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The magnetic insulator a-RuCls is a promising candidate to realize Kitaev interactions on a quasi-
2D honeycomb lattice. We perform extensive susceptibility measurements on single crystals of a-
RuCls, including angle-dependence of the in-plane longitudinal and transverse susceptibilities, which
reveal a unidirectional anisotropy within the honeycomb plane. By comparing the experimental
results to a high-temperature expansion of a Kitaev-Heisenberg-I" spin Hamiltonian with bond-
anisotropy, we find excellent agreement with the observed phase shift and periodicity of the angle-
resolved susceptibilities. Within this model, we show that the pronounced difference between in-
plane and out-of-plane susceptibilities as well as the finite transverse susceptibility are rooted in
strong symmetric off-diagonal I" spin exchange. The I' couplings and relationships between other
terms in the model Hamiltonian are quantified by extracting relevant Curie-Weiss intercepts from

the experimental data.

Introduction. Quantum spin liquids are exotic states
of matter in which the formation of conventional long-
range order is avoided down to the lowest temperatures
due to strong quantum fluctuations [1, 2]. A number
of frustrated magnets are promising candidates to host
quantum spin liquid ground states [3], however both the
theoretical prediction and the experimental observation
of such spin liquids are notoriously difficult, since clear
identifying signatures are uncommon in the absence of
any order. A notable exception is the Kitaev honeycomb
model, a spin Hamiltonian with an exactly solvable spin
liquid ground state [4]. The exact solvability of the model
allows for the extraction of insights and details which can
be very difficult to determine for more generic systems
[5].

Consequently, there has been considerable effort over
the past several years to identify materials which realize
Kitaev spin exchange [5-11]. Potential manifestations
of the 2D Kitaev model are found in the layered honey-
comb magnetic insulators A3IrOs (A=Na, Li, Cu) [6, 12—
14] and a-RuCl; [15-18]. Kitaev interactions in these
systems are accompanied by more conventional spin ex-
change, leading to long-range magnetic order at low tem-
peratures [19-25] with the exception of CusIrOs which
exhibits a short-range magnetic order [14]. Despite the
rapidly increasing interest in these materials, the effec-
tive spin Hamiltonian that best captures the experimen-
tal results remains controversial - see discussion in [26]
and references therein.

A marked anisotropy between the magnetic suscepti-

bilities measured with a magnetic field applied parallel x|
or perpendicular y; to the honeycomb plane has been
reported in a-RuCls [21, 27, 28] and A,IrOsz [29, 30].
However, a systematic explanation for this phenomenon
in terms of microscopic exchange couplings has not yet
been given. Moreover, experimental results which involve
a magnetic field applied parallel to the honeycomb plane
depend on the in-plane angle of the applied field [31-
33]. Motivated by these observations, we perform exten-
sive susceptibility measurements on single crystals of a-
RuCls. The longitudinal and transverse susceptibilities
as a function of angle within the honeycomb plane are
compared to a high-temperature expansion of the mag-
netic susceptibility tensor for a bond-anisotropic Kitaev-
Heisenberg-I" model. Given the excellent agreement be-
tween the model and experimental results, we suggest
mechanisms for the observed anisotropies and extract
quantitative relationships between terms in the model
Hamiltonian.

Experimental details. Single crystals of a-RuCls were
prepared using a vapor transport technique [18], and
crystallographic directions were identified prior to sus-
ceptibility measurements via Laue diffraction. Angle-
resolved longitudinal and transverse magnetic suscepti-
bilities within the honeycomb plane, x|(¢) and Xﬁ(gﬁ))
respectively, were measured using commercial SQUID
magnetometers (Quantum Design) [34]. See Fig. 1 for
a definition of the in-plane angle ¢ and details of the
experimental setup. The raw transverse SQUID voltage
was corrected for uncompensated longitudinal moment,



