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In non-centrosymmetric superconductors, spin-orbit coupling can induce an unconventional su-
perconducting state with a mixture of s-wave spin-singlet and p-wave spin-triplet channels. It is
commonly thought that inversion symmetry breaking is substantial for pairing-mixed superconduct-
ing states. In this work, we theoretically propose that a new type of pairing-mixed state, namely
the mixture of s-wave spin-singlet and d-wave spin-quintet channels, can occur even in the presence
of inversion symmetry when electrons effectively carry “spin-3/2”. As a physical consequence of
the singlet-quintet pairing mixing, topological nodal-line superconductivity is found in such system
and gives rise to flat surface Majorana bands. Our work provides a possible explanation of un-
conventional superconducting behaviors observed in superconducting half-Heusler compounds and
suggests that these superconducting materials provide a new platform for exploring unconventional
and topological superconductivity.

I. Introduction

In conventional Bardeen-Cooper-Schrieffer theory of
superconductivity, the simple s-wave spin-singlet pairing
relies on the presence of time reversal (TR) and inver-
sion symmetry (IS) in superconductor (SC) materials.
In non-centrosymmetric SCs, it has been recognized that
the IS breaking can give rise to superconducting states
with mixed pairing, namely p-wave spin-triplet compo-
nent mixed into s-wave spin-singlet pairing1–3. Such
type of mixed pairing superconductivity has been demon-
strated experimentally in various non-centrosymmetric
SCs, e.g. Ce-based heavy fermion SCs1, and can lead to a
variety of exotic phenomena, including anisotropic upper
critical field1,4–7, magnetoelectric effect1,8–10, topological
superconductivity11–13, et al1.

Recently, increasing research attention has been fo-
cused on non-centrosymmetric superconducting half-
Heusler compounds14, owing to the “spin-3/2” nature of
electrons in the low energy sector. Here “spin” refers to
the total angular momentum j, which is a combination
of 1/2-spin and angular momentum of p atomic orbitals
(l = 1), of basis electronic states. In contrast to spin-
1/2 SCs with only singlet and triplet states, the Cooper
pairs of j = 3/2 electrons can carry total spin S = 0 (sin-
glet), 1 (triplet), 2 (quintet) and 3 (septet). As a result,
a variety of pairing forms have been theoretically consid-
ered, including mixed singlet-septet pairing14–17, s-wave
quintet pairing14,17–19, d-wave quintet pairing20,21, odd-
parity (triplet and septet) parings20–23, et al21. Recent
experiments have also revealed unconventional supercon-
ducting properties15,24–26. In particular, the power-law
temperature dependence of London penetration depth
observed in Ref.15 indicates the existence of nodal lines
in half-Heusler SCs and is interpreted as the consequence
of the mixing between dominant p-wave septet and sub-
dominant s-wave singlet channels. Inversion-asymmetric
spin-orbit coupling (SOC) due to the absence of IS in the
crystal of half-Heusler compounds is expected to play an
essential role in inducing such pairing mixing. In this
work, we point out that the centrosymmetric part of

the SOC is more important for understanding supercon-
ducting properties in half-Heusler SCs. We demonstrate
that the centrosymmetric Luttinger SOC can induce the
mixing between s-wave spin-singlet and isotropic d-wave
spin-quintet channels and lead to topological nodal-line
superconductivity (TNLS). Therefore, our results pro-
vide an alternative explanation of the temperature de-
pendence of London penetration depth. Furthermore,
our work provides the first concrete microscopic mecha-
nism for pairing mixing between two spin channels in the
inversion-preserving class (IS is allowed to exist), whereas
all previous works on pairing mixing require IS breaking.
Therefore, it is expected that the singlet-quintet mixing
mechanism can also be applied to centrosymmetric SCs
with high-spin electrons, such as Sr3SnO27–30, as well as
cold atom systems31.

