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The vibrational properties of CrI3 single crystals were investigated using Raman spectroscopy and
were analyzed with respect to the changes of the crystal structure. All but one mode are observed
for both the low-temperature R3̄ and the high-temperature C2/m phase. For all observed modes
the energies and symmetries are in good agreement with DFT calculations. The symmetry of a
single-layer was identified as p3̄1/m. In contrast to previous studies we observe the transition from
the R3̄ to the C2/m phase at 180 K and find no evidence for coexistence of both phases over a wide
temperature range.

I. INTRODUCTION

Two-dimensional layered materials have gained atten-
tion due to their unique properties, the potential for a
wide spectrum of applications and the opportunity for
the development of functional van der Waals heterostruc-
tures. CrI3 is a member of the chromium-trihalide fam-
ily which are ferromagnetic semiconductors [1]. Recently,
they have received significant attention as candidates for
the study of magnetic monolayers. The experimental re-
alization of CrI3 ferromagnetic monolayers [1] motivated
further efforts towards their understanding. CrI3 fea-
tures electric field controlled magnetism [2] as well as a
strong magnetic anisotropy [3, 4]. With the main ab-
sorption peaks lying in the visible part of the spectrum,
it is a great candidate for low-dimensional semiconductor
spintronics [5]. In its ground state, CrI3 is a ferromag-
netic semiconductor with a Curie temperature of 61 K
[1, 6] and a band-gap of 1.2 eV [6]. It was demonstrated
that the magnetic properties of CrI3 mono- and bilay-
ers can be controlled by electrostatic doping [2]. Upon
cooling, CrI3 undergoes a phase transition around 220 K
from the high-temperature monoclinic (C2/m) to the
low-temperature rhombohedral (R3̄) phase [3, 7]. Al-
though the structural phase transition is reported to be
first-order, it was suggested that the phases may coexist
over a wide temperature range [3]. Raman spectroscopy
can be of use here due to its capability to simultaneously
probe both phases in a phase-separated system [8–10].

A recent theoretical study predicted the energies of all
Raman active modes in the low-temperature and high-
temperature structure of CrI3 suggesting a near degen-
eracy between the Ag and Bg modes in the monoclinic
(C2/m) structure. Their energies match the energies of
Eg modes in the rhombohedral (R3̄) structure [7].

In this article we present an experimental and theoret-
ical Raman scattering study of CrI3 lattice dynamics. In
both phases all but one of the respective modes predicted

by symmetry were observed. The energies for all modes
are in good agreement with the theoretical predictions for
the assumed crystal symmetry. Our data suggest that
the first-order transition occurs at Ts ≈ 180 K without
evidence for phase coexistence over a wide temperature
range.

II. EXPERIMENT AND NUMERICAL
METHOD

The preparation of the single crystal CrI3 sample used
in this study is described elsewhere [11]. The Raman
scattering experiment was performed using a Tri Vista
557 spectrometer in backscattering micro-Raman con-
figuration with a 1800/1800/2400 groves/mm diffraction
grating combination. The 532 nm line of a Coherent
Verdi G solid state laser was used for excitation. The
direction of the incident light coincides with the crystal-
lographic c axis. The sample was oriented so that its prin-
cipal axis of the R3̄ phase coincides with the x axis of the
laboratory system. A KONTI CryoVac continuous He-
lium flow cryostat with a 0.5 mm thick window was used
for measurements at all temperatures under high vacuum
(10−6 mbar). The sample was cleaved in air before being
placed into the cryostat. The obtained Raman spectra
were corrected by the Bose factor and analysed quanti-
tatively by fitting Voigt profiles to the data whereby the
Gaussian width ΓGauss = 1 cm−1 reflects the resolution
of the spectrometer.

