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Conventional microlasing of electromagnetic waves requires (1) a high Q cavity and (2) a mech-
anism for directional emission. Previous theoretical and experimental work demonstrated that the
two requirements can be met with deformed dielectric cavities that generate chaotic ray dynamics.
Is it possible for a massless Dirac spinor wave in graphene or its photonic counterpart to exhibit a
similar behavior? Intuitively, because of the absence of backscattering of associated massless spin-
1/2 particles and Klein tunneling, confining the wave in a cavity for a long time seems not feasible.
Deforming the cavity to generate classical chaos would make confinement even more difficult. In-
vestigating the decay of a spin-1/2 wave from a scalar potential barrier defined cavity characterized
by an effective refractive index n that depends on the applied potential and the particle energy, we
uncover the striking existence of an interval of the refractive index in which the average lifetime of
the massless spin-1/2 wave in the cavity can be as high as that of the electromagnetic wave, for both
integrable and chaotic cavities. We also find scaling laws for the ratio between the mean escape time
associated with electromagnetic waves and that with massless spin-1/2 particles versus the index
outside of this interval. The scaling laws hold regardless of the nature of the classical dynamics. All
the results are verified numerically. The findings provide insights into the emergent field of Dirac
electron optics and have potential applications in developing unconventional electronics using 2D
Dirac materials.

I. INTRODUCTION

Recent years have witnessed vast development of 2D
Dirac materials such as graphene1–3, silicene and ger-
manene4,5. In these solid state materials, the energy-
momentum relation (dispersion relation) of low-energy
excitations is typically that of a relativistic quantum
particle governed by the Dirac equation. For a mass-
less spin-1/2 Dirac particle, the dispersion relation is
linear which, for the positive energy band, is exactly
that of a photon. It is natural to exploit principles in
optics to articulate strategies to control Dirac electron
flows. In this regard, various optically analogous phe-
nomena such as Fabry-Pérot resonances6,7, Talbot ef-
fect8, and waveguide9,10 in ballistic graphene and sim-
ilar Dirac materials have been demonstrated. Due to the
negative energy band that has no counterpart for pho-
tons, the nontrivial π Berry phase associated with con-
ical band degeneracy and uniquely relativistic quantum
behaviors such as Klein tunneling11–13 can arise, lead-
ing to unusual physics such as the absence of backscat-
tering14,15, high carrier mobility16, and electrically con-
trollable negative refractive index17. As a result, Dirac
particles in ballistic graphene or other electronic hon-
eycomb lattice crystals can exhibit a number of uncon-
ventional, optical-like behaviors such as negative Goos-
Hänchen effect18, chirality-assisted electronic cloaking19,
gate controlled caustics20, electron Mie scattering21–24,
and whispering gallery modes25–28. Optical-like devices
for Dirac particles have also been realized, such as Klein-
tunneling beam splitters and collimators29–31 as well as

microscopes32. In addition, the emergent internal degrees
of freedom, i.e., sublattice and valley pseudospins as well
as the electron spin, provide new possibilities for optics
based electronic devices such as valley resolved waveg-
uides33, beam splitters34, electronic birefringent super-
lenses35, and spin (current) lenses36,37. Quite recently,
a Dirac quantum chimera state has been uncovered based
on the electronic analog of the chiroptical effect38. Dirac
electron optics6–10,17–32,34–42 have thus become an active
field of research.

While optical principles have been exploited in elec-
tronics, conventional optics and photonics have also
greatly benefited from the development of Dirac electron-
ics. For example, the photonic counterparts of Dirac ma-
terials such as graphene, topological insulators and Dirac
Semimetals have been extensively studied, where light is
structured in specific ways to mimic the Dirac particles
through the rendering of photonic Dirac cone band struc-
tures. This has led to novel ways to control light with
striking phenomena such as pseudospin-based vortex gen-
eration43 and robust light transport44. Quite recently,
inspired by the emergent topological properties uncov-
ered in gapped Dirac electronic systems45, researchers
have made breakthroughs in topological insulator lasers
implemented by topological photonic cavities46,47.

Uncovering, understanding, and exploiting the funda-
mental dynamics of Dirac particles are thus relevant to
both Dirac electronics and photonics. In this paper, we
investigate the trapping of massless Dirac particles in a
scalar potential confinement and the escape from it to
address the following question: is it possible for spin-1/2
Dirac spinor waves in graphene or photonic graphene sys-
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tems to exhibit properties similar to those of photons in
a microlasing cavity? To gain insights, we recall the con-
ventional microlasing systems of electromagnetic waves
in a dielectric cavity48–51, where the geometric shape of
the cavity plays an important role in the wave decay.
The dielectric constant of the cavity is higher than that
of the surroundings, so total internal reflections are re-
sponsible for optical ray trapping. For a circular domain,
the classical ray dynamics are integrable, leading to per-
manent ray trapping and in principle, to an infinite Q
value. However, in microlasing applications, emission
of light is necessary, and one thus wishes to generate
two seemingly contradictory behaviors at the same time:
high Q and good emission directionality. It was theoret-
ically proposed48–51 and experimentally realized52 that
classical chaos can be exploited to realize both behav-
iors at the same time, leading to high-Q and highly ef-
ficient microcavity lasing. In nonlinear dynamics, the
cavity problem is closely related to transient chaos53,54

