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We present theoretical results for the optical conductivity and the non-resonant Raman suscep-
tibilities for three principal polarization geometries relevant to the square lattice. The suscepti-
bilities are obtained using the recently developed extremely correlated Fermi liquid theory for the
2-dimensional t-t’-J model, where t and t’ are the nearest and second neighbor hopping. Our results
sensitively depend on t, t’. By studying this quartet of related dynamical susceptibilities, and their
dependence on t, t’, doping and temperature, we provide a useful framework of interpreting and
planning future Raman experiments on strongly correlated matter.

I. INTRODUCTION

Inelastic or Raman scattering of electrons by photons
(e-γ) in strongly correlated systems is of considerable
current interest. The scattering intensity, given by the
Kramers-Heisenberg formula1, consists of a resonant and
a non-resonant piece. The non-resonant piece depends
only on the energy transfer, unlike the resonant piece
that also depends on the incident energy, and is the fo-
cus of this work. In typical weakly correlated metals,
this contribution is confined to a small energy window of
a few meV2,3. Raman scattering theory metals, if based
solely on density fluctuations, would give a vanishing con-
tribution as q → 0 due to the conservation law in that
limit. The early works of Ref. [2] and Ref. [4] showed
that non-parabolic bands lead to the coupling of light
to a non-conserved operator (the stress tensor operators
discussed below), rather than the density. These opera-
tors are exempt from conservation laws that govern the
density, and therefore can lead to non-resonant Raman
scattering.

Recent experiments5–17 in strongly correlated metal-
lic systems, such as the High Tc superconductors have
thrown up further complexity to challenge to our under-
standing. It is found that the scattering is q independent
and extends over a much larger energy range O(eV), and
is also observed to have a complex T dependence5–7,10,14.
To explain these a systematic reformulation of light scat-
tering in narrow band systems was developed in Ref. [18–
23]. Shastry and Shraiman (SS) Ref. [18,19] developed a
theory of Raman scattering in Mott-Hubbard systems us-
ing the Hubbard model, where nonparabolicity of bands
is built in correctly, so that the conservation law con-
cerns are taken care of. However the large energy spread
of the non-resonant signals remains unaccounted for. It
cannot arise from quasi-particles in Fermi liquids, and
hence SS argued that a large contribution from the in-
coherent background of the electron spectral function is
required to explain the data (see e.g.5,6). This qualita-
tive argument is not fine enough to explain or predict
differences in backgrounds in different geometries. The
latter remains an unresolved problem, and is the focus of
the present work.

Progress towards a solution at the microscopic level

has been slow since a suitable theory in 2-dimensions
displaying such a phenomenon has been lacking so far.
In this work we apply the recently developed extremely
correlated Fermi liquid theory (ECFL)24,29 to calculate
the Raman cross sections using the k-dependent bare ver-
tices of Ref. [18,19]. This theory provides a framework
for controlled calculations in the t-J model, a prototypi-
cal model for very strong correlations, and a limiting case
of the Hubbard model. The theory has been successfully
benchmarked against essentially exact results in d = 026,
d = 127 as well as d = ∞28. A recent application of
the theory to the physically important case of d = 2 in
Ref. [29,30] gives detailed results for the spectral func-
tions and the resistivity ρ in the t-t′-J model, with near-
est and second neighboring hopping. The state obtained
in ECFL at low hole densities has a very small quasi-
particle weight Z � 1. A significant result is that the
temperature dependence of resistivity is non-quadratic
already at T ∼ 100K for low hole doping.

In this work we apply the solution found in Ref. [29,30]
to compute the Raman scattering, in three standard po-
larization configuration channels A1g, B1g, B2g defined
below31. The results are applicable to either electron
doping or hole doped cuprates by choosing the sign of
t′, and possibly applies to other strongly correlated sys-
tems as well. Following SS, we also compare the Raman
conductivities with the optical conductivity, and shall fo-
cus on the quartet of these results on various values of
material parameters.

