)]. ν is defined as N/(L−K), where N is the number
of times of applying the η+ operators on the reference state
and K is the number of electrons in the reference state. The
entanglement entropy is linear with respect to ln[ν(1 − ν)],
which agrees with Eq. (28).

Eq. (28) indicates that for fixed LA in the limit
N � LA − K � 0, the entanglement in the single-
occupancy reference state sector should increase logarith-
mically with ν(ν−1). In spite of not being in this regime,
for the L = 8 case we interestingly find that the entangle-
ment entropy of the states in the same quantum number
sector j increases logarithmically in ν(1− ν).
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Appendix D: Bimodal distribution of reference
states entanglement entropy

Here provides further details on the probability density
of the SCAEE in reference states of various quantum-
number sectors at subsystem size LA = 2 for system size
L = 8 (see Fig. 4).
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Figure 16. Mean cut-averaged entanglement entropy (CAEE)
vs. LA for different reference states [j = 0 (blue curve), j = 1
(orange curve), j = 2 (green curve), j = 3 (red curve)]. LA

is the subsystem size. System size L = 8, polarization Sz = 0
and disorder strength W = 14. Left: The CAEE in each
reference state sector is averaged over the eigenstates with
SCAEE value on the left hand side of the dashed line in Fig. 4.
The mean CAEE in this case indicates a area law. Right:
The CAEE in each reference state sector is averaged over the
eigenstates with SCAEE value on the right hand side of the
dashed line in Fig. 4. The mean CAEE in this case indicates
an sub-volume law.
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Figure 17. Cut-averaged entanglement entropy (CAEE) vs.
LA for reference state sector at j = 1. LA is the subsystem
size. System size L = 8, polarization Sz = 0 and disorder
strength W = 14. Left: The CAEE in each reference state
sector is from the eigenstates with SCAEE value on the left
hand side of the dashed line in Fig. 4. The CAEE in this case
indicates a area law. Right: The CAEE in each reference
state sector is from the eigenstates with SCAEE value on the
right hand side of the dashed line in Fig. 4. The CAEE in
this case indicates an sub-volume law.

Appendix E: Staggered magnetization

We also look at the time evolution of the staggered
magnetization.

Ms =

∑
j(−1)j(nj↑ − nj↓)∑

j(nj↑ + nj↓)
. (E1)

We have chosen the initial state to be the half filled
singlon state, whose staggered magnetization starts from
1 (see Fig. 18(Top)). Since the initial state has no dou-
blon, it is an area-law state (see Fig. 18(Middle)). Due
to the large spin disorder, the spin degree of freedom is
localized and the final staggered magnetization stabilizes
at a value far away from zero (see Fig. 18(Bottom)).
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Figure 18. Top: Schematic diagram for the half filled singlon
state. Middle: SCAEE vs. doublon expectation value for
L = 8, l = 2, Sz = 0 and W = 14 in quantum number sector
j = 0,m = 0. Bottom: Disorder averaged (over 200 sam-
ples) time evolution of staggered magnetization Ms of the half
filled singlon state for L = 8,W = 14. The initial staggered
magnetization is 1.