and leaking55, with the underlying physics being non-
Hermitian56. The main advantage that classical chaos
can bring about is that, with simple deformation of the
domain boundary, the phase space is “mixed” with co-
existence of Kolmogorov-Arnold-Moser (KAM) tori and
chaotic regions, leading to algebraic decay of light rays.
The “long-tail” nature of the decay gives rise to a high
Q value, while the eventual escape from the chaotic com-
ponent generates highly directional emission. In nonlin-
ear dynamics, the exact form of the particle decay law
depends on the relative “portion” of the phase space re-
gions whose dynamics are quasiperiodic (KAM tori) or
chaotic. While a mixed phase space gives rise to alge-
braic decay with the exponent depending on the amount
of domain deformation, a fully chaotic phase space leads
to exponential decay of light rays. Semiclassically, the
cavity problem can be treated by using plane waves fol-
lowing Fresnel’s law, leading to the development of pe-
riodic theory of diffraction57, understanding of emission
properties in wave chaotic resonant cavities58,59, uncov-
ering of wave scars60–62, analyses of the survival proba-
bility63, directional emission50,51,64, and Goos-Hänchen
effect65. For conventional optics in microlasing cavities,
a general principle is then that the nature of classical
dynamics plays an important role in the decay law.

In order to realize microlasing like behavior, two re-
quirements must be met: high Q or long lifetime of the
wave in the cavity and deformed geometry to ensure
directional emission through classical chaos. Trapping
of massless fermions has recently been experimentally
realized in a graphene confinement23,26,28,66. The geo-
metric shape of the confinement can be chosen to yield
classically integrable, mixed, or chaotic dynamics. We
note that, the system is essentially open with relativis-
tic tunneling defined escape dynamics and thus gener-
ally support trapping modes with a finite lifetime67–73.
The problem is also different from that of scattering of
Dirac particles from a potential barrier25,74. We focus
on the semiclassical regime in which the plane wave ap-

proximation is valid and Fresnel’s law is applicable. In-
tuitively, due to the total absence of backscattering of
massless spin-1/2 particles14,15 and the purely relativis-
tic quantum phenomenon of Klein tunneling11–13, the de-
cay of the spinor wave would be enhanced when compar-
ing with that of classical electromagnetic waves from the
same cavity, so trapping of the former would seem im-
possible. Indeed, a detailed scaling analysis of the ratio
of the mean escape time of an electromagnetic wave to
that of a spin-1/2 wave reveals that, for both integrable
and chaotic cavities, in the regime of large effective re-
fractive index values (n � 1), the ratio is proportional
to n but in the regime of n � 1, the ratio is inversely
proportional to n. This means that, in these two asymp-
totic regimes, the averaging lifetime of the spin-1/2 wave
is indeed much smaller than that of the electromagnetic
wave. The surprising phenomenon is that, in between
the two asymptotic regimes, an interval in n emerges, in
which the ratio is about one, indicating that the spin-1/2
wave can live as long as the electromagnetic counterpart.
This means that, high Q can be achieved for spin-1/2
particles. Since the constant ratio also holds for classical
chaotic cavities, nonisotropic coherent emission can be
expected. The finding suggests strongly that the two mi-
crolasing conditions for photons can be fulfilled for spin-
1/2 particles. Our analysis provides insights into Dirac
electronics and photonics, and has potential applications
in developing unconventional cavity laser designs based
on Dirac photonic crystals, and optical-like electronics
with 2D Dirac materials.

We remark that, for photonic graphene systems75–77,
the concept of lasing can be defined since the underlying
particles are actually photons. For Dirac fermions, an
analog is atom laser78, that emits a beam of atoms (not
light). Rigorously, the concept of “lasing” does not hold
for an atom laser. In fact, traditional atom lasers require
Bose Einstein condensate (BEC), although there was an
attempt to generate an atom laser without BEC79. In
this paper, the term “lasing” is loosely used for photonic
graphene systems. For Dirac fermions, we use the term
“coherent emission.”

II. RAY DYNAMICS FOR SPIN-1/2 FERMION

We focus on the semiclassical regime where the wave-
length of the particle is relatively small in comparison
with the size of the system but is non-negligible. In
the semiclassical regime, both quantum and classical be-
haviors are relevant, and it is the ideal regime to study
the quantum manifestations of distinct types of classi-
cal dynamics including chaos. In fact, most previous
work in the traditional field of (nonrelativistic) quantum
chaos80,81 emphasizes the importance of the semiclassical
regime.

Trapping of a spin-1/2 fermion can be realized through
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FIG. 1. Approach of Dirac electron optics to solving the fermion decay problem: four distinct intervals of the
effective refractive index in the domain of electrical potential confinement. (a-d) The transmission coefficient versus
the incident angle in the polar representation for n ∈ (−∞,−1], n ∈ [−1, 0], n ∈ [0, 1], and n ∈ [1,∞), respectively. (e-h)
The corresponding Dirac cone structures outside and inside of the confinement region. Note that, for (a,b) [or (e,f)], inside the
potential region, the directions of the wavevector and the velocity are opposite to each other because of the negative refractive
index in these two cases.

a confinement (cavity) of electrical potential given by23

V (r) =

{
0, r ∈ D,
V0, r /∈ D,

(1)

where D represents the geometrical domain of the cavity
and V0 is the uniform potential applied to the domain.
Classically, the cavity is equivalent to a billiard, where
the ray behavior is identical to that of a point particle
bouncing back and forth in the billiard, with the differ-
ence that an optical ray is subject to reflection and re-
fraction. The geometry shape of D can then be chosen to
generate characteristically distinct types of classical dy-
namics: from integrable to fully chaotic. To be concrete,
in this paper, we focus on two types of geometrical shapes
for the cavity: a circle or a square that generates clas-
sically integrable dynamics and a stadium in which the
classical dynamics are chaotic. Experimentally, for a 2D
solid state material (e.g., graphene), the domain D can
be realized through the technique of scanning tunneling
microscope (STM)23,26,28,66.

