
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Quantum-fluctuation-stabilized orthorhombic ferroelectric
ground state in lead-free piezoelectric (Ba,Ca)(Zr,Ti)O_{3}
Alireza Akbarzadeh, Kumar Brajesh, Yousra Nahas, Naveen Kumar, Sergei Prokhorenko,

Diptikanta Swain, Sergey Prosandeev, Raymond Walter, Igor Kornev, Jorge Íñiguez,
Brahim Dkhil, Rajeev Ranjan, and L. Bellaiche

Phys. Rev. B 98, 104101 — Published  4 September 2018
DOI: 10.1103/PhysRevB.98.104101

http://dx.doi.org/10.1103/PhysRevB.98.104101


Quantum-fluctuation-stabilized orthorhombic ferroelectric ground state

in lead-free piezoelectric (Ba,Ca)(Zr,Ti)O3

Alireza Akbarzadeh1, Kumar Brajesh2, Yousra Nahas1, Naveen Kumar2, Sergei

Prokhorenko1, Diptikanta Swain3, Sergey Prosandeev1,4, Raymond Walter1,
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Abstract

We numerically investigate the phase diagram of the giant-piezoelectric (1 − x)Ba(Zr0.2Ti0.8)O3–

x(Ba0.7Ca0.3)TiO3 system, treating the ions either as classical objects (via classical Monte-Carlo or CMC

simulations) or quantum mechanically (via Path-integral Quantum Monte-Carlo or PI-QMC simulations).

It is found that PI-QMC not only provides a better agreement with available experimental data for the

temperature-composition phase diagram but also leads to the existence of an orthorhombic ground state in

a narrow range of composition, unlike CMC that “only” yields ground states of rhombohedral or tetragonal

symmetry. X-ray powder diffraction experiments are further conducted at 20 K. They confirm the occur-

rence of a quantum-fluctuation-induced orthorhombic state for some compositions and therefore validate

the PI-QMC prediction. The role of quantum effects on the local structure, such as the annihilation of a ho-

mogeneous rhombohedral system in favor of an inhomogeneous mixing of orthorhombic and rhombohedral

clusters, is also documented and discussed.

PACS numbers: 02.70.Ss, 77.80.bg, 61.05.C-, 81.30.Bx, 77.84.Lf
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I. INTRODUCTION

Ever since its discovery in 2009, the extraordinary piezoelectric response (d33 ≃ 600 pC/N) of

(1 − x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 solid solutions (to be denoted as BCTZ−x in the fol-

lowing) has attracted a lot of attention among the few lead-free alternatives (see, e.g., Refs. [1–7]

and therein). While its non-toxicity offers promise for the design of eco-friendly piezoelectric-

based devices, which is in line with various international incentives8,9, the explanation of its re-

markable piezoeletric response at room temperature has remained a challenge. An important as-

pect of BCTZ−x is its temperature-versus-composition phase diagram since it can exhibit three

different ferroelectric phases (namely, tetragonal P4mm, orthorhombic Amm2 and rhombohedral

R3m) in addition to a paraelectric cubic state. This imparts certain characteristics to the system

such as phase convergence region, where different ferroelectric phases meet with the paraelec-

tric cubic state1 or even coexist inside the sample5,6. The large piezoelectric response at room

temperature is often associated with the proximity of a P4mm − Amm2 phase boundary to

this convergence region, resulting in reduced anisotropy energy, large polarization and enhanced

elastic softening4. A recent study also shows that the unique role of Ca in these systems lies

in significantly reducing the spontaneous lattice strain without compromising the spontaneous

polarization10.

While the existence of the Amm2 phase in a narrow temperature window around 300 K

has been recognized as an important factor in imparting large piezoelectric response for some

compositions (such as x=0.50) in this system7, there are still some questions surrounding this

orthorhombic Amm2 state. For example, if one extrapolates the experimental phase diagram of

BCTZ−x measured in Ref. [2] to low temperatures, the ever increasing (with composition) width

of the Amm2 phase region suggests this phase to be the ground state (i.e., the phase of lower en-

ergy at zero Kelvin) in a very wide concentration, namely 0.65 < x < 0.95. However, such latter

ground-state symmetry for such large compositional window is rather surprising, when recalling

that Amm2 has been invoked to be the ground state of some ferroelectric systems (e.g., for some

hydrostatic pressure in BaTiO3
11,12 and for some compositions in the Zr-lacking (Ba,Ca)TiO3

system where Fu et al.13 discovered the anomalous phase transition thanks to effects of quantum

fluctuations).

As a matter of fact, such fluctuations can, e.g., annihilate one polarization’s component of the
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rhombohedral R3m ( |Px| = |Py| = |Pz| ) state in favor of Amm2 (|Px| = |Py| 6= 0, |Pz| = 0).

Interestingly, we are not aware that quantum effects have ever been predicted or measured to be of

relevance in BCTZ−x. Moreover, if they do play a role in the stabilization of Amm2 as ground

state in these solid solutions, one may also wonder if they have any effect on the local (rather than

macroscopic) structure of (1−x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 too, especially in light of the

fact that Ref. [7] numerically found a correspondence between local structure and enhancement

of electromechanical properties.

