Evidence of spin-phonon coupling in CrSiTe$_3$

A. Milosavljević, A. Šolajić, J. Pešić, Yu Liu (刘育), C. Petrovic, N. Lazarević, and Z. V. Popović

Phys. Rev. B 98, 104306 — Published 18 September 2018
DOI: 10.1103/PhysRevB.98.104306
Evidence of spin-phonon coupling in CrSiTe$_3$

A. Milosavljević,1 A. Šolajić,1 J. Pešić,1 Yu Liu (†),2 C. Petrović,2 N. Lazarević,1 and Z.V. Popović1,3

1Center for Solid State Physics and New Materials, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
2Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
3Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia
(Dated: August 27, 2018)

We present the Raman scattering results on layered semiconducting ferromagnetic compound CrSiTe$_3$. Four Raman active modes, predicted by symmetry, have been observed and assigned. The experimental results are supported by DFT calculations. The self-energies of the A_g^2 and the E_g^3 symmetry modes exhibit unconventional temperature evolution around 180 K. In addition, the doubly degenerate E_g^3 mode shows clear change of asymmetry in the same temperature region. The observed behaviour is consistent with the presence of the previously reported short-range magnetic order and the strong spin-phonon coupling.

I. INTRODUCTION

Trichalcogenides CrXTe$_3$ (X = Si, Ge) belong to a rare class of quasi - 2D semiconducting materials with a ferromagnetic order, band gap of 0.4 eV for Si and 0.7 eV for Ge compound, and Curie temperatures (T_C) of 32 and 61 K respectively [1–6]. Because of their layered structure, due to the van der Waals (vdW) bonding, they can be exfoliated to mono and few-layer nanosheets, which, together with their semiconducting and magnetic properties makes an ideal combination for applications in the optoelectronics and nano-spintronics [7–11]. This was further supported by the observation of giant resistivity modulation of CrGeTe$_3$-based devices [12].

From the X-ray diffraction study [1], it was revealed that CrSiTe$_3$ crystals are twined along c - axes, the thermal expansion is negative at low temperatures and thermal conductivity shows strong magnon-phonon scattering effects. A very small single ion anisotropy favoring magnetic order along c - axes and spin waves were found in CrSiTe$_3$ by elastic and inelastic neutron scattering [13]. Spin wave measurements suggest the absence of three dimensional correlations above T_C, whereas in-plane dynamic correlations are present up to 300 K. First-principles calculations suggested a possibility of graphene-like mechanical exfoliation for CrXTe$_3$ (X = Si, Ge) single crystals with conserved semiconducting and ferromagnetic properties [14]. The exfoliation of CrSiTe$_3$ bulk to a mono and few-layer 2D crystals onto Si/SiO$_2$ substrate has been achieved [15] with the resistivity between 80 K and 120 K, depending on the number of the layers. Critical exponents for CrSiTe$_3$ were also determined from theoretical analysis [16].

Spin-phonon coupling in CrGeTe$_3$ was investigated by Raman scattering experiments [17]. Splitting of the two lowest energy E_g modes in the ferromagnetic phase has been observed and ascribed to the time reversal symmetry breaking by the spin ordering. Further more the significant renormalisation of the three higher energy modes self-energies below T_C provided additional evidence for the spin-phonon coupling [17]. The external pressure induced effect on lattice dynamics and magnetization in CrGeTe$_3$ has also been studied [18].

Raman spectrum of CrSiTe$_3$ single crystal was reported in Ref. [1], where three Raman active modes have been observed. Similar results have also been presented in Ref. [15] for an ultrathin nanosheets of CrSiTe$_3$. Here, we report the Raman scattering study of CrSiTe$_3$ single crystals, with the main focus on phonon properties in the temperature range between 100 K and 300 K. Our experimental results were qualitatively different from those previously reported [1, 15], but consistent with the results obtained for CrGeTe$_3$ [17, 18]. Furthermore, our data revealed the asymmetry of the E_g^3 mode, which is suppressed at higher temperatures. A_g^2 and E_g^3 symmetry modes exhibit non-anharmonic self-energy temperature dependance in the region around 180 K, related to the strong spin-lattice interaction due to short range magnetic order [1]. Energies and symmetries of the observed Raman active modes are in good agreement with theoretical calculations.