The traditional theoretical approach consists of writ-
ing down the non-Hermitian Hamiltonian and solving
the Dirac equation subject to proper boundary condi-
tions67. If the domain shape is simple and highly sym-
metric, e.g., a circle, which yields classically integrable
dynamics, then the solutions of the Dirac equation can
be readily obtained. When the boundaries of the domain
are deformed from the circular shape to generate chaotic
dynamics, if the boundary conditions are of the infinite
mass confinement type, numerical solutions of the Dirac
equation can be obtained using the boundary integral
method82 or the standard finite element algorithm83. In
our problem of particle trapping and decay, the boundary
condition is not of the infinite mass confinement type.
In this case, for a domain of an arbitrary shape, even
numerical solutions of the Dirac equation are extremely
difficult. Since our focus is on the semiclassical regime,

we take advantage of the field of Dirac electron optics
to solve the Dirac equation by using the approach of ray
tracing associated with conventional wave optics.

When an electromagnetic wave encounters a bound-
ary, reflection and refraction occur as governed by Fres-
nel’s law. In the underlying ray picture, there will be
energy loss associated with each encounter with the do-
main boundary. For a spin-1/2 fermion, Klein tunneling
must be taken into account to derive the corresponding
Fresnel’s law. Depending on the particle energy E rel-
ative to the potential height V0, there are two distinct
cases84,85: (i) 0 < E < V0 and (ii) V0 < E. In the first
case (0 < E < V0), the transmission and reflection coeffi-
cients, T and R, respectively, at each encounter with the
boundary are given by84,85

T = − 2 cos θ cos θt
1− cos (θ + θt)

, (2)

R =
1 + cos (θ − θt)
1− cos (θ + θt)

,

where θ is the incident angle with respect to the normal
and the transmitted angle is given by

θt = sin−1

(
E

E − V0
sin θ

)
+π = sin−1 (n sin θ) +π. (3)

with the effective refractive index n defined as n ≡
E/(E − V0), which is negative in this case: n ∈ (−∞, 0].

For the second case V0 < E, the transmission and re-
flection coefficients are given by

T =
2 cos θ cos θt

1 + cos (θ + θt)
, (4)

R =
1− cos (θ − θt)
1 + cos (θ + θt)

,

where the refracted angle is

θt = sin−1 (n sin θ), (5)
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and the effective refractive index is positive: n ∈ [0,∞).
The energy band structure associated with a spin-1/2

fermion is that of a pair of Dirac cones. Depending on
the relative positions of the Dirac cone structures outside
and inside of the potential domain, there are four dis-
tinct intervals of the refractive index: (−∞,−1], [−1, 0],
[0, 1] and [1,∞). Figures 1(a-d) show the transmission
coefficient versus the incident angle in the polar repre-
sentation for the four parameter intervals, respectively.
The corresponding energy band structures are shown in
Figs. 1(e-h), respectively.

The survival probability of a spin-1/2 fermion inside
the potential region can be calculated using the formulas
for the transmission and reflection coefficients. In gen-
eral, the coefficients in the Klein tunneling regime de-
pend on the incident energy E and the potential height
V0 (which together define the effective refractive index
n84) as well as the angle of incidence θ. There is a sym-
metry in the coefficients in that they do not depend on
the sign of n, which can be seen by substituting the ex-
pression of θt into Eq. (2) or Eq. (4). It thus suffices to
focus on the two distinct intervals of the values of the
refractive index: |n| < 1 and |n| > 1. For |n| > 1, to-
tal internal reflection can occur with the critical incident
angle of θc, where the transmission coefficient is zero for
θ > θc.

III. RESULTS

Say we distribute an ensemble of rays of spin-1/2 waves
with different initial conditions in the cavity. As a ray
evolves following Fresnel’s law, its intensity will decrease
due to refraction. Let I0 be the initial intensity (or en-
ergy) of any ray in the ensemble. After n encounters with
the boundary, the intensity becomes

In = I0
∏
i

Ri = I0 exp

(∑
i

lnRi

)
. (6)

The survival probability P (t) is the fraction of the re-
maining intensity at time t. Depending on the nature of
the classical ray dynamics (integrable or chaotic) and on
the value of the effective refractive index n, with time
P (t) decays either exponentially:

P (t) = exp(−γt), (7)

where γ is the exponential decay rate, or algebraically:

P (t) ∼ t−z, (8)

with z being the algebraic decay exponent.
In numerical simulations, we initialize a large number

of rays (between 105 and 107) randomly distributed on
the boundary. For each ray, the initial angle θ0 is chosen
according to p = sin θ0, where p is a uniform random
variable in the unit interval and the velocity is chosen to
be one. The final distribution of the rays is independent
of the initial random conditions54. In the following, we
treat integrable and chaotic cavities separately.
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FIG. 2. Exponential decay of the survival probability
for the integrable (circular) cavity for −1 < n < 1. (a)
Two examples of exponential decay of P (t) (n = −0.5 and n =
0.5). (b) The exponential decay exponent γ versus n. Insofar
as the value of n is not close to one, the whispering gallery
mode decays most slowly. For n → 1, the cavity becomes
transparent so γ →∞.