Response

Il ab

1 ab

Il ab

transverse coil

longitudinal coil

FIG. 1. (a) Definition of the in-plane angle ¢, the three Ru-Ru
bonds B1, B2, and B2,, and notation for various measure-
ment configurations. For simplicity we adopt a trigonal no-
tation, in which the bonds are parallel to the (0,1,0), (1,0,0),
and (1,1,0) reciprocal lattice vectors, respectively. ¢ is the
angle between the measurement direction and (1,0,0). Sketch
of the geometry for in-plane angle-resolved susceptibility mea-
surements in (b) longitudinal SQUID coils and (c) transverse
SQUID coils. The axes along which the magnetic field B is
applied (black arrow) and the susceptibility is measured (red
arrow) are indicated. The angle dependence is mapped out as
the sample is rotated 360° about a fixed axis perpendicular
or parallel to B, respectively, yielding x| (¢) and Xﬁ(qﬁ). The
diagonal elements x** of the susceptibility tensor are deter-
mined in a standard longitudinal SQUID measurement while
the off-diagonal elements x‘”‘, are accessed in the transverse
geometry.

arising due to displacement from the precise center of
rotation, before fitting to an appropriate response func-
tion to extract the transverse moment at each condition
[34, 35].

Oscillating susceptibility. Figure 2(a) shows the lon-
gitudinal susceptibility of an a-RuCl; single crystal as
the direction of the magnetic field varies within the ab
plane (see Fig. 1b). Clear oscillations in the magnitude
of the in-plane susceptibility x| (¢) with 7-periodicity are
observed both below and above the zigzag magnetic or-
dering transition at Ty ~ 7 K, suggesting that the ap-
pearance of in-plane magnetic anisotropy is not tied to
long-range order. The maxima (minima) of x| occur at
¢ = 60° and 240° (¢ = 150° and 330°), corresponding
to magnetic field parallel (perpendicular) to one of the
Ru-Ru bond directions. This inequivalent bond is re-
ferred to hereafter as B1 (Fig. 1la). Oscillations in x
with 7-periodicity persist for T' > Ty even as the mean
value x,, decays with the overall susceptibility at high
temperatures.
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FIG. 2. (a) Angle-resolved longitudinal susceptibility x| (¢)
of a single crystal of a-RuCls as the direction of magnetic field
(B =0.1T) is varied within the honeycomb plane shown at 2
K (blue), 10 K (green), 20 K (yellow) and 180 K (pink). ¢ is
the in-plane angle between a* and the measurement direction.
A diamagnetic contribution from the rotation stage is sub-
tracted from the presented data. (b) Theoretical oscillation
of x|/(¢) predicted for a bond-anisotropic Kitaev-Heisenberg-
I" model, see Eq. (4). (c) Angle-resolved transverse suscepti-
bility Xﬁ(qﬁ) of a single crystal of a-RuCls as a function of the
in-plane angle ¢ with B = 1 T applied perpendicular to the
ab plane. The 200 K data are scaled by a factor of 5 to facil-
itate viewing on the same axes. (d) Theoretical oscillation of
xﬁ(d)) resulting from Eq. (5). The location of the anisotropic
bond (B1) is marked on the upper horizontal axis.

Oscillations are also observed in the in-plane trans-
verse susceptibility xﬁ, where the magnetic field is ap-
plied along (0,0,1). Figure 2(c) shows the ¢-dependence
of Xﬁ as the crystal was rotated about a vertical axis coin-
ciding with the field direction. Both below and above T,
the susceptibility shows a well-defined oscillation about
zero with a 27 period. The absolute maxima (nodes) of
the oscillation occur perpendicular (parallel) to the in-
equivalent B1 bond at ¢ = 150° and 330° (¢ = 60° and
240°).

A number of space groups, distinguished primarily by
the stacking sequence of van der Waals-coupled honey-
comb layers, have been proposed for a-RuCls [36]. Most
recently, a structural transition from high-temperature
monoclinic C2/m to trigonal R3 was reported at T' ~ 150
K [37]. Our analysis below relies on a high-temperature
model expansion, and thus a quantitative comparison to
the model is made within the monoclinic phase. The
monoclinic structure of the sample for which data is
presented in Figs. 2-4 was confirmed directly by sin-
gle crystal neutron diffraction at 7' > 150 K using the
HB-3A beamline at the High Flux Isotope Reactor, Oak



Ridge National Laboratory (see Supplementary Informa-
tion (SI) [38]). The small inequivalence in one of the
Ru-Ru bond lengths [22] provides a natural explanation
for the observation of a unique magnetically easy direc-
tion. We note that the w-period oscillation observed at all
temperatures in this work, as well as in-plane anisotropy
reported in a recent THz study [32], appear to be in-
compatible with a low-temperature trigonal point group.
These results suggest a deviation from an ideal R3 struc-
ture, which may be related to strain induced at the struc-
tural transition.

