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We present a simple model of a domain wall in a thin-film ferromagnet. A domain wall is rep-
resented as a nonreciprocal string, on which transverse waves propagate with different speeds in
opposite directions. The model has three parameters: mass density, tension, and a gyroscopic con-
stant quantifying the nonreciprocity. We discuss the unusual dynamics of a nonreciprocal string in
finite geometry. It agrees well with numerically simulated motion of a ferromagnetic domain wall

in a strip of constant width.

I. INTRODUCTION

The goal of this paper is to present a simple dynami-
cal model of a domain wall in a thin ferromagnetic film.
A domain wall is the boundary separating two domains
of uniform magnetization (Fig. 1). In two dimensions,
a boundary is a line. Therefore, even the simplest dy-
namical model must treat a domain wall as an extended
object with infinitely many degrees of freedom.

Our approach has been inspired by the success of sim-
ple dynamical models of point-like magnetic solitons such
as the domain wall in one spatial dimension' and the vor-
tex in two.” Although both a domain wall and a vortex
have internal structure, the response to weak external
perturbations is dominated by the soft modes of global
translations and rotations.

For example, Thiele’s equation

G xR —-09U/OR — DR =0 (1)

for a vortex center R expresses the dynamical equilib-
rium between the intrinsic gyroscopic force, conservative
force (e.g., from an applied magnetic field), and viscous
force, respv_activelyf‘ The velocity-dependent gyroscopic
force G x R is similar in nature to the Lorentz force act-
ing on an electric charge in a magnetic field and to the
Coriolis force acting on a massive object in a rotating
frame. Such forces break the symmetry of time reversal;
their magnitudes are proportional to spontaneous mag-
netization, magnetic field, and rotation frequency of the
reference frame, respectively.

In a similar way, we seek the simplest coarse-grained
description of a domain wall modeled as a line in two
spatial dimensions. We deem essential three ingredients:

Tension. A domain wall is an excitation raising the
energy of the system. In a model with local interactions,
it is natural to expect an energy cost proportional to the
length ¢ of the domain wall, F = of. This defines line
tension o.

Inertia. A domain wall in a ferromagnet may possess
inertia quantified by the Déring mass™” proportional to
the domain-wall length, Mp = pf, where p is the linear
mass density.

Gyroscopic effect. The breaking of the time reversal
symmetry by spontaneous magnetization strongly im-
pacts the dynamics of a domain wall. The effect is quanti-
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FIG. 1. Domain wall in a ferromagnetic strip 0 < z < w with
an easy axis z. Colors encode m,: red is m, = +1, blue is
m, = —1, and white is m, = 0. Arrows indicate in-plane
components m, and m,.

fied by a gyroscopic constant g proportional to the spon-
taneous magnetization M of the ferromagnet.

The first two ingredients yield the familiar wave equa-
tion pgj—oy” = 0, whose solutions are waves propagating
in both directions with the speed vg = /o /p. The third
ingredient introduces a simple modification of the wave
equation:

pij —oy” + 299" =0, (2)

The mixed derivative g’ violates the symmetries of time
reversal ¢ — —t and mirror reflection x — —z. It is
therefore forbidden for a regular string, which respects
both symmetries. In a ferromagnet, both symmetries are
spontaneously broken and the mixed term is allowed.

The modified wave equation (2) has waves propagating
left and right with different speeds,

vy = togett, (3)
The nonreciprocity of wave propagation is quantified by
the dimensionless parameter
. g
sinhuy = ——. (4)
\/po

In thin-film ferromagnets, u can be of order 1, so that
the dynamics of a domain wall is strongly nonreciprocal.



This motivates us to take a close look at the model of a
nonreciprocal string. We shall see that it has rather un-
usual normal modes and that its mechanics is strikingly
different from that of a regular string.

Because spatial and temporal derivatives enter the
wave equation (2) in a homogeneous way, it makes sense
to treat time ¢ and spatial coordinate x on an equal foot-
ing, as coordinates in spacetime (t,z) = (2°,2'). Then
Eq. (2) reads A*0,0,y = 0, where (0y,0:1) = (0, 0x)
and

AW:(S—%)' (5)

The Lagrangian of a freely moving string is
1w
L= §A 0,y Ouy. (6)

Weak perturbations can be added as terms linear in the
displacement field y and its derivatives 9,y. The pertur-
bations are quite generally represented by a gauge field
a, and by a source field p:

1
L= A0y~ a)Oy —a) +py. (1)

The source field p expresses pressure (force per unit
length) exerted on the string and comes from perturba-
tions such as a magnetic field normal to the film plane.
The temporal component of the gauge field ap = —7/g
is proportional to the torque density (per unit length)
7 from a magnetic field or spin-polarized current in the
film plane. We have not found physical perturbations
generating the spatial component of the gauge field a;.

Our minimal model excludes the effects of a stray mag-
netic field and the bending energy of a domain wall.
These omissions can be justified in certain limits (thin
film, long-wavelength deformations) and greatly simplify
the mathematical analysis. Furthermore, the model may
be applicable to other string-like objects with a bro-
ken time-reversal symmetry. Therefore the mechanics
of a nonreciprocal string presents interests beyond mag-
netism.

The paper is organized as follows. In Sec. I1, we present
the phenomenological model of a nonreciprocal string and
characterize its physical properties. In Sec. 111, we derive
this phenomenology from a micromagnetic model of a
Néel domain wall and discuss the range of its applica-
bility. We apply the phenomenological model to deduce
the response of a ferromagnetic domain wall to weak ex-
ternal perturbations in Sec. IV. Numerical tests of the
model via micromagnetic simulations are described in
Sec. V. Sec. VI contains concluding remarks and an out-
look. Technical information is contained in appendices.