A. Integrable cavity

We consider a circular cavity with integrable ray dy-
namics, in which the incident angle θ is constant and
the time interval between two successive encounters with
the boundary is ∆t = 2 cos (θ). For |n| < 1, the ray in-
tensity decays exponentially. As indicated in Fig. 1, the
transmission coefficient T takes on the minimum value
at θ = π/2. A ray with θ = π/2 can thus survive in the
cavity for a long time.

For 0 < n < 1, the survival probability is given by

P (t) =

∑
iR

t/∆t
i

N
= lim
θ→π/2

(
1− cos(θ − θt)
1 + cos(θ + θt)

)t/(2 cos θ)

.

(9)
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Letting x = π
2 − θ, we expand P (t) at x = 0 to obtain

P (t) ≈ exp

(
−
√

1− n2

1− n
t

)
. (10)

The survival probability for −1 < n < 0 has the same
exponential form but with different values of the decay
exponent. Figure 2(a) shows the decay of the survival
probability P (t) with time for n = −0.5 and n = 0.5
on a semi-logarithmic scale. Each set of data can be
well fitted by a straight line, indicating that the decay
is exponential. In both cases, the mode that survives
the longest possible time in the cavity is the whispering
gallery mode with θ <∼ π/2, and this holds insofar as the
value of n is not too close to one. Figure 2(b) shows, for
−1 < n < 1, the exponential decay exponent γ versus n.
For n→ 1, the electrical potential vanishes, so the cavity
becomes transparent, resulting in infinitely fast decay,
i.e., γ →∞.

For n > 1, total internal reflections occur for θ > θc =
sin−1 (1/n). In this case, the modes that can survive for
a long time are those with incident angle near θc, and
P (t) is given by

P (t) =

∫ θc
0

cos θ exp [−G(θ)t]dθ∫ 1/n

0
dp

, (11)

where

G(θ) =
1

2 cos θ
ln

(
1 +

2 cos θ cos θt
1− cos (θ − θt)

)
. (12)

Letting x = θc − θ, we have

G(θ) ≈ α
√
x+O(x). (13)

where

α =
n
√

2
√
n2 − 1

n− 1
. (14)

Substituting Eq. (13) into Eq. (11), we get

P (t) ≈ 2
√
n2 − 1

α2t2
[1− (1 + α

√
θct)e

−α
√
θct]

≈ 2
√
n2 − 1

α2
t−2. (15)

We thus see that the decay of P (t) for n > 1 is algebraic.
A similar analysis gives that Eq. (15) holds for the n <
−1 region. Numerical validation of Eq. (15) is given in
Fig. 3.

The special parameter point n = 1 is one at which the
decay law changes characteristically from being exponen-
tial to being algebraic. This is not surprising because
of the emergence of total internal reflections for n > 1.
Another special parameter value is n = −1, which oc-
curs when the particle energy is one half of the potential
height: E = V/2. In this case, the transmission coeffi-
cient at a single encounter with the cavity boundary is
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FIG. 3. Algebraic decay of the survival probability for
the integrable (circular) cavity for |n| > 1. Shown are
decay behaviors of P (t) for (a) n = −2 and n = −10 and
(b) n = 2 and n = 10. The solid and dashed lines represent
numerical and theoretical results, respectively.

T = cos2 θ, so the critical incident angle is θc = π/2.
Near θc, the quantity n sin θc can no longer be treated
as a small number, so the expansion used in deriving
Eq. (15) is not valid. However, we can rewrite G(θ) as

G(θ) = − 1

2 cos θ
ln(1− cos2 θ). (16)

For θ → π/2, we have cos θ ∼ x and obtain

P (t) ≈
∫ π/2

0

x exp

(
− tx

2

)
dθ =

4

t2
, (17)

which is valid in the large t regime.

B. Effect of Klein tunneling on decay of spin-1/2
wave

In terms of the cavity decay dynamics, what is the
key difference between an electromagnetic wave and a
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Dirac spinor wave? For a Dirac particle, there is a funda-
mental phenomenon that has no counterpart for a pho-
ton: Klein tunneling11,12, a uniquely relativistic quan-
tum phenomenon by which a particle of energy less than
the height of a potential barrier can tunnel through it
with absolute certainty. For a Dirac electron optical sys-
tem, Klein tunneling occurs in the |n| < 1 regime for
θ = 0 because, from Eq. (2), we have T (θ = 0) = 1. In
this regime, the decay of both spin-1/2 and electromag-
netic waves is exponential (see Table I below). However,
the slowest decaying modes are quite different for the
two types of waves. In particular, for the spin-1/2 wave
they are the whispering gallery modes (corresponding to
θ ≈ π/2) as it is difficult for the modes with θ ≈ 0 to stay
in the cavity for a long time because of Klein tunneling.
For the electromagnetic wave, the situation is nearly op-
posite: the longest survival modes are those with θ near
zero, i.e., modes with propagation along the diameter of
the cavity, as the transmission coefficients are minimum
for them by Fresnel’s law.