II. Model Hamiltonian

We start from band structures of half-Heusler com-
pounds and illustrate the origin of j = 3/2 electrons. The
energy bands near the Fermi energy in half-Heusler com-
pounds are s-orbital-like bands (Γ6 bands) and p-orbital-
like bands, where the latter is split into j = 3/2 bands
(Γ8 bands) and j = 1/2 bands (Γ7 bands) by SOC32. For
half-Heusler SCs with p-type carriers like YPtBi24, only
the Γ8 bands are relevant33. The bases of Γ8 bands can
be labeled as |j, jz〉, where j = 3/2 is the total angu-
lar momentum that can be effectively regarded as “spin”
and jz = 3/2, 1/2,−1/2,−3/2. The low energy physics
of the Γ8 bands is described by the so-called Luttinger
model33,34 with the Hamiltonian

h(k) = ξkΓ0+hSOC(k) = ξkΓ0+c1

3∑
i=1

gk,iΓ
i+c2

5∑
i=4

gk,iΓ
i

(1)
where ξk = 1

2mk
2 − µ with the chemical potential µ, gi’s

are d-orbital cubic harmonics, Γ0 is the identity matrix
and Γi’s (i = 1, . . . , 5) are five Γ matrices.35 We define
hSOC

32,41,42 term as the symmetric SOC34 in the con-
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text of the Luttinger model for “spin-3/2” electrons since
this term splits the | 32 ,±

3
2 〉 and | 32 ,±

1
2 〉 bands and pre-

serves IS, while the antisymmetric SOC, which breaks
IS and gives rise to spin splitting between the | 32 ,+

3
2 〉

(| 32 ,+
1
2 〉) and | 32 ,−

3
2 〉 (| 32 ,−

1
2 〉) bands, will be discussed

at the end. The Luttinger Hamiltonian h(k) has O(3)
symmetry if c1 = c2 and Oh symmetry if c1 6= c2. The
eigen-states of h(k) are doubly degenerate with eigen-
energies ξ±(k) = k2/(2m±) − µ, where the subscript ±
labels two spin-split bands, and m± = m/(1 ± 2mQc)

with Qc =
√
c21Q

2
1 + c22Q

2
2, Q1 =

√
ĝ2

1 + ĝ2
2 + ĝ2

3 , Q2 =√
ĝ2

4 + ĝ2
5 and ĝi = gi/k

2. We focus on the parame-
ter regime with m < 043, µ < 0 (p-type carriers), and
c1c2 > 0 for simplicity. With the choice of these param-
eters, the effective mass m− of the ξ− band is always
negative while there are three different regimes for m+

of the ξ+ band: (I) m+ < 0, (II) m+ > 0, and (III)
the sign of m+ being angular dependent. Energy disper-
sions and Fermi surface shapes in these three regimes are
depicted in Fig.1a. In realistic materials, the regime I
appears for the normal band structure when Γ6 bands
have higher energy than Γ8 bands while the regime II
exists for the inverted band structure with Γ6 bands be-
low Γ8 bands.33 In the regime III, the ξ+ band disperses
oppositely along the directions Γ − X and Γ − L, thus
forming a saddle point at Γ (Fig.1a(iii)) and hyperbolic
Fermi surface (Fig.1a(vi)). In realistic materials26,43, the
ξ+ bands should eventually bend up at a large momen-
tum in all directions (the dashed lines in Fig. 1a(iii) and
(vi)). Thus, the Luttinger model is only valid in a small
momentum region around Γ in the regime III.

Next we will discuss the interaction Hamiltonian and
the possible superconducting pairings, especially those
induced by symmetric SOC hSOC . In analog to the
singlet-triplet mixing, in which the p-wave character of
triplet channel originates from the p-wave nature of anti-
symmetric SOC term3, it is natural to expect that the
pairing channel that is mixed into singlet channel due
to hSOC should have d-wave nature with orbital angular
momentum L = 2, given the d-wave gk,i in hSOC . Ac-
cording to the symmetry classification of the gap function
for j = 3/2 fermions22,35, the only channel that belongs
to the same irreducible representation of O(3) group as
s-wave singlet channel is the isotropic d-wave quintet
channel, which carries (L, S, J)=(2,2,0) with spin S=2
(quintet) and total angular momentum J=0 (J = L + S)
for the Cooper pair. Thus, the isotropic d-wave quintet
channel is allowed to mix with s-wave singlet channel un-
der O(3) symmetry according to Ginzburg-Landau the-
ory, which can be justified by the coupled linearized gap
equations35. Here we focus on a minimal O(3)-invariant
interaction