II. EXPERIMENT AND NUMERICAL METHOD

Single crystals of CrSiTe$_3$ and CrGeTe$_3$ were grown as described previously [19]. For a Raman scattering experiment, Tri Vista 557 spectrometer was used in the backscattering micro-Raman configuration with a 1800/1800/2400 grooves/mm diffraction grating combination. Coherent Verdi G solid state laser with 532 nm line was used as an excitation source. Direction of an incident (scattered) light coincides with a crystallographic c - axes. Right before being placed in the vacuum, the samples were cleaved in the air. All the measurements were performed in the high vacuum (10^{-6} mbar) using a KONTI CryoVac continuous Helium flow cryostat with 0.5 mm thick window. Laser beam focusing was achieved through the microscope objective with $\times 50$ magnification, with a spot size of approximately 8 μm, and a power...
less then 2 mW on the surface of a sample. All the spectra were corrected for the Bose factor.

Density functional theory calculations were performed in the Quantum Espresso (QE) software package [21], using the PBE exchange-correlation functional [22], PAW pseudopotentials [23, 24] and energy cutoff for wavefunctions and the charge density of 85 Ry and 425 Ry, respectively. For \(k \)-point sampling, the Monkhorst-Pack scheme was used, with \(\Gamma \) centered \(8 \times 8 \times 8 \) grid. Optimization of the atomic positions in the unit cell was performed until the interatomic forces were minimized down to \(10^{-6} \text{Ry/\AA} \). In order to obtain the parameters accurately, treatment of the vdW interactions was included using the Grimme-D2 correction [25]. Phonon frequencies were calculated in \(\Gamma \) point within the linear response method implemented in QE. Calculated crystallographic properties obtained by relaxing the structures are in good agreement with XRD measurements [20]. Comparison between our, calculated, and experimental results is presented in Table I.

III. RESULTS AND DISCUSSION

A. Polarization dependence

\(\text{CrSiTe}_3 \) crystallizes in the rhombohedral crystal structure, described with \(R\bar{3} \) (\(C_{3i}^2 \)) [26]. Wyckoff positions of atoms, together with each site contribution to the phonons at \(\Gamma \) point and corresponding Raman tensors are given in Table II. Phonon mode distribution obtained by factor group analysis for \(R\bar{3} \) space group is as follows:

\[
\Gamma_{\text{Raman}} = 5A_g + 5E_g,
\Gamma_{\text{IR}} = 4A_u + 4E_u,
\Gamma_{\text{Acoustic}} = A_u + E_u.
\]

Since the plane of incidence is \(ab \) plane, where \(|a| = |b| \) (\(\angle (a, b) = 120^\circ \)), and direction of light propagation is along \(c \)-axes, from the selection rules, it is possible to observe all Raman active modes, i.e. five \(A_g \) modes and five doubly degenerate \(E_g \) modes. According to the Raman tensors presented in Table II \(A_g \) symmetry modes are observable only in the parallel polarization configuration, whereas \(E_g \) symmetry modes can be expected to appear for both, in parallel and cross polarization configuration.

The Raman spectra of \(\text{CrSiTe}_3 \) for two main linear polarization configurations, at 100 K are shown in Figure 1. Four peaks can be observed in the spectra at energies of 88.9 cm\(^{-1} \), 118.2 cm\(^{-1} \), 147.4 cm\(^{-1} \) and 217.2 cm\(^{-1} \). Since only the peak at 147.4 cm\(^{-1} \) vanishes in the cross polarization configuration, it corresponds to \(A_g \) symmetry mode. Other three modes appear in both parallel and cross polarization configuration, thereby can be assigned as \(E_g \) symmetry modes [Fig. 1].

In order to exclude the possibility that any of the observed features originate from the \(\text{TeO}_2 \) [17, 27], its Raman spectrum is also presented in a Fig. 1. It can be noted that no \(\text{TeO}_2 \) contribution is present in our \(\text{CrSiTe}_3 \) data. Furthermore, the observed \(\text{CrSiTe}_3 \) Raman spectra are also consistent with the \(\text{CrGeTe}_3 \) Raman spectra (see Inset of a Fig. 1), isostructural to \(\text{CrSiTe}_3 \). Five Raman active modes have been observed for \(\text{CrGeTe}_3 \), two \(A_g \) modes at 137.9 cm\(^{-1} \) and 296.6 cm\(^{-1} \), and three \(E_g \) modes at 83.5 cm\(^{-1} \), 112.2 cm\(^{-1} \) and 217.5 cm\(^{-1} \), in agreement with the previously published data [17, 18]. The main difference in the spectra of \(\text{CrSiTe}_3 \)
TABLE II. Top panel: The type of atoms, Wyckoff positions, each site’s contribution to the phonons in Γ point and corresponding Raman tensors for R\(^3\) space group of CrSiTe\(_3\). Bottom panel: Phonon symmetry, calculated optical phonon frequencies at 0 K and experimental values for Raman (at 100 K) and Infrared (at 110 K) [1] active phonons of CrSiTe\(_3\).