To further appreciate the difference between the de-
cay dynamics of spin-1/2 and electromagnetic waves, we
study the ring cavity with a kind of a small “forbidden”
region at the center of the circular cavity (r < r1 < 1).
The basic idea is that, the presence of the forbidden re-
gion should not have a significant impact on the decay of
a spin-1/2 wave as the dominant surviving modes are of
the whispering gallery type, which do not pass through
the central region of the cavity. However, the forbid-
den region would affect the decay of the electromagnetic
wave as the modes that shape the decay behavior are dia-
metrical, which have a significant presence in the central
region. The ring cavity is defined as

n(r) =


∞, r ≤ r1,

(0, 1), r1 < r ≤ 1,

1, r > 1,

(18)

which is integrable. In terms of the ray dynamics, the
central circular region blocks most orbits along the diam-
eter. Figure 4(a) shows, for spin-1/2 wave and n = 0.9,
the exponential decay of the survival probability P (t)
for four different ring configurations (corresponding to
different values of r1) on a semi-logarithmic scale. The
decay curves can be fitted approximately by lines with
nearly identical slopes, indicating that introducing a cen-
tral forbidden region has little effect on the decay. Fig-
ure 4(b) displays the curves of the exponential decay ex-
ponent γ versus n (for 0 < n < 1) for the four differ-
ent ring configurations, which are nearly identical. Fig-
ures 4(c) and 4(d) present the corresponding results for
a TM electromagnetic wave (Appendix A), revealing a
significant effect of the central forbidden region on the
wave decay behavior. In particular, the decay rates for
the three cases of r1 6= 0 (orange, green and red curves)
are greater than that of the circular cavity (r1 = 0, the
blue curve) because the central forbidden region blocks
the slowest decaying modes so as to expedite the overall
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FIG. 4. Decay of spin-1/2 and electromagnetic waves
from a ring cavity. (a) For four different ring configura-
tions (r1 = 0 - the original circular cavity, r1 = 0.5, 0.75, and
0.9), exponential decay behavior of the survival probability
P (t), and (b) the corresponding decay exponent γ versus n
for 0 < n < 1. As the long time decay behavior is domi-
nated by the whispering gallery modes that concentrate on
the larger circumstance, the central forbidden region has lit-
tle effect on the overall exponential decaying behavior. (c,d)
The corresponding results for a TM electromagnetic wave,
where the decay rates for the three actual ring configurations
are larger than that of the original circular cavity, due to the
blockage of the slowest decaying modes along the diameter.
(e,f) Results for a TE electromagnetic wave, where the inac-
cessibility of the central region has an even more significant
impact on the decay.

decay. The results for a TE electromagnetic wave are
shown in Figs. 4(c) and 4(d), revealing an even more sig-
nificant effect of the blockage of the central region on
wave decay.

Experimentally, for a spin 1/2 wave system, e.g.,
graphene, the central circular region can be created by
applying an electrical potential corresponding exactly to
the Fermi energy E. For the electromagnetic wave, the
ring configuration can be realized by depositing metal in
the central region of a circular dielectric cavity, which
induces total internal reflections.
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C. Chaotic cavity

To be concrete, we consider the chaotic stadium cavity
characterized by parameters r0 (the radius of each semi-
circle) and L (the perimeter of the whole domain). It is
useful to define86 the “average path length” 〈d〉 = πA/L,
where A is the area of the stadium. The survival proba-
bility is given by

P (t) =
∏
i

Ri = exp

[
t

〈d〉
∑
i

lnRi

]
, (19)

where Ri is the reflection coefficient at each encounter
with the boundary. The summation can be approximated
by a double integral in both distance and angle. Due
to chaos, the distance between two successive encoun-
ters with the boundary is roughly constant (〈d〉), so the
double integral can be reduced to a single integral with
respect to the angle. The summation in Eq.(19) can then
be evaluated as ∫ π/2

0
cos θ lnRdθ∫ π/2

0
cos θdθ

. (20)

In general, the integral cannot be evaluated analytically.
However, in the limiting cases (|n| → 0 and |n| → ∞), we
can use Taylor expansion to evaluate the integral. The
end result is an exponential decay of P (t) (Appendix B)
with explicit formulas for the decay exponent γ. In par-
ticular, for n→ 0, γ is given by

γ =
1

〈d〉

( ∞∑
i=1

W2i+1

i
+
π

2
n

)
, (21)

where W is the Walli’s integral (Appendix B). For n →
∞, we have

γ =
(8− 2π)πr0

〈d〉|n|L
. (22)

Numerical verification is presented in Figs. 5. These re-
sults suggest that the decay of a spin-1/2 fermion from
a chaotic cavity is generally exponential, implying the
difficulty in confining the relativistic quantum particle.

D. Are high Q and nonisotropic coherent emission
achievable for a spin-1/2 wave?

Two conditions must be met in order for a microcavity
to generate effective lasing: (1) high Q value, and (2) di-
rectional emission. Previous work on conventional elec-
tromagnetic microlasing48–52 established that deformed
chaotic cavities are suited for microlasing applications.
To realize microlasing of a spin-1/2 wave, it is necessary
that (1) the (graphene) cavity has average lifetime com-
parable to that of the dielectric electromagnetic cavity,
and (2) the lifetime can be maintained in a deformed
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FIG. 5. Exponential decay of a spin-1/2 fermion from
a chaotic stadium cavity. (a) The survival probability P (t)
for n = 0 and n = 0.5 (on a semi-logarithmic scale), where
the dashed lines are theoretical predictions. (b) Exponential
decay of P (t) for n = −10 and n = 10. (c) The exponential
decay exponent γ versus n for −1 < n < 1. (d) The exponent
γv versus |n| for 1 < |n| < 100. In (c) and (d), the dashed
line is the analytic prediction. The parameters of the chaotic
stadium are A = π, r0/l = 1/2, and L = 2πr0 + 2l, where l is
the length of the straight segment.

chaotic cavity. In the following, we establish the exis-
tence of a range of the effective refractive index value for
a spin-1/2 particle cavity in which the two requirements
can be met.