The goal of this paper is to develop and use atomistic simulations, altogether with obtaining and

analyzing X-ray diffraction patterns, to investigate roles of quantum fluctuations on macroscopic

and microscopic properties of BCTZ−x. As we are going to see, these vibrations indeed result in

the stabilization of an orthorhombic Amm2 phase as the ground state of (1− x)Ba(Zr0.2Ti0.8)O3–

x(Ba0.7Ca0.3)TiO3, but only for a narrow range of compositions – as consistent with their quantum

nature (which plays a more important role only when the temperature is getting smaller). These

quantum fluctuations are also found to dramatically affect the local structure in this narrow com-

positional window, via the suppression of certain types of clusters in favor of clusters of other

symmetries.

This paper is organized as following: Section II provides details about the numerical and exper-

imental methods used here. Sections III and IV reports and gives further insight into our results,

respectively. Finally, a conclusion is given in Section V.

II. METHODOLOGY

A. Effective Hamiltonian

Regarding the numerical method we developed and used here, we first select two different

x compositions, namely x=0.50 and 0.40, for BCTZ−x solid solutions. An effective Hamilto-

nian (Heff ) is built for both of these concentrations, adopting the virtual crystal approximation

(VCA)14,15. In other words, we mimic 〈A〉〈B〉O3 simple systems, for which the virtual 〈A〉 atom

involves a compositional average of Ba and Ca potentials (with, e.g., a 85% and 15% contribution,

respectively, for BCTZ−0.5) while the average 〈B〉 atom is built from a mixing of the Zr and Ti
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potentials (with, e.g., a 10% and 90% contribution, respectively, for BCTZ−0.5)7.

As in Ref. [16], the degrees of freedom of this Heff are the local soft mode ui of each 5-atom

unit cell (which is proportional to the electric dipole moment of cell i), the homogeneous strain

tensor, and inhomogeneous-strain-related dimensionless displacements, {vi}. Technically, the

{ui}’s and {vi}’s are centered on the 〈B〉 and 〈A〉 sites, respectively. The analytical expression

of the total internal energy of this effective Hamiltonian is the one provided in Ref. [16] for pure

BaTiO3, and therefore contains a local-mode self-energy, a long-range dipole-dipole interaction,

a short-range interaction between soft modes, an elastic energy, and an interaction between the

local modes and local strains. Note that we further extended the local-mode self energy given in

Ref. [16] by including an isotropic sixth-order term (as we will see later this addition is essential

to be able to reproduce the entire phase diagram of BCTZ−x, that is for x ranging between 0 and

1). Thereby, the new local-mode self-energy is given by:

Eself =
∑

i

{κ2u
2

i + αu4

i + γ(u2

i,xu
2

i,y + u2

i,yu
2

i,z + u2

i,zu
2

i,x) + δu6

i } (1)

where the sum runs over all the 〈B〉 sites, and ui,k, with k = x, y, z are the Cartesian components

of ui in the orthonormal basis formed by the [100], [010] and [001] pseudo-cubic directions.

κ2, α and γ are parameters, that are in a first step determined, along with the other coefficients

of the effective Hamiltonian, by performing density functional theory (DFT) calculations within

the VCA approach15 on small 〈A〉〈B〉O3 cells (less than 20 atoms) to model BCTZ−0.5 and

BCTZ−0.4 (choosing and keeping δ=0 for these two systems).

This effective Hamiltonian7,14–17 is then employed in different kinds of Monte-Carlo (MC)

simulations: classical MC (CMC) and path integral quantum MC (PI-QMC)18,19. PI-QMC takes

into account the quantum-mechanical fluctuations of the atoms and thus yields, unlike CMC sim-

ulations, realistic results when such fluctuations are dominant over thermal vibrations. To mimic

quantum effects in PI-QMC, each five-atom cell interacts with its images at neighboring imagi-

nary times through a spring-like potential while all the five-atom cells interact with each other at

the same imaginary time through the internal potential given by the effective Hamiltonian. The

product TP, where T is the simulated temperature and P is the number of imaginary time slices

(also termed Trotter number), controls the accuracy of the PI-QMC calculation. In all our simu-

lations, we use TP ≈ 1200 to obtain sufficiently converged results. We start with P=1, i.e., CMC

simulations and then successively increase the Trotter number. For example at T=5K, the trotter
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number is increased as follows: 1→ 3 → 6 → 12 → 24 → 48 → 96 → 192.

Both CMC and PI-QMC simulations using the total energy of the effective Hamiltonian are

conducted on large supercells (of 12 × 12 × 12 dimensions) to mimic BCTZ−0.5 and BCTZ−0.4,

assuming that the δ parameter of Eq. (1) vanishes in these systems – as consistent with first-

principle calculations we performed. During the PI-QMC simulations, κ2 is adjusted in order to fit

the experimental value of the Curie temperature1,2,4 (since Heff techniques can underestimate the

paraelectric-to-ferroelectric transition temperature16,17) and γ is slightly varied to reproduce the

measured lowest transition temperature observed in Refs. 2 and 4 for BCTZ−x with x=0.5 and 0.4.