II. MODEL OF A NONRECIPROCAL STRING
A. Lagrangian and equations of motion

We begin with a phenomenological justification for the
model of a nonreciprocal string described as a line in a
two-dimensional space (z,y). We will assume that the
string can be parametrized as a function y(z) with 0 <
z <wand —oo < y < +00. To describe the dynamics of
the string, we must add the time variable, hence y(¢, z).
We thus treat y as a field living in (1 + 1)-dimensional
spacetime

Q= (t,x): —oo<t<+oo, 0<z<w. (8)
Here w is the length of the string in equilibrium, when
y(t,z) =Y = const.

Potential energy of the string is proportional to its

length,

U:O'/ da:\/l—ky’Q%Uw—l—g/ dzy®  (9)
0 0

for small deviations from equilibrium, 3y’ <« 1. Here o
is the string tension. Kinetic energy of transverse vi-
brations is fow dx pi? /2, where p is the linear mass den-
sity. These ingredients define the Lagrangian of a regular
string,
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(10)

Minimization of the action S = fQ dtdx L yields the fa-
miliar wave equation pjj — oy’ = 0 and the boundary
conditions y'(¢,0) = y'(t,w) = 0 for a string with free
ends.

We wish to extend the regular string model by adding
some terms that preserve the linearity of the equations
of motion and translational symmetry in the transverse
(y) direction. We are thus allowed to add terms at most
quadratic in the derivatives ¢ and v’ to the Lagrangian
(10). With ¢? and ¥/ ? already present, the only new
quadratic term would be gy’. (Linear terms, representing
external perturbations, will be dealt with later.) Hence

py2 Uy/Q .
L= 5 > +9yy'. (11)
The coupling constant g of the new term has the dimen-
sion of angular momentum per unit area. As we shall see
later, this term is ultimately related to the precessional
character of magnetization dynamics in a ferromagnet.
For this reason, we call this term gyroscopic.

The gyroscopic term ggy’ in Eq. (11) breaks the sym-
metries of time reversal ¢ — —t and mirror reflection
x — —x and is therefore forbidden for a regular string.
In a ferromagnet, both of these symmetries are broken
and this term is allowed.



Minimization of the action S = fQ dt dx L yields the
equation of motion in the bulk (2),

pj —oy” + 29y =0, (12)
and the boundary conditions for a string with free ends,
oy — gy =0 for z = 0,w. (13)

The presence of a mixed derivative g/’ in the wave equa-
tion (12) makes the propagation of waves nonrecipro-
cal. Therefore, the velocities vy of right and left-moving
waves differ not only in sign but also in magnitude:

w=uv1+k, vy=7==% = Fvget. (14)

Here vg = +/0/p is the propagation speed for a regular
string (¢ = 0) and sinhwu = g/,/pc is a dimensionless
measure of nonreciprocity.

B. Normal modes of a finite string

To find the normal modes of a finite string, y,(z,1) =
fa(x)e™™nt we first note that an isolated pulse propa-
gating along the domain wall and bouncing off the string
ends at x = 0 and w makes a round trip in the time

w wo 2w

T _w_2v 15
vy v_ c’ (15)

where the speed c is defined as

1 9> p coshu
—=4\/=+ == . 16
c o2 0 o (16)
Hence the eigenfrequencies
2
wy = DT 1,2,3,. .. (17)

T w

The normal modes are superpositions of right and left-
moving waves with the wavenumbers

Wn 2mn
kpyr=—=F—F7——. 18
* vy w(eT2v + 1) (18)

For free boundary conditions (13), the normal modes are

yn(t,x) _ ane—iwnt(eikn+m + eikn,w)/Q

= a,, cos (ﬂ_nx/w)e—iﬂn(ct-i-z tanh u)/w. (19)

Normal modes of a string with fixed ends are
yn(t’ CL’) _ ane—iwnt(eikner o eikn,x)/Zi
= a, sin (ﬂ_n‘r/w)e—iﬂ'n(ct+w tanh u)/w (20)

Because of a mismatch k,, # —k,—, the normal
modes are not simply standing waves but include a run-
ning component under the familiar standing-wave enve-
lope (see animations in Supplemental Material”). For
g # 0, modes with different n are not mutually orthog-
onal. The nonorthogonality can be traced to the eigen-
problem —o f” — 2iwgf’ = pw?f not being of the Sturm-
Liouville type for g # 0: the operator —o 02 — 2iwg 0,
depends on the eigenfrequency w.

C. Zero mode

In addition to periodic normal modes, a string with free
ends has a zero mode associated with the translational
symmetry in the y direction,

yo(t, ) = ag(ct + z tanh ). (21)

Linear proportionality between the velocity and tilt,
g. 1.
Yo = =90 = —%o tanhu, (22)
o c

is dictated by the boundary conditions (13).

Because normal modes are of oscillatory nature and
share a common period T, the time-averaged transverse
velocity of the string is determined by the zero mode
alone.