Appendix F: disorder dependence of entanglement

In this section, we consider the disorder dependence of
entanglement. To do this, we start by considering the
CAEE as a function of W . We first note that the stan-
dard deviation of the CAEE has a peak around W ≈ 5
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for L = 8 suggesting a transition between two differ-
ent types of entanglement. By looking at the histogram
of the slope of the cut averaged entanglement entropy
(SCAEE) we can better understand the distribution of
entanglement. At W ≤ 4 the distribution of the SCAEE
is peaked at slope close to 1.0 as would signify an infi-
nite temperature volume law. At W ≥ 5 the slope is
instead peaked at a much smaller non-zero value. This
suggests that the plurality of states are neither volume
law nor area law (which should be peaked at zero for
large enough LA and L). It is reasonable to anticipate
that these are then primarily log-law states and this scal-
ing is consistent with the measured scaling at W = 14.
Notice, in addition for all W > 8 there is non-trivial
number of eigenstates with zero slope and in particular
a non-trivial peak at zero for W > 11. This suggests the
existence of a non-trivial number of area law states. The
fact that these states become visible only at W some-
what larger than the transition is not surprising. For W
closer to the transition, the subsystem size LA at which
the CAEE should saturate to zero slope is expected to
increase. Since LA = 2 is chosen at Fig. 20, the zero
slope for W closer to the transition may not appear to
be obvious.
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Figure 19. Mean (top) and standard deviation (bottom) of
the half-cut CAEE vs. the disorder strength, for L = 6, 8,
with 100 disorder samples for each cases, and 30 to 50 eigen-
states per sample at the middle of the spectrum in the half
filling, Sz

total = 0 sector. The standard deviation of CAEE is
more peaked at L = 8. Two noticeable differences from the
normal MBL transition can be observed. (1) At very large
W , CAEE stays around 1, instead of zero. (2) For both the
mean and the standard deviation of CAEE curves, the cross-
ing point between different system sizes does not show up
until very large W . These could be signs of a non-ergodic,
non-MBL phase.
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Figure 20. Left: Probability density of SCAEE at W =
3 ∼ 6, for L = 8 and a subsystem size of LA = 2. Right:
Probability density of SCAEE at W = 7 ∼ 16, for L = 8 and
a subsystem size of LA = 2. The results are averaged over
100 disorder samples for each disorder strength W .

Appendix G: Disorder dependence of dynamics

In the main body of the text, we have focused on W =
14 for the dynamics. As larger disorder should have a
smaller correlation length, this should minimize finite-
size effects while still not being at such a large disorder
that Anderson localization effects dominate; one way to
validate the latter is to see the logarithmic increase in
entanglement which distinguishes MBL from Anderson
localization. In this appendix, we focus on the effect of
disorder dependence on the dynamics.
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Figure 21. Time evolution of entanglement entropy for L = 8
under different disorder strength W . Disorder goes in incre-
ments of 1 from bottom to top. Left: 1 ≤ W ≤ 14 Right:
8 ≤ W ≤ 14; Results are averaged over 200 disorder sam-
ples except for half filled doublon W = 13 (173 samples) and
W = 14 (150 samples). First row: Quarter filled singlon
initial state (Fig. 8). Second row: Half filled singlon initial
state (Fig. 18). Third row: Half filled doublon initial state
(Fig. 8).

As in the main body of the text, we look at the dy-
namics of three product states: the quarter-filled sin-
glon state, the half-filled singlon state and the half-filled
doublon state (always shown in panels top, middle, and
bottom respectively). The quarter filled singlon state
has a mid-bond entanglement which grows logarithmi-
cally in time for W & 5 and a change-imbalance which
doesn’t appear to equilibrate for W & 3. The half-filled
singlon state has a mid-bond entanglement which also
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grows logarithmically in time out to t = 100 for W & 5
and whose staggered magnetization doesn’t equilibrate
for W & 3. This is consistent with a transition in the
range 3 ≤ W ≤ 5 between area-law states, which are
probed by the singlon product states, and ergodic states,
which are volume law. For the half-filled state, instead
we see that at large W & 5 the entanglement grows poly-
nomially but not linearly. We find that the charge im-
balance equilibrates for all W.
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Figure 22. Time evolution of charge imbalance (left) and
staggered magnetization (right) for L = 8 under different
disorder strengths 1 ≤ W ≤ 14 in increments of 1 start-
ing from the bottom. Results are averaged over 200 disorder
samples except for the half filled doublon W = 13 (173 sam-
ples) and W = 14 (150 samples). First row: Quarter filled
singlon initial state (Fig. 8). Second row: Half filled singlon
initial state (Fig. 18). Third row: Half filled doublon initial
state (Fig. 8).
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