Having determined all the Heff parameters for these two latter compositions, we then extract

those for any composition ranging between 0 and 1 by simply linearly interpolating or extrapo-

lating the coefficients of the two compositions of 0.40 and 0.50. However, we also numerically

realized that one needs to further introduce finite values of the δ parameter of Eq. (1) in order to

be able to accurately describe the phase diagram for small or large compositions, likely because

these compositions are the ones that are further away from our initial choices of x = 0.5 and 0.4

and/or because such limiting compositions seem to exhibit a strong first-order transition between

paraelectric and ferroelectric phases. Practically, we varied and calibrated the parameter δ entering

such isotropic sixth-order term for four compositions, that are x = 0, 0.2, 0.8, and 1, so that the

Path-Integral quantum Monte-Carlo (PI-QMC) predictions are close to the available experimen-

tal values of the Curie transition temperature for all these compositions1,2. For instance, using a

value of δ = 0.2 for the composition of x = 1 leads to PI-QMC predicting a tetragonal–to–cubic

paraelectric transition temperature of 380 ± 5 K when heating the system versus 460 ± 5 K for

δ = 0, while the corresponding measured data is ≈391 K1. We then used a linear extrapolation

or interpolation to determine non-zero and positive values of δ for compositions x ≤ 0.33 and

x > 0.6 (while δ is chosen to be zero for compositions in-between).

The resulting set of all compositionally-dependent Heff parameters is then used in both the

CMC and PI-QMC simulations for BCTZ−x with x varying between 0 and 1 ((note that the

present κ2 parameters are about ≈ 4% lower than those used in Ref. [7], because we presently fit

our PI-QMC results to the measured Curie temperatures for x = 0.5 and 0.4 while Ref. [7] fitted

the CMC numerical data to these experimental Curie temperatures).

6



B. XRD measurements

We also decided to perform structural analysis to check the validity of our predictions. We syn-

thesized ceramic specimens of (1 − x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 with x = 0.70, 0.80,

0.82, 0.835, 0.845, 0.87 and 0.89 using the synthesis process reported before in Ref. [5]. To de-

termine the ground state structure of these compositions, we collected x-ray powder diffraction

data at 20 K using laboratory x-ray powder diffractometer (Cu-Kα1 radiation), and conducted a

Rietveld analysis using the Fullprof Software20. The monochromatic (Cu-Kα1) x-ray beam in

combination with the high resolution optics and rotating anode target ensured very high quality

diffraction data. The good resolution in combination with the excellent peak to background ratio

even at high angles enabled us to identify the characteristic peaks of the different phases (tetrag-

onal, orthorhombic and rhombohedral) in an unambiguous manner. This aspect is very important

to ensure, especially for identification of the orthorhombic and rhombohedral ferroelectric phases

in BaTiO3-based piezoelectrics as they exhibit almost similar pseudocubic lattice parameters6,21.

This makes the identification of the phases difficult, more so when they coexist.

III. RESULTS

A. Phase diagram: PIQMC vs. CMC

We employ such effective Hamiltonians to determine the phase stability as a function of tem-

perature for the entire composition space, i.e, 0 ≤ x ≤ 1, by analyzing the behavior of the

Cartesian components of the spontaneous polarization versus temperature. The results of these

analyses are shown in the phase diagram of Figure 1, both for the CMC and PI-QMC simulations.

Note that a phase diagram of BCTZ−x was also reported in a recent study by Nahas et al.7, but

only for compositions 0.25 ≤ x ≤ 0.65 and for CMC simulations.

Four structural phases occur in this phase diagram for both CMC and PI-QMC simulations:

one paraelectric cubic state of Pm3̄m symmetry at high temperature for any composition, and

three ferroelectric phases, namely tetragonal P4mm, orthorhombic Amm2, and rhombohedral

R3m. One can first see that the PI-QMC simulations provide lower transition temperatures than

CMC calculations, which is a feature that has been previously found in other systems and which is

also consistent with the fact that quantum effects tend to promote disorder and can even suppress
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ferroelectric phases in some materials (such as SrTiO3 or KTaO3)
18,19. For instance, for the com-

position of x = 0.5, PI-QMC (CMC) simulations lead to the following transition temperatures:

370 K (380 K) for Pm3̄m–to–P4mm; 300 K (320 K) for P4mm–to–Amm2; and 270 K (285 K)

for Amm2–to–R3m, respectively. The experimental data reported in Ref. [2] for these three ob-

served transitions are approximately 366 K, 301 K, and 272 K, respectively, which are therefore

all very close to the PI-QMC data, especially when realizing that the error bars on the calculated

transition temperatures are ± 5K.