D. Motion of a tilted-and-released string

A nonreciprocal string responds in strikingly unusual
ways to external perturbations. Consider a string that
is uniformly tilted, y'(0,2) = a, and released with zero
initial velocity, (0, 2) = 0 (see Fig. 2 and its animation
in Supplemental Material”). A regular string (u = 0)
oscillates periodically, with two kinks propagating back
and forth on it. A nonreciprocal string (u # 0) also moves
with an average velocity proportional to the initial tilt,

L N
T/o dty(t, z) = (y(x))+ = catanhu. (23)

This can be seen as follows. At ¢ = 0, two kinks emerge
from the edges and move into the bulk, dividing the string
into three straight segments. The motion of the outward
segments is described by the zero mode (21). Their trans-
verse velocities § = d-ca and slopes y' = *atanhu are
determined by the tilt-velocity relation (22) and the lon-
gitudinal kink velocities vy (14). As the right-moving
kink reaches the right edge at ¢ = w/v,, the right end
of the string switches its transverse velocity from —ca
to +ca for the remainder of the period T' (15). Aver-
aging the velocity over the period yields Eq. (23) for
x = w. And as the shape of the string is periodic in
time, the time-averaged velocity is the same everywhere,
() = (3):

Our attempts to obtain the time evolution of a non-
reciprocal string for general initial conditions have been
frustrated by a lack of orthogonality relations for nor-
mal modes (19). Although one can expand an arbitrary
motion in terms of the normal modes, finding their am-
plitudes is a nontrivial problem. Below we focus on de-
riving the time-averaged transverse velocity (¢)¢, a quan-
tity most easily accessible in experiments and associated
with the zero mode (21). A general solution of the initial-
value problem via the Laplace transform is provided in
Appendix A.



FIG. 2. Time evolution from ¢t = 0 (bottom row) to T" (top
row) for a tilted-and-released string with nonreciprocity v = 0
(left column), 1/3 (central column), and 0.795 (right column).
Lines represent theory, dots (right column) are from micro-
magnetic simulations. Blue and red arrows mark right and
left-moving kinks, respectively. See Supplemental Material
for animations.

E. Transverse momentum

To that end, we start with the transverse momentum
P,, a conserved quantity by virtue of translational invari-
ance in the y direction. It is convenient to viewed global

translations as a field transformation
y(t,x) =y(t,z) +Y (24)

in two-dimensional spacetime (2°,2') = (¢t,7). Appli-
cation of Noether’s theorem yields a conserved current,
Oug* = 0, where (0, 01) = (04, 05), with components

. a£ . / -1 6£ / .
= — = = — = — . 25
7=y = +9y', J oy oy +gy. (25)

The global conserved charge is obtained by integrating
the charge density j° over space,

Py = / dz (py + gy').- (26)
0

Note that transverse momentum (26) has, in addition to
the obvious kinetic part P;m = fow dz py, a geometric
contribution

Pygeom — /w dx gy/ = g[y(t, w) - y(tvo)] (27)
0

It is a common feature of ferromagnetic solitons. ™

By linearity, momentum P, is a sum of momenta car-
ried by the normal modes. It can be checked directly that
the contribution of any periodic mode (19) is zero. There-
fore, all of P, comes from the zero mode (21), whose am-
plitude determines the time-averaged velocity (¢);. We
thus expect a linear relation

Py = Mest (9)1, (28)

where the effective mass Mg remains to be determined.
This is most easily done in a state where only the zero
mode (21) is excited. The string moves at a constant
velocity § = agc and carries momentum P, = aow(pc +
gtanhu). Hence the effective mass

Mg = (p+ ¢°/0)w = pegrw (29)

that is different from the Déring mass Mp = pw. The ef-
fective mass (29) defines the response to an external force
F', which can be generated, e.g., by the application of an
external field along the easy axis. The string accelerates
with the time-averaged acceleration (§); = F/Meg.

Thus, given an arbitrary initial configuration of the
string y(0, z) and initial velocity 3(0, z), we can compute
the conserved momentum (26) and use Egs. (28) and (29)
to determine the average velocity (¢); of the string.

F. Covariant formalism

It is instructive to analyze the string dynamics in a
covariant fashion as in theory of relativity. Write the
Lagrangian in the tensor notation,

L= %A’“’auy Oy, (30)



where

2
Am/:(P g ): o < sech“u ctanlgu). (31)

g —0o 2 \ ctanhu —c
Equation of motion (12) reads
A*9,0,y = 0. (32)

The boundary condition for a string with free ends (13)
becomes

A0,y =0 for z = 0,w. (33)
The conserved current (25) is

oL
9(Ouy)

<.
B
Il

= A" d,y. (34)

A transformation to a local time (, %), where
t=t+ (x/c)tanhu, i =z, (35)

brings the Lagrangian to a diagonal form with

wo(12)-5(0) @

In this frame, the string has tension ¢ = o, mass density
p = p+ g?/o, and is reciprocal, § = 0: right and left-

moving waves have equal speeds, v+ = 4c¢. From the
transformation of the derivatives,
Oy =0, 0 =0z + (1/c)0; tanh u, (37)

we find that the free boundary conditions (13) read
0zy = 0 at Z = 0, w and yield the familiar normal modes
of a regular string, y, (£, %) = cos (mni/w)e ™"/, Re-
turning to the global-time frame (¢, z) gives Eq. (19).

G. Background gauge field

We will also find it useful to introduce a background
gauge field a, coupled to the string displacement y:

1 v
L= §A“ (Opy — au) 0y — ay). (38)

This coupling is similar to the one between the electro-
magnetic gauge field and the phase of a superconducting
order parameter.' The Lagrangian is manifestly covari-
ant under gauge transformations

g:y_X7 d,u:a/_t_ X (39)
where x(t, ) is an arbitrary function. The gauge sym-
metry (39) is merely a local version of global translations
(24). The conserved current associated with this gauge
syminetry,

oL

gt = e A Oy — ay), (40)
“w

is identical to the conserved current in Eq. (34) if we set
a, = 0.
The equation of motion for y,

a“[Alw(ayy - a’u)} =0, (41)

expresses conservation of current (40).
condition for a free string,

The boundary

A" (0,y —a,) = 0 for x = 0, w, (42)

indicates the vanishing of the current at the string ends,
3 (t,0) = j*(t,w) = 0.