The utility of comparing the optical conductivity with
the Raman response requires a comment. SS18,19 sug-
gested that this comparison is useful, since these are
exactly related in a limiting situation of d = ∞. Fur-
ther in d = 2, 3.., one often calculates the response
within the bubble diagrams, where again these are re-
lated. In the bubble approximation, also used in the
present work, one evaluates the current-current and re-
lated correlation functions by retaining only the lowest
order χJJ ∼

∑
k(γk)2G(k)G(k) (i.e. bubble) terms with

dressed Greens functions and suitable bare vertices γ.
While this calculation misses a contribution due to the
renormalization of one of the bare vertices γ → Γ, it is
hard to improve on this already difficult calculation for
strong correlations, since G is highly non-trivial. An ex-
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ception is the special case of d → ∞, where the vertex
corrections vanish. Within the bubble scheme, the bare
Raman and current vertices are different while everything
else is the same. Therefore one should be able to relate
the two experimental results and explore the differences
arising from the bare vertices. The “pseudo-identity”
of the transport and Raman resistivities have been ex-
plored experimentally in Ref. [8] and finds some support.
In this work we use the correct bare vertices in the differ-
ent geometries to explore the various Raman resistivities
to refine the theory. These different bare vertices have a
different dependence on the hopping parameters t, t′ and
the calculations reflect these in specific and experimen-
tally testable ways.

The neglect of vertex corrections also leads to a rela-
tionship between various Raman susceptibilities at finite
ω. In the experiments of Ref. [6], the same quartet of
susceptibilities have been studied and found to have a
roughly similar scale for their ω dependence, although
the curve shapes are distinct. On the theoretical side,
one interesting aspect of the results of Ref. [29,30] is that
the Fermi surface shape remains very close to that of
the non-interacting tight binding model, while of course
conserving the area. Thus the Dyson self energy is a

weak function of ~k, unlike the strong dependence in 1-
dimension27. This fact implies that the vertex correc-
tions, while nonzero, are modest.

II. THE RAMAN AND CURRENT VERTICES

We use the t-t′-J model with a tight binding
dispersion29 on the square lattice ε(k) = −2t[cos(kx) +
cos(ky)]−4t′ cos(kx) cos(ky), and set the lattice constant
a0 → 1. The photons modulate the Peierls hopping fac-

tors as tij → tij exp{ie/h̄
∫ j
i
d~r. ~A}, and the second order

expansion coefficients define the scattering operators. In
this case they are

Ĵα,q =
∑
kσ

Jα(k)C†
k+ 1

2 q,σ
Ck− 1

2 q,σ
, (1)

where α is a composite index determined by the in-out
polarizations of the photon. With that the vertex Jα for
the three main Raman channels are

A1g : JA1g
(k) = 2t(cos kx + cos ky) + 4t′ cos kx cos ky,

B1g : JB1g
(k) = 2t(cos kx − cos ky),

B2g : JB2g (k) = −4t′ sin kx sin ky,

xx : Jxx(k) = 2 sin kx(t+ 2t′ cos ky). (2)

The definition of α = xx corresponds to the particle cur-
rent along x. It integrates the charge current into the
same scheme as the Raman scattering. It is interesting
that the B2g vertex is independent of t, and is solely gov-
erned by t′. The vertex B1g is complementary given its
independence of t′. These geometries sample different
parts of k space in interesting ways due to their different
~k dependences.

We next define the calculated variables, and display the
results for them from computations based on the spectral
functions found in Ref. [29,30]. Results in the ω = 0 DC
limit and also at finite ω are shown. Finally we discuss
the results and their significance.

III. RAMAN AND CHARGE
SUSCEPTIBILITIES

We summarize the formulas for the (non-resonant) Ra-
man susceptibility, and in the spirit of Ref. [18,19] also
define a Raman conductivity and resistivity in analogy as
follows

χα(q, z) =
∑
nm

pn − pm
εm − εn − z

× |
(
Ĵα,q

)
n,m
|2, (3)

where pn the probability of the state n. For visible
light since qa0 � 1 and we set q → 0. The (non-
resonant) Raman intensity Iα1–3,18,19 and the Raman
conductivities18,19 are given by

Iα(0, ω) =
χ′′α(0, ω)

(1− e−βω)
, σα(ω) = ζα

χ′′α(0, ω)

Nsω
, (4)

with Ns the number of sites, ζxx = e2 accounting for the
electric charge in the conductivity with all other ζα = 1.
In the DC limit we define the Raman resistivities

ρα(0) =
Ns
ζα

kBT

Iα(0, 0)
(5)

where for α = xx, ρα is the usual resistivity.
The “pseudo-identity”, a statement of universality re-

lating electrical transport and the DC limit of Raman
intensities noted by SS in Ref. [18,19] is arrived at, if
we assume that ρα has a similar T dependence for all
α: Iα(0, 0) ∼ Cα

T
ρxx(T ) Cα is an α-dependent constant.