Figure 1 also shows that, for compositions 0.0 ≤ x ≤ 0.33, CMC and PI-QMC computations

both predict a single paraelectric cubic–to–ferroelectric rhombohedral transition when heating

BCTZ−x, which is in line with observations too2,4– with, once again, the PI-QMC data agreeing

quantitatively well with the measurements. Moreover, results from CMC and PI-QMC in Fig. 1

further indicate that a cubic paraelectric–to–tetragonal ferroelectric transition occurs for compo-

sitions 0.34 ≤ x ≤ 1, from the lowest 355 ± 5 K (respectively, 370 ± 5 K) at x = 0.34 to the

highest 380 ± 5 K (respectively, 400 ± 5 K) at x = 1, as predicted in PI-QMC (respectively,

CMC) simulations and as consistent with experiments1,2,4. Note that, in the region extending from

x=0.34 to ≃ 0.37 and near temperatures of around 355 K and 370 K for the PI-QMC and CMC

simulations, respectively, the Pm3̄m, P4mm,Amm2 and R3m phases are all close to each other.

As shown by Fig. 1, the (composition, temperature) position of this specific area predicted by the

PI-QMC method is therefore rather close to the one observed by Liu et al.1 and that is centered

around (x ∼ 0.32, T ∼ 330 K), even if the existence of an orthorhombic phase was overlooked in

Ref. [1]for larger compositions (such as x = 0.4) before being observed by Keeble et al.2.

In addition and at low temperatures, CMC predicts the existence of rhombohedral and or-

thorhombic phases for compositions 0.37 ≤ x ≤ 0.917 with a rhombohedral ground state. In

contrast, PI-QMC simulations show that, at low temperatures, the ground state will become or-

thorhombic for compositions 0.83 < x < 0.86, and tetragonal for x ≥ 0.86. Such numerical

findings reveal that quantum fluctuations suppress the ferroelectric rhombohedral ground state

in favor of an orthorhombic one for x ranging between 0.83 and 0.86, and even suppress both

orthorhombic and rhombohedral states in favor of a tetragonal phase for concentration varying

between 0.86 and 0.917! As a result, the CMC simulations predict that a single paraelectric

cubic–to–ferroelectric tetragonal-transition exists when decreasing the temperature in BCTZ−x
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with x being larger than 0.917, while such single transition occurs for any x higher than 0.86 when

quantum effects are accounted for.

The importance of quantum effects in BCTZ−x at low temperature can be further asserted

from the fact depicted in Fig. 1 that the transition temperatures lower than, e.g., 160 K can be

very well fitted by the theoretical expression Tc ∝ (xc − x)1/β , where Tc is the Curie transition

temperature, x is the concentration, xc is the critical concentration, and the critical exponent β

is precisely 2 in the quantum limit22. Note that fitting by this formula also provides xc = 0.830

and 0.858 for the R3m–to–Amm2 and the Amm2–to–P4mm transitions, respectively, which are

very close to our aforementioned numerically determined two compositional values of ≃ 0.83 and

0.86 delimiting the orthorhombic ground state. Note also that Ref. [2] correctly guessed that the

orthorhombic Amm2 state can be the ground state of BCTZ−x but its assumed compositional

range of stability (that is between 0.65 ≤ x ≤ 0.95) is much larger than what we numerically find

here.

Such discrepancy relies on the fact that, unlike Ref. [13] in Zr-lacking (Ba,Ca)TiO3 system, the

authors of Ref. [2] probably did not realize that, most likely, an orthorhombic Amm2 phase can

only be the ground state of ferroelectric systems because of subtle quantum effects, which sug-

gests that its range of stability will be a narrow one. In fact, we are not aware that such quantum

effects, in general, and the existence of an orthorhombic ground state, in particular, have ever been

mentioned and measured in BCTZ−x.

B. Phase diagram: XRD measurements

In conformity with the phase diagram of Fig. 1, the XRD patterns for all the compositions

show tetragonal structure at room temperature. As mentioned earlier, to determine the ground

state we collected XRD data at 20 K. The best way to identify the rhombohedral and orthorhombic

distortions is by scrutinizing (visually!) the splitting of characteristic pseudocubic Bragg profiles

{h00}pc, {hh0}pc and {hhh}pc. For example, for a tetragonal distortion the {h00}pc is split into

two with certain characteristic intensity ratio, while the {hhh}pc is a singlet. The reverse is the case

for a rhombohedral distortion. Similarly, the orthorhombic distortion gives certain characteristic
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features in the diffraction pattern. Because of the weak distortion, the splitting of the {111}pc

and {200}pc profiles is not very clear. We therefore focused our attention on the higher order

profiles {222}pc and {400}pc. Although the intensity of these Bragg profiles are considerably

weaker than their corresponding lower order counterparts, still the peak to background ratio of the

data is sufficiently good. For example, the peak count of the {222}pc is 1300 and the background

is 50. For x = 0.89, the singlet nature of {222}pc and the doublet in the {400}pc confirm the

P4mm structure. As x decreases to 0.87, a weak shoulder appears on the left of the tetragonal

(400) peak, as seen in Fig. 2(e). This is a signature of the orthorhombic (O) phase. The same

feature can be seen for x down to 0.825 with slightly enhanced intensity of the O peak marked

in Fig. 2(d). Rietveld analysis, carried out for the entire diffraction pattern (20 - 120) confirmed

the P4mm + Amm2 phase coexistence of x = 0.87 and 0.825 (see Fig. 3(d)). As x decreases

to x = 0.82, not only the intensity of the O-peak (and also on the left of the O-peak) is further

enhanced, but also a weak hump appears (marked by R in Fig. 2(c)) in the {222}pc profile. The

intensity of the R peak increases considerably for x = 0.80. Concomitantly, the shape of {400}pc

is significantly altered due to appearance of a new peak (also marked by R) in between and almost

equidistant from the two tetragonal (004) and (400) peaks. We confirmed by Rietveld analysis that

the additional R peaks in x = 0.82 and 0.80 arise due to the rhombohedral R3m phase, see Fig.