The equation of motion of a string in a background
gauge field (41), still linear in y, acquires an inhomoge-
neous part due to the gauge field. Solving it in a gen-
eral case is still a nontrivial problem because of the non-
orthogonality of the normal modes (19). The situation
simplifies if the gauge field is trivial, i.e., when its gauge-
invariant curvature, the electric field Fyy = dgay — 01 ao,
vanishes. Then a, is a pure gauge,

ay = 8ﬂx, (43)

We can use the gauge transformation (39) to relate a
solution for a trivial gauge background y to that of a free
string, e.g., ¥y = 0:

y=7+x=x (44)

Thus, for a given trivial background a,,, a partial solution
can be found by simply finding a gauge x solving Eq. (43).

H. Dissipation

Viscous damping, neglected so far in our analysis, will
gradually dissipate the momentum of a moving string and
it will come to rest. To account for it, we add a viscous
force —by to the equation of motion (12). For a domain
wall, the viscosity coefficient b = a|g|/A,'” where A is the
width of the domain wall and o < 1 is Gilbert’s dimen-
sionless damping constant.”” The inclusion of damping
yields P, = —bw(y), from which we obtain the relaxation
rate for momentum and average velocity,

I' = (ae/A)| tanh ul. (45)

The relaxation rate for periodic normal modes is T'/2.
Attenuation of the zero mode over one period is
e IT = ¢~ (aw/N[tanhul = Ty insulating ferromagnets,
Gilbert’s damping a can be as low as 10~ in insulat-
ing ferromagnets.' ™'~ Therefore, even for a strip whose
width w greatly exceeds the domain-wall width A, the
natural modes (19) can be underdamped. Observing the
peculiar dynamics of a nonreciprocal string may well be
feasible.



III. DERIVATION OF THE MODEL

In this section, we obtain the model of a nonrecipro-
cal string as a long-wavelength, low-frequency limit of a
micromagnetic model of a domain wall in a thin-film fer-
romagnet. This was previously done for a Bloch domain
wall.'” Here we do it for a Néel domain wall stabilized by
sufficiently strong Dzyaloshinskii-Moriya interaction.

A. Gyroscopic constant

Whereas mass density p and string tension o depend on
the specifics of the micromagnetic model, the gyroscopic
constant ¢ is model-independent and is fully determined
by a single material parameter: the density of angular
momentum per unit area J. This becomes clear from
the examination of the corresponding term in the action
Sg=y9g f dt dz vy’. This part of the action is independent
of how fast the string moves between its initial and final
states and is thus a purely geometrical quantity that has
nothing to do with the energetics of the underlying mi-
cromagnetic model. This geometrical action comes from
the Berry phase of the spins making up the ferromagnet.

In a ferromagnetic film of thickness h, J = hM /7y,
where M is the length of magnetization (magnetic dipole
moment per unit volume) and + is the gyromagnetic ra-
tio. Spontaneous magnetization has values M = £ M2
deep in the upper and lower domains of Fig. 1. The
angular momentum per unit area is £7%, respectively.
Suppose the domain wall is moving at the velocity g
with a uniform tilt y{ (only the zero mode is engaged).
The motion of the domain boundary changes the angu-
lar momentum of the ferromagnet at the rate dJ/dt =
—2Jzwyo. This change is brought by the torque ap-
plied to the domain wall by the edges. A tilted domain
wall is lengthened and its energy is thus increased by
awy62/2, creating torque 7 = —owy,z. From 7 = dJ/dt
we obtain a proportionality between velocity and tilt,
oy, = 2J9o. Comparison to the boundary conditions
(13) relates the gyroscopic constant to density of angular
momentum, g = 27.

The gyroscopic coupling g of a domain wall is a topo-
logical quantity in the sense that it depends only on the
topology of the domain wall but not on its shape, detailed
structure, or energetics. For a domain wall in Fig. 1,
M — £+Mz as y — +oo and g = 2J. If the domains
were reversed, M — F Mz as y — £o00, we would obtain
g = —2J. In terms of the Zs topological charge { = £1
defined in Eq. (51), g = 2¢J.

B. Mass density and surface tension

We consider a straight domain wall y(z) =Y of length
¢ with the unit vector of magnetization m = M/M
interpolating between m(y) = (0,0,+1) and (0,0, —1).
In what follows, we parametrize the unit vector m =

(sin 0 cos ¢, sin O sin @, cos B) in terms of its polar and az-
imuthal angles € and ¢. Potential energy consists of ex-
change

chchangc = Ah / d2I' &m . Blm

:Am/ﬁyﬁ@m2+mﬁ9a%@ﬂ, o

easy-axis anisotropy

Uanisotropy = —Kh/d2r mi = —th/dy cos? 0,
(47)
and the interfacial Dzyaloshinskii-Moriya interaction

lep:Dh/ﬁ%%nQVony7m~Vmﬁ

1
= th/dy <sin¢8y9 + 251n29005¢8y¢> .
(48)

Minimization of the energy with respect to the field
@(y) yields solutions with uniform ¢(y) = &g = +7/2.
For these, the energy as a functional of 6(y) is