To compare the decay of the spin-1/2 wave with that
of the electromagnetic wave in the same cavity, it is nec-
essary to have a complete picture of the decay of the
electromagnetic wave from a cavity for comparison. Es-
pecially, for a spin-1/2 particles, in principle the relative
refractive index n can take on values ranging from −∞ to
+∞. For electromagnetic waves, previous work63 treated
this problem but for the case where the absolute value
|n| of the relative refractive index of the dielectric cavity
is greater than one, with the result that the decay law is
algebraic (exponential) for integrable (chaotic) cavities.
As a necessary step, we extend the result to the |n| < 1
regime (Appendix A). Table I lists the formulas of P (t)
for both spin-1/2 and electromagnetic waves (TE and
TM) for both integrable and chaotic cavities.

For the cavity decay problem, a basic characterizing
quantity is the quality factor Q, which qualitatively mea-
sures the stability of the wave (temporarily) “trapped”
in the cavity. To calculate the Q value, we resort to the
fact that, because the system is fundamentally open, the
underlying Hamiltonian is non-Hermitian with complex
eigenvalues, and Q is nothing but the ratio between the
real and imaginary parts of the complex eigen wave vec-
tor. Alternatively, Q can be defined as Q ≡ ωnτ , where
ω is the frequency of the dominantly surviving mode, τ
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TABLE I. Complete results of the survival probability for spin-1/2, TE and TM electromagnetic waves for
integrable and chaotic cavities. For algebraic decay, the exact form of P (t) is listed. For exponential decay, only the decay
exponent γ is given.

Circular cavity Stadium cavity
|n| < 1 |n| > 1 |n| < 1 |n| > 1

Spin 1/2 γ =

√
1−n2

1−n P (t) = (n−1)2

n2 t−2 γ =
∑
i

W2i+1

〈d〉i + πn
2〈d〉 γ = (8−2π)πr0

〈d〉|n|L

TM γ = ln
(

1+n
1−n

)
P (t) = (n2−1)2

4n2 t−2 γ = nπ
〈d〉 γ = 2π2r0

〈d〉Ln2

TE γ = ln
(

1+n
1−n

)
γ = ln

(
n+1
n−1

)
γ = 2nπ

〈d〉 γ = 4π2r0
〈d〉Ln2

is the associated (finite) lifetime, and its inverse is the
spectral width56. In the ray picture, it is convenient to
calculate the mean escape time (or lifetime) T , which is
the time for P (t) to reduce to the value of, e.g., e−1.

Intuitively, because of Klein tunneling, it would be
“easier” for a spin-1/2 wave to leak out of the cavity than
an electromagnetic wave. Let τS, τTE, and τTM denote the
mean escape time for spin-1/2, TE and TM electromag-
netic waves, respectively. We analyze the ratios τTE/τS
and τTM/τS, which can be calculated based on the results
in Table I.

For the |n| � 1 regime, all three systems exhibit expo-
nential decay, so we have τ = 1/γ. For electromagnetic
waves, the average lifetime is proportional to 1/n but for
the spin-1/2 system the time tends to a constant. We
thus have

τEM/τS ∼
1

n
� 1 for n→ 0, (23)

for the integrable cavity, where τEM stands for either τTE

or τTM. The same result holds for the chaotic cavity. In
this case, comparing with the electromagnetic wave, a
spin-1/2 wave will leak out of the cavity more quickly,
i.e., it is less “stable” when being compared with the
electromagnetic wave.

In the |n| � 1 regime, for the integrable cavity, we have
P (t) ∼ n2t−2 for the TM electromagnetic wave, so the
mean escape time TTM is proportional to n. For the TE
wave, the decay is exponential with the exponent given
by γ = ln (n+ 1)/(n− 1). We thus have γ ≈ 2/n and,
hence, τTE ∼ n, as for the TM wave. For the chaotic
cavity, for both TM and TE waves, we have γ ∼ n−2,
while γ ∼ n for spin-1/2 wave. We thus have τEM/τS ∼ n,
which means that, in the |n| � 1 regime, the Q value of
the electromagnetic cavity is also higher than that of the
spin-1/2 Dirac cavity.

The analytic results can be summarized as

τEM/τS = α1n
−1 for n� 1,

τEM/τS = α2n for n� 1,
(24)

where α1 and α2 are constants that depend on the geo-
metric shape of the cavity. We see that the integrable and
chaotic cavities share the same scaling law of the lifetime
ratios with the refractive index. Figures 6(a) and 6(b)

show the numerically obtained ratios τTM/τS and τTE/τS
versus n, respectively. There is a good agreement be-
tween the numerical results and those in Eq. (24). The
remarkable result is that, while the decay of the spin-1/2
wave is significantly faster than that of the electromag-
netic wave in both the n � 1 and n � 1 regimes, there
exists a sizable interval about n = 1 in which the de-
cay rates of the two types of systems are comparable,
as shown in Figs. 6(a,b). In this interval, high Q values
can be achieved for spin-1/2 particles. The striking phe-
nomenon is that the ratios in this interval can be main-
tained at values close to one, regardless of the nature of
the classical ray dynamics. That is, high Q values can be
achieved for spin-1/2 particles in a chaotic cavity to the
same extent as for electromagnetic waves so as to ensure
nonisotropic emission.