The spin polarized density functional theory (DFT)
calculations have been performed in the Quantum
Espresso (QE) software package [12] using the Perdew-
Burke-Ernzehof (PBE) exchange-correlation functional
[13] and PAW pseudopotentials [14, 15]. The energy cut-
offs for the wavefunctions and the charge density were
set to be 85 Ry and 425 Ry, respectively, after conver-
gence tests. For k-point sampling, the Monkhorst-Pack
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FIG. 1. (Colour online) Schematic representation of (a)
the low-temperature R3̄ and (b) the high-temperature C2/m
crystal structure of CrI3. Black lines represent unit cells.

scheme was used with a 8 × 8 × 8 grid centered around
the Γ point. Optimization of the atomic positions in the
unit cell was performed until the interatomic forces were
smaller than 10−6 Ry/Å. To treat the van der Waals
(vdW) interactions a Grimme-D2 correction [16] is used
in order to include long-ranged forces between the layers,
which are not properly captured within LDA or GGA
functionals. This way, the parameters are obtained more
accurately, especially the interlayer distances. Phonon
frequencies were calculated at the Γ point using the lin-
ear response method implemented in QE. The phonon
energies are compiled in Table III together with the ex-
perimental values. The eigenvectors of the Raman active
modes for both the low- and high-temperature phase are
depicted in Figure A1 of the Appendix.

III. RESULTS AND DISCUSSION

CrI3 adopts a rhombohedral R3̄ (C2
3i) crystal struc-

ture at low temperatures and a monoclinic C2/m (C3
2h)

crystal structure at room temperature [3], as shown in
Figure 1. The main difference between the high- and low-
temperature crystallographic space groups arises from
different stacking sequences with the CrI3 layers being
almost identical. In the rhombohedral structure the Cr
atoms in one layer are placed above the center of a hole in
the Cr honeycomb net of the two adjacent layers. When
crossing the structural phase transition at Ts to the mon-
oclinic structure the layers are displaced along the a di-
rection so that every fourth layer is at the same place as
the first one. The interatomic distances, mainly the in-
terlayer distance, and the vdW gap, are slightly changed

TABLE I. Calculated and experimental [11] parameters of
the crystallographic unit cell for the low-temperature R3̄ and
high-temperature C2/m phase of CrI3.

T (K)
Space group R3̄ Space group C2/m

Calc. Exp. [11] Calc. Exp. [11]

a (Å) 6.87 6.85 6.866 6.6866

b (Å) 6.87 6.85 11.886 11.856

c (Å) 19.81 19.85 6.984 6.966

α (deg) 90 90 90 90

β (deg) 90 90 108.51 108.68

γ (deg) 120 120 90 90

by the structural transition. The crystallographic pa-
rameters for both phases are presented in Table I. The
numerically obtained values are in good agreement with
reported X-ray diffraction data [11].

The vibrational properties of layered materials are typ-
ically dominated by the properties of the single layers
composing the crystal. The symmetry of a single layer
can be described by one of the 80 diperiodic space groups
(DG) obtained by lifting translational invariance in the
direction perpendicular to the layer [17]. In the case of
CrI3, the symmetry analysis revealed that the single layer
structure is fully captured by the p3̄1/m (D1

3d) diperiodic
space group DG71, rather than by R3̄2/m as proposed
in Ref. [7].

According to the factor group analysis (FGA) for a
single CrI3 layer, six modes (2A1g + 4Eg) are expected
to be observed in the Raman scattering experiment (see
Table II). By stacking the layers the symmetry is reduced
and, depending on the stacking sequence, FGA yields
a total of eight Raman active modes (4Ag + 4Eg) for
the R3̄ and twelve Raman active modes (6Ag + 6Bg) for
the C2/m crystal symmetry. The correlation between
layer and crystal symmetries for both cases is shown in
Figure 2 (a) [18, 19].

Fig. 2(b) shows the CrI3 single crystal Raman spectra
measured at 100 K in two scattering channels. Accord-
ing to the selection rules for the rhombohedral crystal
structure (Table II) the Ag modes can be observed only
in the parallel polarization configuration, whereas the Eg

modes appear in both parallel and crossed polarization
configurations. Based on the selection rules the peaks
at about 78 cm−1, 108 cm−1 and 128 cm−1 were identi-
fied as Ag symmetry modes, whereas the peaks at about
54 cm−1, 102 cm−1, 106 cm−1 and 235 cm−1 are assigned
as Eg symmetry. The weak observation of the most pro-
nounced Ag modes in crossed polarisations [Fig. 2 (b)] is
attributed to the leakage due to a slight sample misalign-
ment and/or the presence of defects in the crystal. The
energies of all observed modes are compiled in Table III
together with the energies predicted by our calculations
and by Ref. [7], and are found to be in good agreement for
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TABLE II. Wyckoff positions of the two types of atoms and their contributions to the Γ-point phonons for the R3̄ and C2/m
as well as the p3̄1/m diperiodic space group. The second row shows the Raman tensors for the corresponding space groups.