U:M/@
(49)

The Dzyaloshinskii-Moriya term in Eq. (49) is topologi-
cal: it does not depend on the exact profile 6(y) but only
on the values of § at y = +oo. Therefore 6(y) is deter-
mined by minimization of the exchange and anisotropy
energies, which yields

2
A ﬁ —Kcos29—|—Dsin<I>0d—0
dy dy

cosf(y) = ( tanh #, (50)

where A = \/A/K is the width of the domain wall and

1 [ dcost
= - = =+1 1
=5 wy (51)

is the Z, topological charge of the domain wall. The
energy of the domain wall U = hl(4v AK — w(D sin @)
is minimized when ®; = (7/2, assuming D > 0. That
yields surface tension

o = h(4VAK — D). (52)

For small deviations from the Néel configuration, the
energy varies quadratically in & = & — ®g,

1
U@»:U@@+§Mﬂx¢—%V, (53)
giving the stiffness for in-plane magnetization x = wDh.

The Lagrangian for a domain wall of a general shape
with slowly varying Y'(¢,2) and ®(¢, ) is

oY"? K(D— By — V)2

L=gYP——— 5 (54)



The first term represents a gyroscopic coupling of
strength g = 2¢J between the position of the domain
wall Y and its azimuthal angle ®, © the second term
comes from the expansion of the potential energy U =

o [dz\/1+4Y"? of a curved domain wall to the quadratic
order in Y’, and the third term is the energy cost of a
misalignment between in-plane magnetization and the di-
rection of the domain wall.

Minimization of the action S = fﬂ dt dzr L with respect
to the magnetization angle ® yields

B =Py + %Y g (55)
Eliminating ® yields a Lagrangian for the field Y (¢, ),

o pY?2 B oy’

YY'
5 5~ taYY’, (56)

with the Doring mass density p = g2 /x.

C. Nonreciprocity

The dimensionless nonreciprocity parameter in the
model of a Néel wall is

. g / D
huy=—— = _— 57
sinh u o (sgng Wik —n (57)

As detailed in Sec. V, u can be of order 1 for realistic
material parameters.

Coupling constants for a Bloch domain wall were de-
rived in Ref. 16. The nonreciprocity parameter in that
model is sinhu = g/\/poc = 1/y/Q —1, where Q =
2K /pupM? > 1 is a dimensionless measure of the easy-
axis anisotropy K. In the ferromagnet FePt, ’ Q = 2.1
yields strong nonreciprocity, u = 0.85.

D. Range of applicability of the model

The model of a nonreciprocal string represents a
coarse-grained description of an actual domain wall and
applies only on sufficiently large length scales and long
times. Although the wave equation (12) predicts sharp
kinks on a domain wall (Fig. 2), the kinks will be smooth
below a certain length scale. We may reasonably guess
that the characteristic length scale cannot be smaller
than the width of the domain wall A and is possibly
longer. Similarly, the linear relation w = vik will break
down at sufficiently high wavenumbers and frequencies
and wave packets will exhibit dispersion.

The following estimate was communicated to us re-
cently by Kravchuk.

The minimal model of a domain wall (54) neglects the
increase of exchange energy associated with the gradi-
ent of the azimuthal angle ®'. Taking it into account

produces the following Lagrangian:

oY"? K@= B-Y')? (04K

L=gYd— —
g 2 2

(58)
After obtaining the equations of motion for the fields
Y (t,z) and ®(¢,z) in a standard way and performing a
Fourier transform, we obtain the coupled equations for
the amplitudes,

(0 +r)k®>  —igw+irk Y\
< igw —ikk K+ (0 + K)A2K? o) =0 (59)

which yield the spectrum w(k):

gw = kk + k(o + k) % + A2k2. (60)
\V o

In the long-wavelength limit k¥ — 0, we recover the linear
spectrum w = vik. (It helps to recall that p = ¢%/k.)
This approximation is valid for wavenumbers

k«A*l,/%:xl\tanhuL (61)
(o2

We thus find that, for moderate and strong nonreciproc-
ity, w 2 1, our theory is indeed applicable on length
scales exceeding the domain wall width A\. For weak
nonreciprocity, v < 1, it only applies on much longer
length scales exceeding A/u. As Eq. (57) shows, mod-
erate nonreciprocity is achieved for substantially strong
Dzyaloshinskii-Moriya coupling. Such values are achiev-
able in thin ferromagnetic films. As we show in the
next section, realistic material parameters used by Boulle
et al.”' yield u of order 1.

IV. RESPONSE TO WEAK EXTERNAL
PERTURBATIONS

A. General considerations

With the motion of a free nonreciprocal string under-
stood, we turn our attention to its dynamical response to
weak external perturbations. They are mathematically
represented by adding to the Lagrangian (11) terms that
are linear in the displacement y and its derivatives 3 and
y’'. We can start with the Lagrangian of a string coupled
to a gauge field a, (38), which already contains terms
—A"a,0,y, and add a term linear in y:

1
L= A" Oy — au) Oy — av) + py. (62)

Here the source field p(t, ) expresses pressure (force per
unit length) exerted on the string by an external pertur-
bation. The term quadratic in the gauge field does not
contain y and thus does not influence its dynamics.