Thus a ρ ∼ Tσ behavior would give rise to a T 1−σ be-
havior for the Raman intensity in all channels. We see
below in Fig. (1) that this suggestion is true for the A1g

resistivity at hole dopings, but it needs to be adjusted to
the different k-dependent filters that make the B1g and
B2g channels different from the others. Thus the we limit
the universality of the pseudo-identity in this work, and
quantify the effects of the bare vertices in the relationship
between the members of the quartet of susceptibilities.

Proceeding further using the bubble scheme we get
the imaginary part of the dimensionless susceptibility
χ̄′′α(0, ω) ≡ c0h

Ns
χ′′α(0, ω) as

χ̄′′α(0, ω) = ω〈Υ(k, ω)J 2
α(k)〉k, (6)

where c0 ∼ 6.64Å is a typical interlayer separation29.
The angular average is 〈A〉k ≡ 1

Ns

∑
k A(k) and the mo-

mentum resolved relaxation scale is

Υ(k, ω) =
4π2

ω

∫ ∞
−∞

dy ρG(k, y)ρG(k, y + ω)[f(y)− f(ω + y)].
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(d)B2g Raman: resistivity ρ̄B2g

FIG. 1: Electrical and Raman resistivities from Eq. (5) at t′ = −0.2 with varying hole doping δ, as marked. The T dependence
of electrical resistivity and the A1g resistivity concave-down at small δ, while the B1g and B2g resistivity are flat or concave-up.
(Inset) The displayed Fermi surfaces at δ = .12, .24 locate the maxima of Υ(k, ω). The relevant squared vertices from Eq. (2)
are shown as a heat map. The hot spots are movable by varying t′ and t.
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FIG. 2: 3 Shaded region for estimating average scale of
vertices.

Here ρG(k, ω) is the electron spectral function. With
ρ1,α ≡ c0h

ζα
, the corresponding dimensionless conductivity

σ̄α(ω) ≡ ρ1,α × σα(ω) is given by

σ̄α(ω) = 〈Υ(k, ω)J 2
α(k)〉k. (7)

From Eqs (6) and (7), we can see χ̄′′α(0, ω) = ω ∗ σ̄α(ω)

IV. PARAMETER REGION

We explore how the variation of second neighbor hop-
ping t′, doping δ and temperature T affects the quartet
of conductivities and susceptibilities in the normal state.
We focus on optimal doping or slightly overdoped cases
from electron-doped (positive t′) to hole-doped (negative
t′) systems. Our temperature region starts from 63K to
a few hundred Kelvin.

V. DC LIMIT AND ELECTRICAL
RESISTIVITY RESULTS:

Using the spectral function from second order ECFL
theory, we calculate the dimensionless DC (ω → 0) elec-
trical and Raman conductivities σ̄α from Eq. (7). The
corresponding dimensionless resistivities are

ρ̄α =
1

σ̄a
=

1

〈Υ(k, 0)J 2
α(k)〉k

, (8)
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FIG. 3: Dimensionless ρ̄xx, taken from Ref. [29], ρ̄A1g , ρ̄B1g and ρ̄B2g at δ = 0.15 with varying second neighbor hopping t′, as
marked (same legend for all subfigures). Ref. [8] displays data corresponding to the B1g geometry.

The electrical resistivity in physical units is given by
ρxx = ρ̄xx × ρ1,xx, with ρ1,xx = c0

h
e2 ∼ 1.71mΩcm29.

We calculate typical quantities for the three Raman
geometries and the electrical conductivity from Eq. (2)
as a set of quartets below. The comparison of the figures
in each set is of interest, since the different functions in
the bare vertices pick out different parts of the k-space.
In this paper t = 1 serves as the energy unit; for the
systems in mind we estimate29 t ∼ .45 eV.

In Fig. (1), we plot DC resistivity ρ̄xx and Raman re-
sistivities in the DC limit ρ̄A1g , ρ̄B1g , ρ̄B2g varying hole
doping δ and fixing t′ = −0.2. The four figures have
roughly similar doping dependence, as suggested by the
pseudo-identity. They all decrease when the doping in-
creases, although the curvature changes more in ρ̄xx and
ρ̄A1g than the other two cases. This can be understood
from Eq. (6) since they arise from the same kernel Υ(k, 0)
with different filters. The quasi-particle peak in ρG, con-
tributing most to Υ(k, 0), is located along the Fermi sur-
face and gets broadened when warming up. The inset
shows the corresponding squared vertex J 2

α in the back-
ground and the Fermi surfaces. The B1g vertex vanishes
along the line kx = ky while the B2g vertices vanish near
{π, 0} and {0, π} points. In our calculation both B1g

and B2g overlap well with the peak region of the spectral
function, whereas A1g and the resistivity do not. This

results in the difference between the T dependence of
them and the other two in Fig. (1). It would be of con-
siderable interest to study this pattern of T dependences
systematically in future Raman studies.