Space group R3̄ Diperiodic space group p3̄1/m Space group: C2/m

Atoms Irreducible representations Atoms Irreducible representations Atoms Irreducible representations

Cr (6c) Ag + Au + Eg + Eu Cr (2c) A2g +A2u + Eg + Eu Cr (4g) Ag +Au + 2Bg + 2Bu

I (18f) 3Ag + 3Au + 3Eg + 3Eu I (6k)
2A1g +A1u +A2g+ I (4i) 2Ag + 2Au +Bg +Bu

+2A2u + 3Eg + 3Eu I (8j) 3Ag + 3Au + 3Bg + 3Bu

Ag =

a a
b

 A1g =

a a
b

 Ag =

a d
c

d b


1Eg =

c d e
d −c f
e f

 2Eg =

 d −c −f
−c −d e
−f e

 1Eg =

c −c d
d

 2Eg =

 −c −d
−c
−d e

 Bg =

 e
e f
f



TABLE III. Phonon symmetries and phonon energies for the low-temperature R3̄ and high-temperature C2/m phase of CrI3.
The experimental values were determined at 100 K and 300 K, respectively. All calculations were performed at zero temperature.
Arrows indicate the correspondence of the phonon modes across the phase transition.

Space group R3̄ Space group C2/m

Symm. Exp. (cm−1) Calc. (cm−1) Calc. (cm−1) [7] Symm. Exp. (cm−1) Calc. (cm−1) Calc. [7] (cm−1)

E1
g 54.1 59.7 53 −−−→−−−→

B1
g 52.0 57.0 52

A1
g 53.6 59.8 51

A1
g 73.33 89.6 79 −−−→ A2

g 78.6 88.4 79

E2
g 102.3 99.8 98 −−−→−−−→

A3
g 101.8 101.9 99

B2
g 102.4 101.8 99

E3
g 106.2 112.2 102 −−−→−−−→

B3
g 106.4* 108.9 101

A4
g 108.3 109.3 102

A2
g 108.3 98.8 88 −−−→ B4

g 106.4* 97.8 86

A3
g 128.1 131.1 125 −−−→ A5

g 128.2 131.7 125

A4
g - 195.2 195 −−−→ B5

g - 198.8 195

E4
g 236.6 234.4 225 −−−→−−−→

A6
g 234.6 220.1 224

B6
g 235.5 221.1 225

* observed as two peak structure

the Eg modes. The discrepancy is slightly larger for the
low energy Ag modes. Our calculations in general agree
with those from Ref. [7]. The A4

g mode of the rhom-
bohedral phase, predicted by calculation to appears at
about 195 cm−1, was not observed in the experiment,
most likely due to its low intensity.

When the symmetry is lowered in the high-
temperature monoclinic C2/m phase [Fig. 2(c)] the Eg

modes split into an Ag and a Bg mode each, whereas the
rhombohedral A2

g and A4
g modes are predicted to switch

to the monoclinic Bg symmetry. The correspondence of
the phonon modes across the phase transition is indicated
by the arrows in Table III. The selection rules for C2/m
(see Table II) predict that Ag and Bg modes can be ob-
served in both parallel and crossed polarization configu-
rations. Additionally, the sample forms three types of do-
mains which are rotated with respect to each other. We

therefore identify the phonons in the C2/m phase in re-
lation to the calculations and find again good agreement
of the energies. The B3

g and B4
g modes overlap and there-

fore cannot be resolved separately. As can be seen from
the temperature dependence shown below [Fig. 4(b)] the
peak at 106 cm−1 broadens and gains spectral weight in
the monoclinic phase in line with the expectance that
two modes overlap. The missing rhombohedral A4

g mode

corresponds to the monoclinic B5
g mode, which is likewise

absent in the spectra.
The temperature dependence of the observed phonons

is shown in Figs. 3 and 4. In the low-temperature rhom-
bohedral phase all four Eg modes as well as A1

g and

A2
g soften upon warming, whereas A3

g hardens up to
T ≈ 180 K before softening again. Crossing the first or-
der phase transition from R3̄ to C2/m crystal symmetry
is reflected in the spectra as a symmetry change and/or
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FIG. 2. (Colour online) (a) Compatibility relations for the
CrI3 layer and the crystal symmetries. Raman spectra of
(b) the low-temperature R3̄ and (c) the high-temperature
C2/m crystal structure measured in parallel (open squares)
and crossed (open circles) polarization configurations at 100 K
and 300 K, respectively. Red and blue solid lines represent fits
of Voigt profiles to the experimental data.