Note that the pressure term py breaks the translational
symmetry in the y direction and thus violates local con-
servation of the current (40), d,7* = p. Globally, trans-
verse momentum

w w
P, = /0 drj° = /0 dx A% 0,y — a,) (63)

is no longer conserved: its rate of change is given by the
net force from pressure:

Py:/ dx p. (64)
0

In the rest of this section, we derive the effects on
the dynamics of a ferromagnetic domain wall of exter-
nal perturbations such as an applied magnetic field and
spin current. As anticipated above, their influences can
be expressed in terms of pressure and emergent gauge
potentials.

B. Magnetic field perpendicular to the easy plane

A magnetic field parallel to the hard axis, H =
(0,0, H,), breaks the energetic equivalence of the m =
+2z and —2z domains and thereby exerts pressure (force
per unit length)

p = —2ChuoMH, (65)

on a domain wall. Pressure couples directly to the field
y, adding a term Loyt = py to the Lagrangian. The
equation of motion (12) changes to

pij —oy” + 299" = p. (66)

Because the Lagrangian becomes y-dependent, trans-
verse momentum P, (26) is no longer conserved and
changes at a rate proportionally to the external force.

When a uniform field is applied to a domain wall in
equilibrium, y = 0, its momentum begins to increase at
the rate P, = pw, producing the time-averaged acceler-
ation (§); = p/pest. The response of the non-periodic,
momentum-carrying mode is

oA A Ch3] R

In the presence of dissipation, the string accelerates
until it reaches a steady state, in which P, = pw —bwy =
0. This determines the terminal velocity

yO(tv CL’) =

o _p L |yueHA
Jim gz, t) = T S

(68)

Because the boundary condition (13) is unchanged, the
steady-state motion is a zero mode (21) with a constant

slope y' = gp/(bo).

C. Magnetic field parallel to the easy plane

A magnetic field applied in the easy plane, H =
(Hy, H,,0), couples to the in-plane components of mag-
netization m, and m,, which exist only in the vicinity
of the domain wall. The Zeeman coupling adds the fol-
lowing term to the Lagrangian of the string expressed in
terms of fields y and ¢ (54):

Lext = TARpgM(Hg cos ¢ + Hy sin ¢). (69)

To the first order in deviation d¢ = ¢ — ¢g from an equi-
librium state for a Bloch wall with ¢9 = 0 or 7 and for a
Néel wall with ¢g = (7/2, we obtain Loy, = 7 0¢, where
T is the torque per unit length,

Bloch wall,
Néel wall.

T = T COS QZSO )\h/LQMHy

70
T = —msin ¢pg AhpugMH, (70)
We ignore here the second order term (§¢)?, which will
modify the torque in Eq.(70) and give rise to corrections
to the metric tensor A*Y.
After integrating out the field ¢, we obtain the La-
grangian for the field y alone:
pi? oy’

L=

+99y +7@ +py/g).  (T1)

Normally, Lagrangian terms linear in y and 3’ do not
affect the dynamics because their contribution to action
S = fQ dt dx L reduces to boundary terms that drop out
of the equations of motion. But not quite so here. If the
external field is time-dependent then it will generate a
force proportional to its time derivative:

pij —oy" + 29y = —p7/g. (72)

This force is particularly important when an external
field is turned on or off, effectively giving the string a
kick.

The 3’ term also contributes, albeit indirectly. It alters
the boundary condition (13):

oy — gy =1 for x =0,w. (73)

The in-plane field preserves the translational symmetry
in the y direction. The transverse momentum acquires a
contribution proportional to the in-plane field:

w
o / dz (py + gy’ + p/9) (74)
0

from which we can determine the zero mode velocity:

. P, T
() = m - 5’ (75)

where the total amount of applied torque [’ dz7(t,z)
contributes to the changing rate of the angular momen-
tum —g [, dx .



Starting with a domain wall in equilibrium, y(t, z) = 0,
we suddenly turn on an in-plane magnetic field at ¢ = 0.
The transverse momentum is conserved and remains un-
changed at Py, = 0. The domain wall keeps its horizontal
orientation, ' = 0, and picks up a constant velocity:

Mux%:fthQL (76)
where O(t) is the Heaviside step function. When dissipa-
tion is present, the domain wall eventually reaches zero
velocity and slope ' = 7/0.

Alternatively, we can start with a domain wall tilted
in an external field and turn off the field at ¢ = 0. Again,
only the zero mode is engaged:

y(t,x) = —z + = tO(t). (77)
o g

It is worth noting that a sudden switching on or off
of an easy-plane magnetic field generates a simple re-
sponse of the domain wall that involves strictly the zero
mode (21) but none of the oscillatory normal modes (19).
Put differently, no kinks emerge from the edges when the
field is switched on or off. The reason for this simple
behavior becomes clear when we view the perturbation
as a coupling to a background gauge field as described in
Sec. I1G.

The torque term in the Lagrangian (71),

Lext = T(yl + Py/g) = —A”Vauauy,

corresponds to a gauge field with only a temporal com-
ponent,

(78)

ap=—7/g9, a =0. (79)

If the torque 7(t) is time-dependent but spatially uniform
then a, is a pure gauge, dya; — 01a9 = 0, and thus can
be represented by a gradient,

1
0 =00, 0= [ar. 0
With the aid of Eq. (44), we obtain the response
1
yta) = — / dtr(t). (81)

This yields Eq. (76) for a torque that is suddenly turned
on at t = 0.