IV. DISCUSSION

To summarize, motivated by the question of whether
high Q and directional coherent emission are achievable
for spin-1/2 particles, we investigated the cavity decay
problem with classically distinct dynamics in the semi-
classical regime. Previous work on microlasing of electro-
magnetic waves48–52 established that deformed chaotic
cavities can meet the two key requirements for microlas-
ing: high Q value and effective directional emission. For
spin-1/2 particles, confinement can be realized through
an external electric field. Our analysis and numerical re-
sults indicate that, for a spin-1/2 wave cavity (e.g., made
of graphene), there exists an experimentally reasonable
range of the applied electric potential in which the two re-
quirements can be met. For example, a chaotic graphene
cavity can simultaneously have a high Q value and good
emission directionality.

More specifically, we have analyzed the survival prob-
ability in both integrable and chaotic cavities. For the
integrable cavity, the decay is exponential in the |n| < 1
regime. Significantly better confinement in the sense
of algebraic decay of the survival probability can be
achieved for the integrable cavity in the |n| > 1 regime.
For larger n values (when the Fermi energy is close to
the potential), confinement is more robust. This result
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FIG. 6. Scaling with the relative refractive index of
the ratio between the mean escape time for an elec-
tromagnetic wave and that of a spin-1/2 wave: (a) the
ratio τTM/τS and (b) the ratio τTE/τS, for three different types
of cavity shapes (two with integrable and one with chaotic ray
dynamics). For n� 1, the ratio is proportional to n−1 while
it is proportional to n for n � 1, regardless of whether the
electromagnetic wave in comparison is TM or TE. The scal-
ing laws hold regardless of whether the classical ray dynamics
are integrable or chaotic. The surprising result is the exis-
tence of an interval in n in which the spin-1/2 wave can have
a high Q value and chaos enabled directional emission as for
the electromagnetic wave.

is consistent with that obtained through wave scattering
analysis 72 and also agrees with experimental measure-
ment on circular potential confinement26 where high
quality confinement is achieved for high angular momen-
tum modes. For the chaotic cavity, the survival prob-
ability decays exponentially with time for all possible
n values. We note, however, that the quantum regime
in which the scattering theory is applicable is not the
semiclassical regime treated in our work. In fact, in
previous work on confinement of spin-1/2 fermions in
graphene13,68,71–73, the relevant wave regime is not close
to being semiclassical. To search for regimes where high
Q and nonisotropic coherent emission are possible for

spin-1/2 particles, we obtain analytic formulas to com-
pare the average lifetime with that of an electromagnetic
wave in the same cavity. A striking result is that the
behavior of the ratio of the average lifetimes of the two
types of waves versus |n| is independent of the nature of
the underlying classical ray dynamics. For both |n| � 1
and |n| � 1 regimes, there are scaling laws governing
the ratio, which indicates that the average trapping time
of the electromagnetic wave is significantly longer than
that of the spin-1/2 wave, in accordance with intuition.
However, counter intuitively, there exists a regime of |n|
values centered about one in which the average lifetimes
for the two types of waves are approximately the same,
which is valid for both integrable and chaotic cavities,
generating remarkable decaying behavior of a spin-1/2
wave in this regime.

We provide a brief discussion about the issue of di-
rectional emission. In optical microcavities, directional
emission is typically shape dependent. For example, in
Sec. VII of Ref. [56], a number of high-Q cavities were
described, which are able to emit light in certain direc-
tions. For some specific cavity shape, it is possible to de-
termine the probability of directional emission through
ray tracing. For example, in Ref. [64], a heart shaped
cavity was studied, where the emission direction depends
on some long lasting orbits with initial incident angle
| sin θ| < 1/n. As ray trajectories associated with these
orbits escape, radiation is generated but is concentrated
in some special direction. In general, ray tracing is insuf-
ficient for determining if the underlying cavity can have
directional emission. Instead, a wave approach based on
scattering and solutions of the Dirac equation is neces-
sary. Since a spin-1/2 system exhibits similar character-
istics in the dependence of the transmission on the angle
to those of light (e.g., the transmission reaches a maxi-
mum for θ = 0 and a minimum for θ = θc), it is possible
for high-Q operation in spin-1/2 systems to possess di-
rectional emission.

We would also like to explain the difference between
the results from a relevant recent work38 and those in the
current work. Specifically, Ref. [38] treated a scattering
problem in graphene systems, where the spin degener-
acy of the electrons is lifted through an exchange field
from induced ferromagnetism. The scattering region has
a non-concentric type of ring geometry, where a differ-
ent gate potential is applied to the inner circle and to
the region outside the inner circle but within the outer
circle, respectively. As a result, the scattering dynamics
for spin-up and spin-down electrons are characteristically
different, both classically and quantum mechanically. For
example, for proper values of the gate potentials and ec-
centricity, the classical dynamics of spin-down electrons
are completely integrable, while spin-up electrons exhibit
fully developed chaotic scattering. Not only are the clas-
sical dynamics distinct, the corresponding quantum scat-
tering also exhibits drastically different characteristics in
terms of experimentally accessible quantities such as the
cross sections, resonances, and the Wigner-Smith delay
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time. In Ref. [38], the simultaneous coexistence of two
different types of scattering behaviors is coined by the
term “relativistic quantum chimera.”