3(c). The XRD patterns of x = 0.82 and 0.80 could be fitted satisfactorily with P4mm+Amm2+

R3m phase (note that the refined structural parameters of the three phases are given in Table I for

BCTZ−0.82). In contrast to x = 0.80, the {400}pc profile of x = 0.70 is a singlet, suggesting

the absence of the Amm2 and P4mm phases (see Fig. 2(a)). This is confirmed by Rietveld

analysis of this pattern by the single R3m phase, as shown in Fig. 3(a). Table II reports resulting

phase fraction of the different compositions at 20 K. Note that the tetragonal (P4mm) fraction

does not exist for x = 0.70 (the only phase is R3m for that composition), and then increases

with increasing x from 0.80 to 0.87, until it becomes the only phase for compositions above 0.89,

which is in line with the PI-QMC phase diagram of Fig. 1. The coexistence of the high temperature

P4mm and Amm2 phases at 20 K for x = 0.80 is likely due to kinetic factors which makes the

P4mm → Amm2 → R3m transitions very sluggish at low temperatures5. Ignoring the coexisting

metastable high-temperature ferroelectric phase(s), our experiments confirm that Amm2 is the

equilibrium state of BCTZ−x at 20 K in the composition interval 0.825 < x < 0.87 ( in other

words, one can decide that Amm2 should be the real ground state of BCTZ−x for compositions at

which it coexists only with the P4mm state because of the sluggish nature of the P4mm−Amm2
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transition, that is, without such sluggish character, P4mm would have completely transformed

into Amm2 when cooling down the samples). This is in remarkable agreement with our PI-QMC

prediction of the Amm2 ground state for the narrow composition range 0.83 < x < 0.86. Our

experimental analysis therefore supports our exciting discovery of quantum-fluctuation-stabilized

Amm2 ground state in this system.

IV. DISCUSSIONS AND FURTHER INSIGHTS

A. Fluctuation Analysis: Quantum vs. Thermal

Let us now concentrate on the composition of x = 0.845, for which the associated δ is 0.1225.

Figures 4 (a) and (b) report the averaged Cartesian components of the polarization, < Pk > (with

k = x, y, z being along the pseudo-cubic < 001 > axes), versus temperature, when heating

the system for that composition during the CMC and PI-QMC simulations, respectively. Note

that we typically run 200,000 Monte-Carlo (MC) sweeps, in order to accurately obtain transition

temperatures.

The CMC simulations predict three transitions (for which critical temperatures are calculated

within ±5 K variations) when heating the system from low to high temperatures, that are (1)

ferroelectric rhombohedral R3m, for which all components are finite and equal to each other, to

the ferroelectric orthorhombic Amm2, with < Pz >= 0 while < Px >=< Py > remain non-

zero, at ≃75 K; (2) Amm2–to–ferroelectric tetragonal P4mm at ≃115 K with < Px > being

the only finite Cartesian component of the polarization; and (3) tetragonal P4mm–to–Pm3̄m

paraelectric cubic, with < Px >=< Py >=< Pz >= 0 at ≃ 385 K. On the other hand, PI-

QMC simulations result in only two phase transitions, that are Amm2-to–P4mm around ≃65 K,

and and P4mm–to–Pm3̄m around 370 K. In other words, quantum effects not only push down

the P4mm–to–Pm3̄m transition temperature by around ≈15 K but also completely suppress the

rhombohedral phase.

Let us further investigate the roles of quantum mechanical fluctuations of the atoms for that

composition of x = 0.845, by calculating the contribution of thermal versus quantum fluctuations

for the polarization, as similar to what was done in Ref. [18]. Specifically, letting pk(i, s, t), with

k = x, y, z, representing the Cartesian component of the local dipole on lattice site i, imaginary

times (Trotter slices) s and Monte Carlo sweep t during the PI-QMC simulations, then thermal
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fluctuations can be obtained using:

(∆pthermal
k )2 =<< pk >2

s>>i,t (2)

whilte the total fluctuation is given by:

(∆ptotalk )2 =< p2k >i,s,t (3)

where bracket < ... > indicates the averages over Trotter number s, lattice sites i, and/or Monte

Carlo sweeps t. Note that we used here the last configuration of the Monte Carlo sweeps to

compute these fluctuations. Quantum fluctuations can then be obtained via the difference between

total and thermal fluctuations, that is:

(∆pQuantum
k )2 = (∆ptotalk )2 − (∆pthermal

k )2 (4)

Panels (a), (b), (c) of Figs. 5 show the square root of all these fluctuations (i.e., total, thermal

and quantum) for the x, y and z components of the local dipoles, respectively, after conversion

to have them in C/m2 units – that is, to render them in units of polarization rather than units

of electric dipoles. For any of such Cartesian components, the thermal and total fluctuations are

almost equal to each other above 370 K, that is in the cubic paraelectric state, implying that quan-

tum fluctuations are very small for these high temperatures. Moreover, when 65 ≤ T < 370 K,

that is when a tetragonal phase P4mm occurs with a polarization developing along the x-axis

(See Fig. 4(b)), ∆pthermal
x and ∆ptotalx (i.e., the thermal and total fluctuations of the local elec-

tric dipoles along the polarization axis) are still close to each other, and both increase when the

temperature decreases. On the other hand, ∆pthermal
y and ∆pthermal

z not only decrease meanwhile

but also begin to differ more and more from their corresponding total fluctuations. As a result,

quantum fluctuations of the electric dipoles along the two Cartesian axes being orthogonal to

the polarization direction become more significant as the temperature is reduced in the P4mm

state. At about 65 K, the x and y-components of the thermal fluctuations suddenly decrease and

increase when decreasing the temperature, respectively, in order to become equal to each other

for temperatures below 65 K – which is the region for which the ground state is orthorhombic

Amm2 and has a polarization lying along the pseudo-cubic [110] direction, as shown in Fig. 4(b).

Note that ∆pthermal
x and ∆pthermal

y are much larger than ∆pQuantum
x and ∆pQuantum

y , respectively,

in that Amm2 state, therefore indicating that quantum vibrations have relatively small effects on

local electric dipoles along the x and y-axes there. On the other hand, ∆pQuantum
z overcomes
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the thermal fluctuations along the (non-polar) z axis below 65K, with ∆P thermal
z even becoming

negligible as the system is further cooled down. In other words, quantum fluctuations are now the

dominant effect for the fluctuations of the z-component of the electric dipoles at low temperatures

– therefore explaining why the rhombohedral R3m phase is killed, in favor of the orthorhombic

Amm2 phase, by quantum effects in BCTZ-0.845. Note that, similarly, in incipient ferroelectrics

SrTiO3 and KTaO3, such overcome of quantum to thermal fluctuations have been shown to sup-

press the paraelectric–to–ferroelectric transition18,23, and that quantum fluctuations are dominant

there for temperatures lower than 100 K18,23,24.

Let us now focus on such fluctuations, but for different compositions at a fixed temperature of

5K, as shown in Figs 6(a)-(c) for concentrations 0.80 < x < 0.87 . One can see in that, for

0.80 ≤ x ≤ 0.83, the thermal fluctuations along x, y, z-axes are all equal to each other and

≈0.25 C/m2, while the quantum fluctuations are much smaller and about 0.1 C/m2. Such fea-

tures are consistent with the fact that the quantum vibrations are not strong enough to “kill” the

rhombohedral ground state for these compositions (see Figure 1). On the other hand, the thermal

fluctuations of the z−component of the electric dipoles suddenly decrease when the composition

passes through 0.83 and become rather negligible for 0.83 < x < 0.86, while its quantum fluctu-

ations slightly increase to become nearly identical to the total fluctuations meanwhile (note also

that the thermal fluctuations of the x− and y−components of the electric dipoles are still equal to

each other and larger not only than their corresponding values for 0.8 ≤ x ≤ 0.83 but also than

their quantum fluctuations when 0.83 < x < 0.86). Such striking behaviors are at the heart of the

quantum-induced suppression of the R3m state in favor of the Amm2 orthorhombic phase as the

ground state for these compositions 0.83 < x < 0.86. Similarly, for concentrations above 0.86,

the y-component of the electric dipoles, in addition to the z-component, also now wants to have

vanishing thermal fluctuations, that is to have its quantum fluctuations taking over for the total

fluctuations (while the thermal fluctuations of the x-component of the electric dipoles are enlarged

with respect to smaller compositions while continuing to be close to their total fluctuations). As a

result, quantum effects suppress both the orthorhombic and rhombohedral phases to make P4mm

the ground state for 0.86 < x < 0.917 (as consistent with Fig. 1).
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B. Cluster Analysis

Let us now further take advantage of our simulations in order to gain additional insights into

BCTZ−x, in general, and the consequence of quantum effects on properties of such system, in

particular. More precisely, we are interested to reveal how quantum vibrations can affect the lo-

cal structure of this compound, especially because specific features of local structure (namely, a

fragmented type of local structure and small strength of percolating clusters) have been previously

linked with the occurrence of large piezoelectricity in this compound7. For that, we determined

the percentage of dipoles belonging to clusters of tetragonal (T), Orthorhombic (O) and Rhombo-

hedral (R) symmetry, within which dipoles nearly all lie along < 001 >, < 110 > and < 111 >

pseudo-cubic directions, respectively.