Although all ρ̄α increase when reducing doping δ ap-
proaching the half-filling limit due to the suppression
of quasi-particles, their magnitudes at high temperature
vary considerably, as a result of different vertices filtering
the contribution from Υ(k, 0). We can understand this
scale difference by evaluating the average of vertices over
the shaded region in Fig. (2). The shaded region covers
the Fermi surface for all chosen δ and t′, and therefore
contains the most significant contribution to ρα.

At t′ = −0.2, 〈J 2
xx〉s ≈ 2.41, 〈J 2

A1g
〉s ≈ 0.56,

〈J 2
B1g
〉s ≈ 1.30, 〈J 2

B2g
〉s ≈ 0.20, where 〈〉s represents the

k average over the shaded region. They not only explain
the relation ρ̄xx < ρ̄B1g < ρ̄A1g < ρ̄B2g , but also cap-
ture the ratio among them rather closely at high enough
T. The structure at low T is more subtle, and carries
information about the magnitude of t′ that cannot be
captured by the above high T argument.

Although all ρ̄α increase as δ decreases in general,
their t′ dependence can be rather different, as shown in
Fig. (3). ρ̄xx and ρ̄B1g

decreases monotonically in general
as t′ increases from hole-doped (negative) to electron-
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(b)A1g Raman: σ̄A1g and χ̄A1g (inset)
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(c)B1g Raman: σ̄B1g
and χ̄B1g

(inset)
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FIG. 4: Dynamical conductivities σ̄α and susceptibilities χ̄′′
α (inset), for the hole doped case t′ = −0.2, T = 63K at different

δ, as marked. In the experiments in Ref. [6] Fig. (1), the same quartet of results is shown for LSCO. At the highest energy of
over 1000K, as in the data, the susceptibility shows no sign of dropping off.

doped (positive), while ρ̄A1g
and ρ̄B2g

decrease only as
|t′| increases and their monotonicity with respect to t′

changes upon sign change of t′. Another interesting ob-
servation is that ρ̄α(t′ = −0.2) > ρ̄α(t′ = 0.2) and
ρ̄α(t′ = −0.4) > ρ̄α(t′ = 0.4) are true for α = xx, B1g and
B2g, but for the A1g case, ρ̄α(t′ = −0.2) < ρ̄α(t′ = 0.2)
in general and ρ̄α(t′ = −0.4) ≈ ρ̄α(t′ = 0.4).

In Eq. (8), the resistivities depend on t′ through Υ(k, 0)
and J 2

α . To estimate their t′ dependence, we can look
at their average over the shaded region 〈Υ(k, 0)〉s and
〈J 2

α〉s. While 〈Υ(k, 0)〉s rises monotonically as t′ in-
creases, 〈J 2

α〉s (α = xx, A1g, B2g) is a quadratic function
of t′ which behaves differently at positive and negative
t′, as shown in Eq. (2).

In the simplest B1g case, J 2
B1g

is independent of t′.

Then t′ only affects ρ̄B1g
through Υ(k, 0) and therefore

ρ̄B1g
increases almost monotonically as t′ decreases (the

crossing between t = 0.2 and t = 0.4 is due to the fact
that the change on Fermi surface geometry leads to differ-
ent filtering result when coupling to J 2

B1g
). In the charge

current case, the t′ dependence of Υ(k, 0) still dominates
since ρ̄xx behaves similar to ρ̄B1g

and the contribution

from J 2
xx mostly modifies the curvature without affect-

ing the relative scale.

The different behaviors in the other two cases indicate
the quadratic t′ dependence in J 2

α (α = A1g, B2g) be-
comes dominant. In the simpler B2g case, J 2

B2g
∝ t′2

provides the dominant t′ dependence in ρ̄B2g
, explaining

σ̄B2g
(t′ = 0) = 0 and ρ̄B2g

(|t′| = 0.2) > ρ̄B2g
(|t′| = 0.4)

regardless the sign of t′. Similarly due to quadratic t′

dependence of J 2
A1g

, ρ̄A1g
(t′ = 0) > ρ̄A1g

(|t′| = 0.2) >

ρ̄A1g
(|t′| = 0.4).