HI =
1

2V
(
V0PsP

†
s + V1PqP

†
q

)
(2)

in the s-wave singlet and d-wave quintet channels,

where Ps =
∑

k c
†
k(Γ0γ/2)(c†−k)T , Pq =

∑
k c
†
k(a2gk ·

Γγ/2)(c†−k)T , and V0 and V1 stand for the s-wave and

d-wave interaction parameters, respectively. Here c†k
is the four-component creation operator on the basis
|j, jz〉, γ = −Γ1Γ3 is the TR matrix, V is volume and
a is lattice constant. The above interaction Hamiltonian
HI can be extracted from the electron-optical phonon
interaction.22,35

III. Coupled linearized gap equation and
singlet-quintet mixing

Based on the interaction form in Eq.2, we choose
the gap function with the form ∆(k) = ∆0(Γ0γ/2)
+∆1(a2gk ·Γγ/2), in which ∆0 and ∆1 represent s-wave
singlet and isotropic d-wave quintet channels, respec-
tively. The corresponding coupled linearized gap equa-
tion can be derived as35(

∆̃0

∆̃1

)
= x

(
1
2λ0y1

1
2λ0y2

1
2 λ̃1y2

1
2 λ̃1y3

)(
∆̃0

∆̃1

)
, (3)

where x = ln[2eγ̄εc/(πkBT )], γ̄ is the Euler constant, kB
is Boltzman constant, T is the critical temperature, εc is
the energy cut-off for the attractive interaction(V0,1 < 0),

λ0 = −V0N0 and λ̃1 = −(2mµa2)V1N0 are the normal-
ized interaction parameters with the density of state N0,
and ∆̃0 = ∆0sgn(c1) and ∆̃1 = ∆1(2mµa2) are the nor-
malized order parameters. The band information is in-
cluded in the functions y1,2,3. In the limit εc/2Qck

2
F � 1,

kBT/εc � 1 and εc/|µ| � 1, the functions y1,2,3 can be

perturbatively expanded as y1 = 〈Re[m̃
3/2
− + m̃

3/2
+ ]〉, y2

= 〈Re[−m̃5/2
− + m̃

5/2
+ ] fQ〉 and y3 = 〈Re[m̃

7/2
− + m̃

7/2
+ ]

f2
Q〉 up to the leading order, where Re[...] means taking

the real part, 〈...〉 represents averaging over the solid an-
gle, fQ = (|c1|Q2

1 + |c2|Q2
2)/Qc and m̃± = m±/m are the

normalized effective masses of the ξ± bands. If c1,2 = 0,
the off-diagonal term in the gap equation would be zero
(y2 = 0) due to m̃+ = m̃−, thus revealing the essential
role of hSOC in singlet-quintet mixing.35

By solving Eq.(3), the mixing ratio ∆̃1/∆̃0 is evalu-
ated numerically as a function of |2mc1| in Fig.1b (blue

line) for c2 = 2c1 and λ̃1 = 0.1λ0, which reveals differ-
ent behaviors in three parameter regimes I, II and III.
∆̃1/∆̃0 increases rapidly with |2mc1| in regime I, and di-
verges in regime III. The dominant d-wave quintet pair-
ing in regime III originates from the faster divergence of
y3 compared to y1,2 in Eq. (3). To take into account the
limitation of the Luttinger model in parameter regime
III, a momentum cut-off Λ is introduced in computing
y1,2,3

35. With Λ, a peak structure of ∆̃1/∆̃0 (the red line
in Fig. 1b) is found and confirms the dominant role of
d-wave quintet pairing in regime III. Other features of
∆̃1/∆̃0 in the regime III (e.g. the kinks) can be traced
back to the behaviors of y1,2,3 as a function of |2mc1|35.