D. Spin transfer torque

An electric current density along the transverse direc-
tion jy injects an angular momentum of —g fow dx v per
unit time, where v = iPj/(2¢J) is the electron drift ve-
locity, P is the spin polarization, and ¢ is the electron
charge. The adiabatic torque density is 7 = —gv, and
the non-adiabatic torque exerts pressure p = |g|Sv/A.
In a steady state,

y(t,z) = éthr 5—0[@%
et a o

(82)

V. MICROMAGNETIC SIMULATIONS

To check the accuracy of our model, we performed mi-
cromagnetic simulations in mumax® (Ref. 23) of a Néel
domain wall stabilized by strong Dzyaloshinskii-Moriya
interaction.”” We used material parameters similar to
those of Boulle et al.,”" which yield the gyroscopic con-
stant g = 1.43 x 1071 J s/m?, tension o = 1.02 x 10~
J/m, mass density p = 2.58 x 107'7 kg/m, charac-
teristic speed (16) ¢ = 473 m/s, and nonreciprocity
u= arcsinh\/*% = 0.793.

The value for string tension o was measured in the sim-
ulation by pinning a straight domain wall at two points
and applying a magnetic field along the easy axis to ex-
ert pressure pg = 2ugMHh on the domain wall. Un-
der pressure, the wall deforms into a circular arc until
the field pressure is balanced by the Laplace pressure
po = 0/R, where R is the radius of the arc (Fig. 3). We
thus obtained o0 = 2ugMHRh = 1.01 x 107 J/m, in
good agreement with the theoretical estimate.

The characteristic speed ¢ = 472 m/s, extracted from
the oscillation period T' = 2w/c of the space-averaged
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FIG. 3. Tension measurement. A domain wall pinned by
lattice defects (white narrow vertical notches) and subject to
an external magnetic field of strength poH = 25 mT applied
along the easy axis. The shape of the domain wall is a circle
(black dashed line) of radius R
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FIG. 4. Measurement of the fundamental period T from the
space-averaged velocity (y(t))» averaged over the length of
the domain wall.



transverse velocity

). =+ [ asite.o) (33)

of the domain wall (Fig. 4), was also in good agreement
with the theoretical value (16). The corresponding mass
density is p = 2.56 x 1077 kg/m.

Having thus determined and verified all independent
parameters of the nonreciprocal string, we ran dynam-
ical micromagnetic simulations to check the predictions
of the string model against the simulated micromagnetic
dynamics. A domain wall with an initial tilt

o= Y0 =y(0.0) oo (84)

is expected to have the time-averaged velocity (23) (9): =
catanhu = 7.13 m/s, in good agreement with the veloc-
ity of 7.11 m/s observed in our simulations.

Snapshots of the domain wall from the simulation are
shown as dots in the right column of Fig. 2 against the
theoretical shape (see video of the simulation in Supple-
mental Material”). The model describes the observed
motion of the domain wall very well without any ad-
justable parameters.

See Appendix B for further technical details.

VI. DISCUSSION

We have presented a simple theory of an extended do-
main wall in a thin-film ferromagnet wherein a domain
wall is modeled as a string with nonreciprocal dynam-
ics. The three parameters of the string—mass density
p, surface tension o, and the gyroscopic constant g—are
closely related to material parameters or measurable in
experiments.

The nonreciprocity is directly related to the sponta-
neous breaking of the time-reversal symmetry in a fer-
romagnet. It is manifested in unequal speeds for trans-
verse waves propagating on the string in opposite direc-
tions (14) and is quantified by a dimensionless parame-
ter sinhu = g/\/po. It gives rise to unusual dynamics:
strange-looking normal modes in finite geometry, steady-
state motion with a tilt, and more. Our estimates show
that domain walls in thin ferromagnetic films with realis-
tic material parameters can exhibit strong nonreciprocity
u of order 1 and a large disparity of the wave velocities,
vy Ju_ = —e?t.

The model has been tested against numerical simu-
lations. It reproduces very well the dynamics of a Néel
domain wall in a ferromagnet with Dzyaloshinskii-Moriya
interaction.”" The model is also expected to describe the
dynamics of Bloch domain walls.

We have considered a nonreciprocal string under the
simplifying assumptions of translational invariance in
the transverse direction and of small deviations from a
straight-line equilibrium shape. In realistic thin films, the
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presence of inhomogeneities requires an extension to arbi-
trary curves. This can be done by using the mathematical
language of interface evolution developed previously for
dissipative dynamics.”*” It would also be interesting to
expand the theory from two to three spatial dimensions,
where a domain wall would become a two-dimensional
surface.

Another restriction implicit in our analysis is the slow-
ness of the dynamics. Fast motion will be accompanied
by the generation and propagation of topological defects
(Bloch lines”) within a domain wall. Inclusion of Bloch
lines as stable point-like defects can be done along the
lines of Nikiforov and Sonin.

Last but not least, it would be interesting to look
for other string-like objects with nonreciprocal dynam-
ics outside magnetism.
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Appendix A: General solution

We apply Laplace transform

o0
g(s,x) = / y(t, z)e*tdt. (A1)
0
The equation of motion (12) is transformed to
—oif" + 2gsy + ps*y = p(x). (A2)

In the absence of external perturbations, up(z) =
psy(0,2) + py(0,z) + 29y’ (0,z) is fully determined by
the initial configurations. It is easy to find a particular
solution §,(s,z) for the second-order differential equa-
tion (A2) of a single variable x. The full solution is thus
9(s,x) = Pp(s, ) +7c(s, x), where the complementary so-
lution (s, z) = A4 (s)e /% + A_(s)e 5%/~ contains
all the traveling modes.

Coefficients in .(s,x) can be determined by the fol-
lowing boundary conditions:

oyl — gsYe = o (s) for z = 0, w, (A3)
where 7y(s) = —gy(0,0) — 07,(s,0) + gsy,(s,0) and
71(s) = —gy(0,w) — o, (s, w) + gsgp(s, w).