Such cluster analysis is technically done using the Hoshen-Kopelman algorithm 25 for the sole

composition x = 0.845 (which falls in the middle of the stability range of the orthorhombic

ground state according to our PI-QMC simulations). Such analysis is reported in Figs. 7a and 7b

as a function of temperature below 80 K for CMC and PI-QMC computations, respectively. The

CMC simulations predict that (i) a percolating O cluster exists at 80 K inside which dipoles lie

along the polarization direction, and that constitutes ∼84% of the supercell; and (ii) for any tem-

perature smaller than 75 K, all dipoles belong to a single R cluster with phase fraction larger than

∼94%, therefore making the system quite homogeneous and adopting a rhombohedral R3m polar

state – as evidenced in the inset of Fig. 7(a) for the temperature of 60 K. On the other hand, the

analysis from PI-QMC simulations shows that: (1) for temperatures ranging between 70 and 80 K,

the tetragonal P4mm state exhibits almost 80% of its dipoles lying along the polarization direc-

tion and therefore belonging to a T cluster, but also possesses a non-negligible number (namely,

around 7%) of dipoles belonging to different types of O clusters (that is, O clusters for which the

dipoles are parallel to different < 110 > directions); (2) for temperatures ranging between 35 K

and 65 K, a mixture of a single type of O cluster (inside which dipoles are along a unique < 110 >

direction) and of two types of R clusters (having two different < 111 > directions, whose average

is precisely the polar axis of the single O cluster) also occurs, as shown in the inset of Fig. 7(b)

for the temperature of 60 K. However, the O cluster is now majoritary, i.e., it occupies at least

86%, therefore resulting in a macroscopic orthorhombic Amm2 state rather than R3m; and (3)

for temperatures smaller than 30 K, a single O cluster exists and fills up nearly all the supercell.

Comparing Figs. 7a and 7b, and their insets, therefore reveals that quantum effects have large
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implication on the local structure by, e.g., making the unique R cluster of the CMC simulations

transforming into a mixture of T and O clusters for temperatures between 70 and 75 K and to a

mixture of O and R clusters for temperatures between 35 K and 65 K within PIQMC simulations,

in particular, and rendering such local structure more inhomogeneous, in general.

Note that we also applied electric fields of different magnitude along a < 111 > pseudo-cubic

direction and computed, at 60K and for composition of 0.845, the resulting change of strain along

that direction in both the CMC (homogeneous rhombohedral state) and PIQMC (inhomogeneous

orthorhombic state) cases as shown in Figure 8. Piezoelectricity is then deduced from the slope

of the strain-versus-electric field curve, and is found to be much higher in the PIQMC situation

than in the CMC case (namely of the order of 81 pC/N in the former versus 6 pC/N in the latter).

As O phase is intermediate between the T and R phases, such fact is in line with the polarization

rotation mechanism, which is inherent to morphotropic boundaries of piezoelectric compositional

oxides26, in which piezoelectric properties are enhanced owing to a small energy difference be-

tween the local dipole positions along [001] and [111] directions. What we found here and what is

extremely important for the effect observed, piezoelectric properties of oxides can be further dras-

tically enhanced by melting large percolation domains to inhomogeneous local structures (which

rotate polarization in small polar clusters much easier than in large polar clusters27), as consistent

with recent work of Refs. [28 and 29].

V. CONCLUSION

In summary, two types of atomistic effective Hamiltonian simulations (namely, classical vs.

quantum-mechanical) are used to reveal that the quantum fluctuations of the atoms quantita-

tively, and also qualitatively, affect the phase diagram of BCTZ−x. These quantitative effects

are changes in the value of the transition temperatures. Then, examples of qualitative effects are

(1) the stabilization, via quantum fluctuations, of the Amm2 orthorhombic phase as the ground

state for a narrow compositional region; and (2) the modification of the local structure via the full

suppression of clusters of some symmetry in favor of clusters of other symmetries. Our simula-

tions results also emphasize on the importance of inhomogeneous local structures for enhancing

piezoelectricity thanks to quantum fluctuations. The existence of a low-temperature Amm2 state

for some compositions is experimentally confirmed thanks to the analysis of X-ray patterns we
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additionally conduct here. We thus hope that the present article offers a deeper knowledge of

lead-free giant-response piezoelectric materials as well as the role of quantum lattice-dynamical

effects at macroscopic and microscopic scales.
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Table’s and Figures’ Captions

FIG. 1. (color online): Temperature-versus-composition phase diagram of BCTZ−x, as predicted by

PIQMC (filled circles) and CMC (open circles). The predicted transition temperatures are extracted (within

a ± 5 K error bar) from the temperature evolution of polarization at fixed compositions. The solid blue lines

show the fit of some critical transition temperatures (being below 160 K) into TC ∝ (xc − x)1/2, where

xc is a critical composition. The dashed and dotted lines are to guide the eye, and the box emphasizes

the so-called phase convergence region (PCR). Note that experimental data of Refs. [1, 2, and 4] are also

indicated in this phase diagram via the use of filled blue triangles, open red squares and filled pink triangles,

respectively.