With further increasing |2mc1| (regime II), ∆̃1/∆̃0 drops
rapidly due to the disappearance of Fermi surface for the
ξ+ bands and thus simple s-wave singlet pairing domi-
nates in this regime. In Fig.1c, the critical temperatures
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FIG. 1. (a) Energy dispersions along X ← Γ→ L are shown
in (i), (ii) and (iii) (Solid lines), and the corresponding Fermi
surfaces in X−Γ−L plane are shown in (iv), (v) and (vi) for
the Luttinger model in the regime I, II and III, respectively.
The dashed lines in (iii) and (vi) depict energy dispersions
and Fermi surfaces for the regime III in realistic compounds.
The red dashed line represents the chemical potential. The
ratio ∆̃1/∆̃0 and the critical temperature Tc are shown in
(b) and (c) as a function of |2mc1| for c2 = 2c1, λ0 = 0.2

λ̃1 = 0.1λ0 and T0 = 2eγ̄εc/(πkB). The blue and red lines
in (b) corresponds to the case without and with momentum
cut-off Λ = 3

√
2mµ, respectively. The red line in (c) stands

for the critical temperature with pairing mixing while the blue
and orange lines give the critical temperatures of pure quintet
and singlet channels without mixing, respectively.

Tc as a function of |2mc1| are revealed by the red line
for the pairing mixing case, and by the orange and blue
lines for the pure singlet and quintet cases, respectively
(by neglecting the pairing mixing term in Eq. (3)). We
find that (i) pairing mixing can help enhance critical tem-
perature; and (ii) singlet pairing dominates for most of
regime I and the entire regime II while quintet pairing
plays a vital role around regime III.

IV. Topological nodal-line superconductivity

Similar to the singlet-triplet mixing in non-
centrosymmetric SCs1,11,44–46, a physical consequence of
singlet-quintet mixing is the existence of TNLS in certain
parameter regimes. The nodal line can be extracted from
the Bogoliubov-de Gennes Hamiltonian with the gap
function determined by the gap equation (3). We can
project the gap function onto the Fermi surfaces of the ξ±
bands, resulting in the form sgn(c1)

2 (∆̃0 ± ∆̃1k̃
2fQ) with

k̃2 = k2/(2mµ)35. Consequently, the existence condition

of nodal structure is determined by ∆̃0 ± ∆̃1m̃±fQ = 0.
Physically, this means that the nodal structure originates
from the cancellation between the singlet pairing (∆0

term) and the quintet pairing (∆1 term) and thus the
singlet-quintet mixing is essential. The solutions of the
above equations suggest that TNLS can exist in the
regime II when V0 < 0 and V1 > 0 and in the regime
I and III as long as V0 < 0.35 Below we focus on the
regime I with normal band structure and V0,1 < 0.

Fig.2a shows the phase diagram as a function of SOC
strength |2mc1| and interaction strength ratio λ̃1/λ0.
Nodal rings are found in the yellow and red regions of
Fig.2a for the ξ− band (Fig. 2b and e). Due to TR
and IS, a four-fold degeneracy exists at each momentum
of the nodal rings. Fig. 2b (i-iv) reveals the evolution
of nodal rings along the path α depicted in the inset of
Fig. 2a. Six nodal rings first emerge and center around
the (001), (010) and (100) axes in Fig.2b (i). These nodal
rings expand (Fig.2b (ii)) and touch each other, resulting
in a Lifshitz transition (Fig.2b (iii)). After the transition,
eight nodal rings appear with their centers at the (111)
and other three equivalent axes (Fig.2b (iv)). These eight
nodal rings shrink to eight points and eventually disap-
pear. Topological nature of these nodal rings can be ex-
tracted by evaluating topological invariant Nw of one di-
mensional AIII class along the loop shown by the red cir-
cle in Fig.2b(i)35,47–49. Direct calculation givesNw = ±2,
coinciding with four-fold degeneracy mentioned above.
Non-zero Nw also implies the existence of Majorana flat
bands at the surface. Fig. 2c and d show the zero-energy
density of states and the energy dispersions at the (111)
surface, which are calculated from the iterative Green’s
function method50. The evolution of surface Majorana
flat bands follows that of nodal rings, as shown in Fig.
2c (i-iv) and d (i-iv). Additional nodal rings exist in the
red region of the phase diagram (Fig. 2a), as shown in
Fig. 2e, given by an extra solution of the nodal condition.