The focus of the current work is on optical like decay
behaviors of Dirac fermions in the semiclassical regime
in the absence of any induced ferromagnetism. There is
then no splitting of the Dirac cone structure, i.e., the en-
ergy bands of spin-up and spin-down electrons are com-
pletely degenerate, ruling out the possibility of any rel-
ativistic quantum chimera state. The results reported
here on the decay of semiclassical massless Dirac fermions
from integrable or chaotic cavities thus do not depend
on the electron spin. Also note that, in Ref. [38], while
the classical dynamics were obtained using the same ap-
proach of Dirac electron optics as in the current work,
the quantum scattering dynamics were calculated and
analyzed based on solutions of the Dirac equation for
two-component spinor waves.
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Appendix A: Survival probability of electromagnetic
waves

For TM electromagnetic waves, the reflection coeffi-
cient is given by87

RTM(θ) =

(
n cos θ − cos θt
n cos θ + cos θt

)2

, (A1)

where θ and θt are the incident and refractive angles,
respectively, and n is the relative refractive index. The
formula for TE waves is

RTE(θ) =

(
cos θ − n cos θt
cos θ + n cos θt

)2

. (A2)

The law of refraction is θt = sin−1 (n sin θ). For conven-
tional dielectric materials, we have n > 0.
Integrable cavity with n < 1. In contrast to spin-1/2

waves where whispering gallery modes survive in the cav-
ity for the longest time [Eq. (9)], for TM and TE elec-
tromagnetic waves, such modes are along the diameter
with θ = 0. Substituting θ = 0 into Eqs. (A1) and (A2),
from Eq. (9), we obtain the orbit length as 2 cos θ and
the exponential decay exponent γ as

γTM = γTE = ln

(
1 + n

1− n

)
. (A3)

Integrable cavity with n > 1. We expand Eq. (13)
near θc to obtain

G(θ) ≈ αx1/2 +O(x). (A4)

where

αTM =
2n
√

2
√
n2 − 1

n2 − 1
. (A5)

The survival probability for a TM wave is

P (t) =
2
√
n2 − 1

α2
TM

t−2. (A6)

Similarly, we have, for a TE wave,

αTE = n2αTM. (A7)

Chaotic stadium cavity with n < 1. UsingR(n = 0) =
1 for all θ, we expand ln (1− T ) in the small n regime to
obtain

T = 4n cos θ +O(n2). (A8)

The integral in Eq. (20) can be evaluated as

−
∫ π/2

0

lnR cos θdθ =

∫ π/2

0

4n cos2 θdθ = nπ. (A9)

For a TE wave, the integral is

−
∫ π/2

0

lnR cos θdθ =

∫ π/2

0

4ndθ = 2nπ. (A10)

Chaotic stadium cavity with n > 1. The result can
be found in Ref. [63]. For a TM wave, the integral in
Eq. (20) is

−
∫ sin−1 (1/n)

0

cos θ ln (1−R) ≈ πn−2. (A11)

For a TE wave, the integral is

−
∫ sin−1 (1/n)

0

cos θ ln (1−R) ≈ 2πn−2. (A12)

The exponential decay exponents γ for the two cases are
given by

γTM =
2π2r0

〈d〉Ln2
, and (A13)

γTE =
4π2r0

〈d〉Ln2
. (A14)
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Appendix B: Survival probability of spin 1/2 waves
in chaotic stadium cavity

The case of |n| < 1. For n = 0, the reflection coeffi-
cient R is

R =
1− cos θ

1 + cos θ
. (B1)

We thus have

− lnR = 2

(
cos2 θ

2
+

cos4 θ

4
+ · · ·

)
. (B2)

The ray density is given approximately by cos θ. Using
Wallis’ integral88

Wn =

∫ π/2

0

cosn xdx =
Γ
(
n+1

2

)
Γ
(

1
2

)
2Γ
(
n
2 + 1

) . (B3)

we can evaluate the integral in Eq. (20) as

−
∫

ln(R) cos θdθ =

∞∑
n=1

W2n+1

n
, (B4)

where limn→∞Wn = 0, so the series converges. For small
n values, we have

R ≈ 1− cos θ − n sin2 θ

1 + cos θ − n sin2 θ
. (B5)

Rewriting this as R = R0 [1 + nf(θ)], we have the reflec-
tion coefficient for n = 0 as

lnR = lnR0 + nf(θ). (B6)

where

f(θ) =
n sin2 θ

1 + cos θ
− n sin2 θ

1− cos θ
. (B7)

The decay exponent γ can be determined through

−
∫

cos θ lnR =

∞∑
i=1

W2i+1

i
+
π

2
n. (B8)

The case of |n| > 1. For |n| > 1, rays with incident
angle near the critical value for total internal reflection
dominate the long time behavior of the survival proba-
bility. Near the critical angle where T is about zero, we
can expand Eq. (20) as

−
∫ π/2

0

cos θ ln(1− T )dθ =

∫ sin−1 (1/n)

0

T cos θdθ. (B9)

For n→∞, we let p = n sin θ and expand the integrand
in terms of 1/n to obtain

1

n

∫ 1

0

2
√

1− p2

n2

√
1− p2

1 +
√

1− p2

n2

√
1− p2 − p2

n

dp ≈ 4− π
n

. (B10)

The result at the n→ −∞ limit is the same. We obtain

γ =
(8− 2π)πR

〈d〉|n|L
. (B11)
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