Typically negative t′ leads to stronger correlation and
suppresses the quasi-particle peak29 and hence for a cer-
tain |t′|, ρ̄α(t′ < 0) > ρ̄α(t′ > 0) is generally true ex-
cept for the A1g case. In this exception, the negative
linear t′ term in J 2

A1g
shifts the stationary point away

from t′ = 0 and counters this effect from Υ(k, 0) for
small |t′| leading to ρ̄A1g

(t′ = −0.2) < ρ̄A1g
(t′ = 0.2)

and ρ̄A1g
(t′ = −0.4) ≈ ρ̄A1g

(t′ = 0.4).

Besides, ρ̄A1g shows rather different T -dependent be-
haviors between electron-doped t′ ≥ 0 and hole-doped
t′ < 0 cases. At negative t′, ρ̄A1g

increases almost lin-
early with temperature. But at zero or positive t′, ρ̄A1g

first increases sharply up to a certain temperature scale
depending on t′ and then crossovers to a region where
the growth rate becomes much smaller.
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FIG. 5: Dynamical conductivities σ̄α and susceptibilities χ̄′′
α (inset), for the electron doped case t′ = 0.2, T = 63K at different

δ, as marked.

VI. FINITE ω RESULTS

Next we present the ω-dependent optical and Raman
conductivities defined in Eq. (7). In Fig. (4) and Fig. (5),
the set of four ω-dependent conductivities are displayed
for the hole-doped system at t′ = −0.2 and electron-
doped system at t′ = 0.2 respectively for a set of typ-
ical densities at a low T. In the insets we display the
corresponding imaginary part of susceptibility, related
through Eq. (6). In most cases, the quasi-elastic peak
gets suppressed and shifts to higher frequency when re-
ducing the carrier concentration. The only exception is
χ̄′′A1g

at t′ = 0.2. Its quasi-elastic peaks are considerably

smaller than other geometries due to the fluctuation in
the specific vertex and get higher and broader as doping
increases.

In Fig. (6) we focus on the electron doped case of vary-
ing T at t′ = 0.2, δ = 0.15 where high quality experi-
mental results are available for the B2g Raman channel
in Ref. [10], see particularly Fig. (2). We evaluate the
susceptibility at T values corresponding to those in this
experiment. There is a fair similarity between theoretical
curve (Panel (d)) and the experiment. In particular the
theoretical curve reproduces the quasi-elastic peak, and
its T evolution. The other three panels in Fig. (6) are

our theoretical predictions, they are equally amenable to
experimental verification.

In the xx, B1g, B2g geometries, the quasi-elastic peaks
in susceptibility get slightly higher and quite broader
upon warming. The A1g case is different. Its quasi-elastic
peaks are much less obvious (too broad) except for the
lowest temperature. And the peak magnitude is rather
sensitive to temperature increase.

We also vary T at hole doping t′ = −0.2 in Fig. (7).
Comparing with the electron-doped case in Fig. (6), we
note that the hole-doped optical and Raman objects
share a greater similarity in shape dependence on T , if
we ignore the scale difference. As T increases, the quasi-
particle peaks get softened, and hence it generally sup-
presses the conductivities as well as the quasi-elastic peak
in susceptibilities.

For completeness, the t′ variation in σ̄α(ω) and χ̄′′α(ω)
is plotted In Fig. (8), and looks rather different among
various geometries. This can be understood as arising
from the competition among various factors. We have a
quadratic t′ dependence in the squared vertices, a mono-
tonic t′ dependence in the magnitude and geometry of
Υ(k, ω). The t′ dependence of the shape of σ̄α has more
commonality. Another interesting observation is that,
unlike the DC case when σ̄xx and σ̄B1g

are similarly af-
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FIG. 6: Dynamical conductivities and (inset) susceptibilities for the electron doped case with t′ = 0.2, δ = 0.15, for various
T ’s as marked. Subfigure(d) with B2g symmetry is comparable to the high resolution experimental result in Fig. (2) of Ref. [10]
at comparable set of T ’s. The theoretical curve reproduces well the quasi-elastic peaks, and their T evolution.

fected by t′, at finite frequency, their behaviors depend
on t′ rather differently. This difference is more obviously
observed in terms of χ̄′′.