V. Discussion and Conclusion

Now we discuss the experimental implications of our
theory. Previous theoretical studies on half-Heusler SCs
mainly focus on the compounds in regime II (inverted
band structure), while our study suggests that regimes
I (normal band structure) and III (a special case of
inverted band structure) are more interesting due to
strong singlet-quintet mixing. Superconductivity has
been found in DyPdBi and YPdBi with normal band
structure51 and critical temperatures around 0.8K and
1.6K, respectively, thus providing good candidates for
TNLS. YPtBi and LuPdBi are SCs with inverted band
structure33 and recent first principles calculations14,26,43

suggest that their energy dispersion might belong to
regime III, though debates still exist14,15. Evidence of
TNLS has been found in YPtBi via the penetration depth
experiment15. Previous studies14,15 attribute the nodal
structure to the mixing between p-wave septet pairing
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FIG. 2. (a) shows the phase diagram in the parameter space spanned by interaction strength ratio λ̃1/λ0 and symmetric
SOC strength |2mc1|. In the yellow and red regions, the system are nodal. In the inset, the dashed line indicates the

path α (2m|c1| = −0.8) with four points i, ..., iv on it. Here λ̃1/λ0 = 0.4246, 0.4507, 0.4615, 0.4716 for (i), (ii), (iii), (iv),
respectively. (b),(c) and (d) show the bulk nodal line structures (blue lines), zero-energy density of states on (111) surface
and energy dispersion along (112̄) axis on (111) surface for the four points i, ..., iv in the inset of (a). The red circle in (i)

of (b) shows a typical path along which the topological invariant is calculated. k̃1,2 = k1,2/
√

2mµ are momenta along (112̄)

and (1̄10), respectively, and c1 > 0 and ∆̃0/|µ| = 1 are chosen. (e) shows three typical nodal structures in the red region of

(a). Parameters are chosen as 2m|c1| = −0.12, 2m|c2| = −0.5 and λ̃1/λ0 = 1.12 for (i), 2m|c1| = −0.12, 2m|c2| = −0.5 and

λ̃1/λ0 = 1.155 for (ii), and 2m|c1| = −0.08, 2m|c2| = −0.5 and λ̃1/λ0 = 1.329 for (iii).

and subdominant s-wave singlet pairing due to anti-
symmetric SOC. Our theory provides a new explanation
of the nodal structure as a result of singlet-quintet mixing
induced by symmetric SOC. In half-Heusler compounds,
symmetric SOC at the Fermi surface is similar to chem-
ical potential (∼ 20meV ), and much larger than that of
anti-symmetric SOC (∼ 4meV )14,22. Thus, the contri-
bution of the anti-symmetric SOC to the linearized gap
equation is negligible, and its influence is to split one
Nw = ±2 nodal line into two Nw = ±1 nodal lines35.
In addition, the interaction in s-wave singlet channel is
normally dominant for superconductivity in weakly cor-
related materials. Therefore, we expect singlet-quintet
mixing should be dominant over singlet-septet mixing
and response for nodal lines in half-Heusler SCs. We no-
tice additional surface arcs existing around the Γ point
for singlet-septet mixing (Fig.5a in Ref.17), but absent
for singlet-quintet mixing (Fig.2c(ii)) due to its inversion-
preserving nature35. Such qualitatively difference might
be experimentally tested through scanning tunneling mi-
croscopy to distinguish two pairing-mixed states.