<table>
<thead>
<tr>
<th>Space group R(^3) (No. 148)</th>
<th>Irreducible representations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr, Si (6c)</td>
<td>(A_g + E_g + A_u + E_u)</td>
</tr>
<tr>
<td>Te (18f)</td>
<td>(3A_g + 3E_g + 3A_u + 3E_u)</td>
</tr>
</tbody>
</table>

Raman tensors

\[
A_g = \begin{pmatrix}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{pmatrix}, \quad E_g^1 = \begin{pmatrix}
e & d & c \\
d & -c & f \\
e & f & 0
\end{pmatrix}, \quad E_g^2 = \begin{pmatrix}
d & -c & -f \\
-c & -d & e \\
-f & e & 0
\end{pmatrix}
\]

<table>
<thead>
<tr>
<th>Sym.</th>
<th>Calc. (cm(^{-1}))</th>
<th>Exp. (cm(^{-1}))</th>
<th>Sym.</th>
<th>Calc. (cm(^{-1}))</th>
<th>Exp. (cm(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_g^1)</td>
<td>88.2</td>
<td>-</td>
<td>(A_u^1)</td>
<td>91.8</td>
<td>91.0</td>
</tr>
<tr>
<td>(E_g^1)</td>
<td>93.5</td>
<td>88.9</td>
<td>(E_u^1)</td>
<td>93.7</td>
<td>-</td>
</tr>
<tr>
<td>(E_g^2)</td>
<td>96.9</td>
<td>-</td>
<td>(E_u^2)</td>
<td>116.8</td>
<td>-</td>
</tr>
<tr>
<td>(E_g^3)</td>
<td>118.3</td>
<td>118.2</td>
<td>(E_u^3)</td>
<td>117.1</td>
<td>-</td>
</tr>
<tr>
<td>(A_g^2)</td>
<td>122.0</td>
<td>-</td>
<td>(A_u^3)</td>
<td>202.4</td>
<td>-</td>
</tr>
<tr>
<td>(A_g^3)</td>
<td>148.0</td>
<td>147.4</td>
<td>(E_u^4)</td>
<td>206.2</td>
<td>207.9</td>
</tr>
<tr>
<td>(A_g^4)</td>
<td>208.7</td>
<td>-</td>
<td>(A_u^4)</td>
<td>243.7</td>
<td>-</td>
</tr>
<tr>
<td>(E_g^4)</td>
<td>219.5</td>
<td>217.2</td>
<td>(E_u^5)</td>
<td>365.8</td>
<td>370.4</td>
</tr>
<tr>
<td>(A_g^5)</td>
<td>508.8</td>
<td>-</td>
<td>(E_u^5)</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Fig. 2. (Color online) (a) The \(E_g^3\) mode Raman spectra of CrSiTe\(_3\) at four different temperatures measured in cross polarization configuration. Blue lines represent line shape obtained as a convolution of Fano line shape and Gaussian, calculated to fit the experimental data. Temperature dependence of (b) energy, (c) linewidth and (d) Fano parameter \(q\) of the \(E_g^3\) mode. Red dashed line represent standard anharmonic behaviour [28, 29]. All the parameters show change in tendency around 180 K.

and CrGeTe\(_3\) arises from the change of mass and lattice parameters effects that are causing the peaks to shift.

Calculated and observed Raman active phonon energies are compiled in Table II together with the experimental energies of the infrared (IR) active phonons [1], and are found to be in good agreement. Displacement patterns of \(A_g\) and \(E_g\) symmetry modes are presented in the Fig. A1 of the Appendix.

B. Temperature dependence

After proper assignment of all the observed CrSiTe\(_3\) Raman active modes we proceeded with temperature evolution of their properties, focusing on the most prominent ones, \(E_g^3\) and \(A_g^3\). Figure 2(a) shows spectral region of doubly degenerate \(E_g^3\) mode at energy of 118.2 cm\(^{-1}\), at four different temperatures. Closer inspection of the 100 K spectra revealed clear asymmetry of the peak at the low energy side. The presence of defects may result in the appearance of the mode asymmetry [30], however, they would also contribute to the mode linewidth and, possibly, appearance of the phonons from the edge of the Brillouin zone in the Raman spectra [29]. Very narrow lines and absence of the additional features in the Raman spectra of CrSiTe\(_3\) do not support this scenario. The asymmetry may also arise when the phonon is coupled to a continuum [31]. Such coupling of the \(E_g^3\) phonon mode would result in a line shape given by the convolution of a Fano function and a Gaussian, the latter representing the resolution of the spectrometer [29]. Comparison between the Fano line shape convoluted with a Gaussian, the Voigt line shape and the experimental data at 100 K is presented in Figure A2 of the Appendix with the former yielding better agreement to the experimental data. Furthermore, it fully captures the \(E_g^3\) mode line shape at all temperatures under investigation [Fig. 2(a), Fig. A3].