From the optical and Raman conductivities σ̄α we can
extract a frequency scale Γα, as the half-width at half-
maximum, in the unit of t. These are plotted against T
in Fig. (9) for varying δ and Fig. (10) for varying t′. It
is remarkable that despite a bare band width of ∼ 3.6
eV, these frequency scales appear close to linear in T
down to very low T. This is closely related to the ob-
servation in Ref. [29] that the resistivity departs from a
T 2 behavior at extraordinarily low T ’s, i.e. the effective
Fermi temperatures are suppressed from the bare values
by two or more orders of magnitude. Although the mag-
nitude of the optical and Raman conductivities differs a
lot, their relaxation rates describing the shape turn out
to be much closer, as a result of similar T -dependent line
shape of spectral function29 in the normal state.

VII. CONCLUSION AND DISCUSSION

We have presented calculations of the electrical and
Raman resistivities in the DC limit, the optical con-

ductivity, the Raman susceptibilities and related objects
based on the second order ECFL theory in Ref. [29]. We
computed the susceptibilities (using the leading order ap-
proximation) with the shown results. Experiments on
different geometries can test and put some bound on this
hypothesis of weak vertex corrections for the Raman op-
erators. This is clearly of theoretical importance, since
going beyond the bubble graphs brings in a formidable
level of complexity.

The ECFL theory leads to a very small quasi-particle
weight Z and a large background extending over the
bandwidth, and has a very small effective Fermi tem-
perature leading to interesting T dependence of the re-
sistivity as discussed in29. The line shape of the calcu-
lated Raman susceptibility is close to that for the case
of electron doped NCCO Ref. [10] in terms of T and ω
dependence, and therefore is promising. Our calculation
also gives the Raman susceptibility in two other geome-
tries, and this prediction can be checked against future
experiments that are quite feasible. We note that the
data Ref. [6] from Sugai et. al. for this quartet of vari-
ables in the case of LSCO seems roughly consistent with
our results, and a more detailed comparison is planned.

The focus on the T dependence in the ω → 0 limit, i.e.
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FIG. 7: Optical conductivity σ̄xx(ω) and the Raman conductivities σ̄A1g (ω), σ̄B1g (ω), σ̄B2g (ω) at t′ = −0.2, δ = 0.15 and
varying T , as marked (same legend for all subfigures). The corresponding dimensionless susceptibility is plotted in the inset
with the same x-axis. Ref. [6], Ref. [7] and Ref. [10] show data that corresponds to these variables.
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(d)B2g Raman: σ̄B2g
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(inset)

FIG. 8: Optical conductivity σ̄xx(ω) and the Raman conductivities σ̄A1g (ω), σ̄B1g (ω), σ̄B2g (ω) at δ = 0.15, T = 63K and
varying t′, as marked (same legend for all subfigures). The corresponding dimensionless susceptibility is plotted in the inset
with the same x-axis. Ref. [6], Ref. [7] and Ref. [10] show data that corresponds to these variables.

on resistivities can be a quite fruitful goal for future ex-
periments, since this limit gets rid of all excitations and
measures the “pure-background”. It is an important ex-
ercise since the different geometries probe different com-
binations of t, t′ as they occur in the bare vertices Eq. (2),
as stressed above. We are predicting that the Raman re-
sistivity in each channel can be found from the intensity
at low T, and broadly speaking similar to resistivity. In

further detail, it is predicted to be (a) channel specific
and (b) t’/t dependent. These clearcut predictions can
be tested in future experiments.

Finally although such a measurement is not commonly
done, a systematic measurement of the ratios of the scat-
tering cross sections in different geometries should be
feasible. These and the comparison between the quar-
tet of susceptibilities presented here, can be profitably
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FIG. 9: Relaxation rates (half widths at half maximum) of σα(ω) in units of t, at t′ = −0.2 at various marked δ. The optical
rate shows less convexity than the corresponding DC resistivity of Ref. [29]. The rates in (a,b) and in (c,d) have similar orders
of magnitude, for reasons discussed in Fig. (1).
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FIG. 10: The half-width at half-maximum for optical conductivity and Raman conductivities at δ = 0.15 and varying t′, as
marked.

compared with recent theories of strongly correlated sys-
tems to yield material parameters. Most importantly it
can yield physical insights into the mechanism under-
lying the broad non-resonant Raman signals that have
remained quite mysterious so far.
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