In conclusion, we theoretically propose a new singlet-
quintet mixing in the Luttinger model, which leads to
TNLS with surface flat Majorana bands. Such mech-
anism provides a new understanding of recent experi-
ments in half-Heusler SCs15. Its distinct experimental
signatures from other possible mechanisms are consid-
ered and can be tested in the future experiments. As
mentioned above, due to the inversion-preserving nature
of the singlet-quintet mixing, our work suggests a new
direction of pairing mixing between different spin chan-
nels in not only non-centrosymmetric but also centrosym-
metric SCs with high-spin electrons (e.g. Sr3SnO). The
TNLS and the corresponding surface Majorana band of
half-Heusler SCs suggest a new platform for exploring
topological superconductivity and topological quantum
computation.



5

VI. Acknowledgement

JY thanks Lun-Hui Hu, Yang Ge, Rui-Xing Zhang and
Jian-Xiao Zhang for helpful discussion. CXL and JY
acknowledge the support from Office of Naval Research
(Grant No. N00014-15-1-2675 and renewal No. N00014-
18-1-2793).

∗ cxl56@psu.edu
1 E. Bauer and M. Sigrist, Non-centrosymmetric supercon-
ductors: introduction and overview, Vol. 847 (Springer Sci-
ence & Business Media, 2012).

2 L. P. Gor’kov and E. I. Rashba, Phys. Rev. Lett. 87,
037004 (2001).

3 P. A. Frigeri, D. F. Agterberg, A. Koga, and M. Sigrist,
Phys. Rev. Lett. 92, 097001 (2004).

4 T. Yasuda, H. Shishido, T. Ueda, S. Hashimoto, R. Set-
tai, T. Takeuchi, T. D Matsuda, Y. Haga, and Y. Ōnuki,
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33 S. Chadov, X. Qi, J. Kübler, G. H. Fecher, C. Felser, and
S. C. Zhang, Nature materials 9, 541 (2010).

34 J. M. Luttinger, Phys. Rev. 102, 1030 (1956).
35 See Supplementary Material [url] for details of conventions,

the linearized gap equation and topological nodal-line su-
perconductivity, which includes Ref.[36–40].

36 S. Murakami, N. Nagosa, and S.-C. Zhang, Phys. Rev. B
69, 235206 (2004).

37 P. A. Frigeri, D. F. Agterberg, A. Koga, and M. Sigrist,
Phys. Rev. Lett. 92, 097001 (2004).

38 X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Phys. Rev. B
81, 134508 (2010).

39 G.-m. Zhao, Phys. Rev. B 64, 024503 (2001).
40 B. H. Brandow, Phys. Rev. B 65, 054503 (2002).
41 G. Dresselhaus, Phys. Rev. 100, 580 (1955).
42 E. O. Kane, Journal of Physics and Chemistry of Solids 1,

249 (1957).
43 H. Yang, J. Yu, S. S. P. Parkin, C. Felser, C.-X. Liu, and

B. Yan, Phys. Rev. Lett. 119, 136401 (2017).
44 A. P. Schnyder, P. M. R. Brydon, and C. Timm, Phys.

Rev. B 85, 024522 (2012).
45 P. M. R. Brydon, A. P. Schnyder, and C. Timm, Phys.

Rev. B 84, 020501 (2011).
46 K. Yada, M. Sato, Y. Tanaka, and T. Yokoyama, Phys.

Rev. B 83, 064505 (2011).
47 A. P. Schnyder and S. Ryu, Phys. Rev. B 84, 060504

(2011).
48 A. A. Burkov, M. D. Hook, and L. Balents, Phys. Rev. B

84, 235126 (2011).