FIG. 2. (color online): X-ray (Cu-Kα1) powder diffraction profiles of pseudocubic {222}pc and {400}pc re-

flections of some BCTZ−x samples at 20 K. The R, O and T represent peaks exclusive to the rhombohedral,

orthorhombic and tetragonal phases, respectively.

FIG. 3. (color online): Rietveld fitted x-ray powder diffraction patterns at 20 K of (a) x = 0.70 fitted with

R3m, (b) x = 0.80 fitted with P4mm + Amm2, (c) x = 0.80 fitted with P4mm + Amm2 + R3m,

(d) x = 0.825 fitted with P4mm + R3m, (e) x = 0.825 fitted with P4mm + Amm2, and (f) x = 0.89

fitted with P4mm models. In each panel, the small open red circles correspond to observed pattern. The

calculated pattern is shown with continuous (black) lines. The vertical bars correspond to calculated Bragg

peak positions. The difference profile is shown at the bottom of the panel with continuous (blue) line. The

arrow in the inset of Panel (b) highlights the inadequacy of the P4mm+ Amm2 model to account for the

shoulder peak. Similarly, the arrow in the inset of panel (d) highlights the inadequacy of the P4mm+R3m

model to account for the hump corresponding to the “O” peak in Fig 2(d).

FIG. 4. (color online): Thermal evolution of the Cartesian components of the spontaneous polarization in

BCTZ-0.845 upon heating. Panels a and b show simulation results for CMC and PIQMC, respectively.
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TABLE I. X-ray powder diffraction refined structural parameters, thermal factor B(Å2), and agreement factors for annealed powder

0.18Ba(Ti0.8Zr0.2)O3–0.82(Ba0.7Ca0.3)TiO3 using Tetragonal(P4mm) + orthorhombic(Amm2) + Rhombohedral (R3m) phase coexistence models

at temperature 20 K.

Space group P4mm Amm2 R3m

Atoms x y z B(Å2) x y z B(Å2) x y z B(Å2)

Ba/Ca 0.000 0.000 0.000 0.44(3) 0.00 0.000 0.000 0.29(1) 0.000 0.000 0.000 0.76(6)

Ti/Zr 0.500 0.500 0.499(4) 0.49(6) 0.500 0.000 0.493(2) 0.47(4) 0.000 0.000 0.477(2) 0.17(1)

O1 0.500 0.500 0.016(0) 0.19(3) 0.000 0.000 0.583(3) 0.17(0) 0.312(0) 0.181(0) 0.653(5) 0.1(0)

O2 0.500 0.000 0.488(1) 0.25(0) 0.500 0.265(2) 0.288(6) 0.08(0)

a = 3.9508(0) Å a = 3.9596(2) Å a = 5.6204(1) Å

c = 4.0125(0) Å b = 5.6191(0) Å c = 6.9041(0) Å

c = 5.6352(3) Å

Agreement factors: Rp: 10.3 Rwp: 12.4 Rexp: 10.39 Chi2: 1.43

2
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TABLE II. Phase fractions (in %) of the different phases for different compositions of BCTZ−x at 20 K, as

extracted from Rietveld analysis on measured XRD spectra. The estimated phase fractions is within ± 5%

x composition P4mm Amm2 R3m

0.70 0 0 100

0.80 15 45 40

0.82 30 50 20

0.825 35 65 0

0.835 55 45 0

0.845 62 38 0

0.87 72 28 0

0.89 100 0 0

FIG. 5. (color online): Cartesian components of fluctuations of the local dipoles versus temperature in

BCTZ−0.845 upon heating, as predicted in PI-QMC simulations along the x, y, z− axes in panels (a), (b),

and (c), respectively.

FIG. 6. (color online): Cartesian components of fluctuations of the local dipoles versus composition at

T=5K as predicted in PI-QMC simulations, along the x, y, z− axes in panels (a), (b), and (c), respectively.

FIG. 7. (color online): Temperature dependency of the percentage of dipoles belong to R, O and T clusters

in BCTZ−x with x = 0.845, as predicted by CMC (panel (a)) and PIQMC (panel (b)) simulations. The

inset in panel (a) shows a 3D snapshot of local dipoles (purple arrows) at 60 K within CMC simulations,

and indicate a single R cluster. The inset of Panel (b) shows similar data at 60 K too, but for the PI-QMC

simulations. This last inset reveals the existence of single O cluster, inside which local dipoles are aligned

along [1 0 1] (orange arrows), as well as a small percentage of local dipoles (purple arrows) belonging to

two R clusters, namely for which the dipoles lie along [1 1 1] and [1 1̄ 1], respectively.
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FIG. 8. (color online): Strain in < 111 > basis, i.e., δl<111>, vs. magnitude of applied electric field

parallel to < 111 > direction, in PI-QMC and CMC, for composition x = 0.845 and at 60 K. Dashed

line is the linear fit into CMC results, while blue solid line is similar fit into PI-QMC simulations results.

Note that in case of PI-QMC for fields larger than 8× 106 V/m the system undergoes phase transition from

Amm2–to–R3m.
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