In the example of a tilted-and-release string, g,(s, z) =
ax/s, vo(s) = v1(s) = —oa/s. The inverse Laplace
transform gives y,(t,z) = axO(t) and vy(t) = i (t) =
—0a©(t), where O(t) is the Heaviside step function.



Generally, the boundary conditions yield

~ o ey (s) — i1 (s)
A+(S) - Z S(efsw/er _ efsw/v,)’
o e/ 0y (s) — 11(s)
c 5(@*5“)/14 _ efsw/v,)’

(A4)
A_(s) =

where we used o/vy + g = 0 /c. The inverse Laplace
transform can be then performed with the aid of the fol-
lowing series of step functions. We define

ap(t) = Z@(t —nT),

a1(t) = Z@(t +w/v_ —nT).

The string evolution thus follows y(t,z) = y,(t,z) +
Ayt —x/vy) O — x/vy) + A_(t —x/v_) for t > 0
where

AL(t) = %/O d'[ — ao(t ot — 1) + an ()t — )],
A (1) = %/0 at {[O(t') — oo () wolt — t')

+ a1 ()t —t)},
(AG)

and ©(t — z/v_) = 1 was used.
External perturbations can then be readily built into
p(x) and v 1(s) and enter into the time convolution (A6).

Appendix B: Simulation details

Micromagnetic simulations were performed using the
numerical package mumax>.”’ The sample was a strip of
width w = 1.50 pgm and thickness h = 1.25 nm with
cell size 1.25 nm. Material parameters similar to those of
Boulle et al.:”' saturation magnetization M = 1.00 x 10°
A/m, gyromagnetic ratio vy = —1.76 x 10** A s/kg,
exchange stiffness 4 = 1.00 x 107! J/m, easy-axis
anisotropy K = 1.30 x 10° J/m3, and Dzyaloshinskii-
Moriya interaction D = 2.00 x 1073 J/m?2. These yield
the gyroscopic constant g = —2Mh/y = 1.43 x 10714
J s/m?, domain-wall width A = 2.77 nm, tension o =
h(4VAK — D) = 1.02 x 107! J/m, mass density
p = g*/(mDh) = 2.58 x 10717 kg/m, and nonreciproc-
ity u = arcsinh(g/\/po) = 0.793. Long-range dipolar
interactions were turned off. (Their local part can be
taken into account by renormalization of the easy-axis
anisotropy from K to K — pgM?/2.) The sample was
relaxed and then run with Gilbert damping o = 0.

The model of a nonreciprocal string has three indepen-
dent parameters: mass density p, surface tension o, and
the gyroscopic constant g. The gyroscopic constant is
directly related to the material parameters: g = 2¢J =
2(Mh/~. To test our theory, we measured directly the
surface tension ¢ and the characteristic speed ¢ (16).
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The measurement of surface tension is illustrated in
Fig. 3. A domain wall was pinned at two ends by defects
in the sample. A magnetic field of strength poH = 25.0
mT was applied along the easy axis, creating pressure on
the domain wall py = 2ugMHh. After relaxation, the
domain wall attained the shape of a circular arc with the
radius R = 0.155 pym. In equilibrium, the pressure from
the magnetic field is balanced by the Laplace pressure of
the curved domain wall p, = o/R. This directly yields
o =2ugMHRh = 1.01 x 107! J/m, in good agreement
with the theoretical value.

To determine the Déring mass density p, we measured
the fundamental period of oscillations T (15), which is
related through the speed ¢ (16) to the string parameters:

T 1 92 p
2w ¢ 02—’_0' (B1)
In Fig. 4, we tracked the the evolution of a tilted domain
wall over several periods and plotted the velocity aver-
aged over the length of the domain wall as a function of
time. The period T' = 3.18 ns in a strip with the width
w = 0.75um yielded p = 2.56 x 10717 kg/m.
To prepare a tilted domain wall with zero initial ve-
locity, we used a nonuniform out-of-plane magnetic field
schematically shown in Fig. 5 to restrict the initial relax-

FIG. 5. Distribution of the out-of-plane magnetic field to
create a tilted domain wall. In the blue and red regions, the
applied field is parallel to the direction of local magnetization;
in the white strip, whose width greatly exceeds the domain
wall width A, the applied field is zero. The domain wall relaxes
to the dashed line under the combined effects of the applied
field and tension.
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FIG. 6. The dependence of effective mass density on the DMI
in the model (black line) and the simulation (red dots).



ation of the domain wall. The field was then set to zero
to release the domain wall when the evolution began.

As a further check of the phenomenological model, we
measured the effective mass density pe.g as a function
of the Dzyaloshinskii-Moriya coupling D. Our theory
relates the effective mass density to the initial slope a
of the domain wall and its velocity (y), averaged over a
period T

_ 9o
Peft = <y>t (B?)

The effective mass density extracted in this way is plotted
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as a function of D in Fig. 6. It shows excellent agreement
with the expected functional dependence

1 1
+
7Dh " (4VAK — xD)h

g2
poit = p+ = 477 (B3)

We also provide videos to show the dynamics. Videos
1-3 present the normal modes of a string under fixed and
free boundary conditions for different values of nonre-
ciprocity u; Video 4 shows the time evolution of tilted-
and-released strings also for different u values; and Video
5 compares the prediction of the nonreciprocal string
model to the simulation result of a tilted-and-released
domain wall with simulation parameters given here.
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