mailto:cxl56@psu.edu
http://dx.doi.org/10.1103/PhysRevLett.87.037004
http://dx.doi.org/10.1103/PhysRevLett.87.037004
http://dx.doi.org/10.1103/PhysRevLett.92.097001
http://dx.doi.org/10.1103/PhysRevB.65.144508
http://dx.doi.org/10.1103/PhysRevLett.75.2004
http://dx.doi.org/10.1103/PhysRevB.72.024515
http://dx.doi.org/10.1103/PhysRevB.79.094504
http://dx.doi.org/10.1103/PhysRevB.79.060505
http://dx.doi.org/ 10.1103/PhysRevLett.118.147001
http://dx.doi.org/ 10.1103/PhysRevLett.118.147001
http://dx.doi.org/10.1103/PhysRevLett.116.177001
http://dx.doi.org/10.1126/sciadv.aao4513
http://dx.doi.org/10.1126/sciadv.aao4513
http://dx.doi.org/ 10.1103/PhysRevB.96.144514
http://dx.doi.org/ 10.1103/PhysRevB.96.144514
http://dx.doi.org/10.1103/PhysRevB.96.094526
http://dx.doi.org/10.1103/PhysRevLett.120.057002
http://dx.doi.org/10.1103/PhysRevLett.120.057002
http://dx.doi.org/ 10.1103/PhysRevLett.117.075301
http://dx.doi.org/ 10.1103/PhysRevLett.117.075301
http://dx.doi.org/ 10.1103/PhysRevX.8.011029
http://dx.doi.org/ 10.1103/PhysRevB.96.214514
http://dx.doi.org/10.1103/PhysRevB.95.144503
http://dx.doi.org/10.1103/PhysRevB.95.144503
http://dx.doi.org/ 10.1103/PhysRevB.84.220504
http://dx.doi.org/ 10.1103/PhysRevB.86.064515
http://dx.doi.org/ 10.1103/PhysRevB.86.064515
http://dx.doi.org/10.1103/PhysRevLett.116.137001
http://dx.doi.org/ https://doi.org/10.1016/j.physb.2017.10.089
http://dx.doi.org/ https://doi.org/10.1016/j.physb.2017.10.089
http://dx.doi.org/10.1103/PhysRev.102.1030
http://dx.doi.org/10.1103/PhysRevB.69.235206
http://dx.doi.org/10.1103/PhysRevB.69.235206
http://dx.doi.org/10.1103/PhysRevLett.92.097001
http://dx.doi.org/10.1103/PhysRevB.81.134508
http://dx.doi.org/10.1103/PhysRevB.81.134508
http://dx.doi.org/10.1103/PhysRevB.64.024503
http://dx.doi.org/10.1103/PhysRevB.65.054503
http://dx.doi.org/10.1103/PhysRev.100.580
http://dx.doi.org/10.1103/PhysRevLett.119.136401
http://dx.doi.org/10.1103/PhysRevB.85.024522
http://dx.doi.org/10.1103/PhysRevB.85.024522
http://dx.doi.org/10.1103/PhysRevB.84.020501
http://dx.doi.org/10.1103/PhysRevB.84.020501
http://dx.doi.org/ 10.1103/PhysRevB.83.064505
http://dx.doi.org/ 10.1103/PhysRevB.83.064505
http://dx.doi.org/10.1103/PhysRevB.84.060504
http://dx.doi.org/10.1103/PhysRevB.84.060504
http://dx.doi.org/10.1103/PhysRevB.84.235126
http://dx.doi.org/10.1103/PhysRevB.84.235126


6

49 C. Fang, Y. Chen, H.-Y. Kee, and L. Fu, Phys. Rev. B
92, 081201 (2015).

50 M. L. Sancho, J. L. Sancho, J. L. Sancho, and J. Rubio,
Journal of Physics F: Metal Physics 15, 851 (1985).

51 Y. Nakajima, R. Hu, K. Kirshenbaum, A. Hughes, P. Syers,
X. Wang, K. Wang, R. Wang, S. R. Saha, D. Pratt, et al.,
Science advances 1, e1500242 (2015).

http://dx.doi.org/ 10.1103/PhysRevB.92.081201
http://dx.doi.org/ 10.1103/PhysRevB.92.081201

	Singlet-Quintet Mixing in Spin-Orbit Coupled Superconductors with j=3/2 Fermions
	Abstract
	 Introduction 
	 Model Hamiltonian 
	 Coupled linearized gap equation and singlet-quintet mixing 
	 Topological nodal-line superconductivity 
	 Discussion and Conclusion 
	 Acknowledgement 
	References