renormalization for the non-degenerate modes and lifting
of the degeneracy of the Eg modes as shown in Table II.
In our samples, this transition is observed at Ts ≈ 180 K.
The splitting of the Eg phonons into Ag and Bg modes
at the phase transition is sharp [Fig. 4]. The rhombohe-
dral A1

g and A3
g phonons show a jump in energy and a

small discontinuity in the line width at Ts [Fig. 3]. Our
spectra were taken during warming in multiple runs after
cooling to 100 K each time. We found that the temper-
ature dependence for the phonon modes obtained this
way was smooth in each phase. McGuire et al. [3, 20]
reported Ts in the range of 220 K, a coexistence of both
phases and a large thermal hysteresis. However, they also
noted that the first and second warming cycle showed
identical behaviour and only found a shift of the tran-
sition temperature to higher values for cooling cycles.
We therefore consider the difference between the reported
transition around 220 K and our Ts ≈ 180 K significant.
To some extent this difference may be attributed to lo-
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FIG. 3. (Colour online) Temperature dependence of the A1
g

and A3
g phonon modes of the rhombohedral structure and

the corresponding A2
g and A5

g modes of the monoclinic struc-
ture, respectively. (a,b) Raman spectra at temperatures as
indicated. The spectra are shifted for clarity. Solid red lines
represent Voigt profiles fitted to the data. (c,d) and (e,f) Tem-
perature dependence of the phonon energies and line widths,
respectively. Both modes show an abrupt change in energy
at the phase transition at 180 K.

cal heating by the laser. More importantly, we find no
signs of phase coexistence in the observed temperature
range. The spectra for the low-temperature and high-
temperature phases are distinctly different [Fig. 2] and
the Eg modes exhibit a clearly resolved splitting which
occurs abruptly at Ts. We performed measurements in
small temperature steps (see Figs. 3 and 4). This lim-
its the maximum temperature interval where the phase
coexistence could occur in our samples to approximately
5 K, much less than the roughly 30 to 80 K reported ear-
lier [3, 20]. We cannot exclude the possibility that a
small fraction of the low-temperature phase could still
co-exist with the high temperature phase over a wider
temperature range, whereby weak peaks corresponding
to the remains of the low-temperature R3̄ phase might
be hidden under the strong peaks of the C2/m phase.
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FIG. 4. (Colour online) Temperature dependence of the
rhombohedral A4

g and Eg modes. (a-c) Raman spectra in
parallel (open squares) and crossed (open circles) light polar-
izations at temperatures as indicated. The spectra are shifted
for clarity. Blue and red solid lines are fits of Voigt profiles to
the data. Two spectra were analysed simultaneously in two
scattering channels with the integrated intensity as the only
independent parameter. (d-f) Phonon energies obtained from
the Voigt profiles. Each Eg mode splits into an Ag and a Bg

mode above 180 K.

IV. CONCLUSION

We studied the lattice dynamics in single crystalline
CrI3 using Raman spectroscopy supported by numeri-
cal calculations. For both the low-temperature R3̄ and
the high-temperature C2/m phase, all except one of the
predicted phonon modes were identified and the calcu-
lated and experimental phonon energies were found to
be in good agreement. We determined that the symme-
try of the single CrI3 layers is p3̄1/m. Abrupt changes to
the spectra were found at the first-order phase transition
which was located at Ts ≈ 180 K, lower than in previous
studies. In contrast to the prior reports we found no sign
of phase coexistence over temperature ranges exceeding
5 K.
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FIG. A1. Raman-active phonons in CrI3 for (a) the monoclinic phase hosting Ag and Bg modes and for (b) the rhombohedral
phase hosting Ag and Eg modes. Blue and violet spheres denote Cr and I atoms, respectively. Solid lines represent primitive
unit cells. Arrow lengths are proportional to the square root of the inter-atomic forces. The given energies are calculated for
zero temperature.
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