Upon cooling the sample, the \(E_g^3\) mode energy hardens [Fig. 2(b)] with a very small discontinuity in the temperature range around 180 K. Down to the same temperature, the linewidth monotonically narrows in line with the standard anharmonic behaviour (red dashed line in
which, according to Ref. 1, persist up to 150 K and the strong spin-phonon coupling in CrSiTe$_3$. Similar behaviour of energy and linewidth, which differs from conventional anharmonic, as well as E_g mode Fano-type line shape, was recently reported in α-RuCl$_3$ and was interpreted as a consequence of the spin-phonon interaction [32].

Unlike the E_g^3 mode, no pronounced asymmetry was observed for the A_g^3 mode. As can be seen from Fig. 3 (b) and (c) both energy and linewidth of the A_g^3 mode showed similar change in tendency in the same region of temperatures as the E_g^3 mode, most likely due to the spin-phonon coupling.

IV. CONCLUSION

The lattice dynamics of CrSiTe$_3$, compound isostructural to CrGeTe$_3$, is presented. An A_g^3, and three E_g modes were observed and assigned. The experimental results are well supported by theoretical calculations. Temperature dependence of energies and linewidths of A_g^3 and E_g^3 modes, deviate from the conventional anharmonic model in the temperature range around 180 K. In addition, E_g^3 mode shows clear Fano resonance at lower temperatures. This is related to the previously reported short-range magnetic correlations at temperatures up to 150 K [1] and strong spin-phonon coupling.

ACKNOWLEDGEMENT

The work was supported by the Serbian Ministry of Education, Science and Technological Development under Projects III45018 and O1171005. DFT calculations were performed using computational resources at Johannes Kepler University, Linz, Austria. Work at Brookhaven is supported by the U.S. DOE under Contract No. DESC0012704. A.M. and N.L. conceived exp, performed exp., analyzed and discussed data, wrote paper; A.S. and J.P. calculated phonon energies, analyzed and discussed data, wrote paper; Y.L. and C.P. synthesized and characterized the samples; Z.V.P. analyzed and discussed data, wrote paper. All authors commented on the manuscript.

EIGENVECTORS OF RAMAN ACTIVE MODES

Figure A1 summarizes A_g and E_g symmetry modes displacement patterns of CrSiTe$_3$ single crystal ($R3$ space group). Arrow lengths are proportional to the square root of the inter-atomic forces.

ASYMMETRY OF THE E_{3g}^3 LINE

The peak at 118.2 cm$^{-1}$, that we assigned as E_{3g}^3 symmetry mode, at low temperatures shows a significant asymmetry towards lower energies. The possibility of additional defect induced features in Raman spectra can be excluded, since the modes are very narrow, suggesting high crystallinity of the sample. Also, the theoretical calculations do not predict additional Raman active modes in this energy region. On the other hand, coupling of the phonon mode to a continuum may result in an asymmetric lineshape described with Fano function. Due to the finite resolution of the spectrometer it has to be convoluted with a Gaussian ($\Gamma_G = 1$ cm$^{-1}$). In Fig. A2 we present the comparison of the line obtained as a convolution of the Fano line shape and a Gaussian (blue line), and a Voigt line shape (orange line) fitted to the experimental data. Whereas the Voigt lineshape deviates at the peak flanks, excellent agreement has been achieved for convolution of Fano line shape and a Gaussian.

FIG. A2. (Color online) The analysis of the E_{3g}^3 asymmetry. Measured data are shown as the black line. The blue solid line represents the line shape obtained as a convolution of the Fano line shape and a Gaussian whereas the orange line represents a Voigt line shape, both calculated to fit the experimental data. The Voigt profile deviates from the experimental data at the peak flanks.

E_{3g}^3 MODE TEMPERATURE DEPENDANCE

Figure A3 shows Raman spectra of CrSiTe$_3$ in the region of E_{3g}^3 mode in cross polarization configuration at various temperatures. Blue solid lines represent the convolution of Fano line shape and Gaussian fitted to the experimental data. The asymmetry is the most pronounced below 190 K. Above this temperature, the asymmetry is decreasing, and at high temperatures the peak recovers the fully symmetric line shape.
FIG. A3. (Color online) The E_g^3 mode Raman spectra of CrSiTe$_3$ at all temperatures measured in cross polarization configuration. Blue lines represent calculated spectra obtained as convolution of Fano lineshape and Gaussian.