Model and high-temperature expansion. To model the
observed behavior we consider a variant of an anisotropic
Kitaev-Heisenberg-I" Hamiltonian with nearest neighbor
Heisenberg exchange (J1), Kitaev interactions (K1), and
nearest neighbor symmetric off-diagonal spin exchange
(T'1). Inequivalent interactions Jj, Kj, and I} are as-
signed to the bond direction Bl giving a Hamiltonian of
the form H = Hgy + Hpa, + Hga,, where

Hgi= Y

Bl-bonds (ij)

(S8, + K| SES7 + T (S7SY+SYST) |
(1)
Hgpy, = Z

B2,-bonds (ij)

J18:S;+K1SFSE+T1(SYS:+S78Y)

(2)
and Hpy, follows from Hgy, by replacing z < y [39].
Note that the B1 bond is symmetry-inequivalent to the
two B2, bonds while Hpy, and Hpy, are related by a
spin rotation. Additional further neighbor couplings can
be straightforwardly included (which also applies to the
Js coupling which has been proposed to be sizeable [40]),
however here we restrict the analysis to nearest neighbor
couplings for simplicity of notation [41].

A high-temperature expansion of the full zero-field sus-
ceptibility tensor x** (u, i/ = x,y,z) of this model up
to terms ~ T2 yields

g2 0
2 x 2
’ N’BN 2 ‘LLBN
XH(T) = 9 TV
4kgT “ 4kgT)?
B 0 0 gg ( B )

92 (21 +J1+K) g2 929-T'1

X g:T} g2 (2J1+J1+ K1) 929-1'1
9:9-T1 9zg-T'1 92(2J1+J]+K7)

+0(T7?%), 3)

where N denotes the total number of spins (see SI Section
IT for the derivation of the expansion). Here we allow for
a g-factor anisotropy of the form g, = g, # g. due to
symmetry considerations. Projecting Eq. (3) onto an in-
plane direction yields an expression for the longitudinal

in-plane susceptibility x| (¢),

1 Txr A4 i Tz
X () = 5{4X +2x7 —2x" —4x

+ (X = X7 = 20"+ 2¢7) (— cos(29) + \/gsm(%))] '
(4)

The harmonic oscillation described by the term
—cos(2¢) + v/3sin(2¢) is illustrated in Fig. 2(b), which
reproduces the experimentally observed periodicity of
X|/(¢). Furthermore, the location of the extrema par-
allel and perpendicular to a Ru-Ru bond direction is in
agreement with the measured susceptibility.

The susceptibility tensor XW/ can likewise be projected
to yield an expression for the transverse in-plane suscep-

tibility Xﬁ (),

A (@) = 31%<—x”+x“—xmx“)(sin(qs)—ﬁ cos(8))
(5)

where the term sin(¢) — v/3 cos(¢) again reproduces the
measured oscillations, showing maxima (minima) at ¢ =
150° (330°) as well as zeros at 60° and 240°, see Fig.
2(c,d).

The results of Fig. 2 demonstrate that the anisotropic
nature of the susceptibilities in a-RuCls is captured well
by the bond-inequivalent Kitaev-Heisenberg-I" model de-
scribed in Egs. (1) and (2). Using the high-temperature
expansion in Eq. (3) and assuming an isotropic g-factor
9z = gy = ¢, which is close to the recently reported
value g, = gy = 1.1g. [42], a simple interpretation of
the observed oscillations and the in-plane/out-of-plane
anisotropy arises: The amplitude x4 — x— of the oscil-
lation in x(¢) (where x4 and x_ are the maxima and
minima of x(¢)) is proportional to the differences of the
couplings on the B1 and B2,-bonds,

X+ —xX— ~T?[K] — K1 +2(T') —T'y)] . (6)

The oscillation of the in-plane susceptibility is ex-
pected to vanish in the absence of bond anisotropies.
Furthermore, the difference x,, —x 1 (where x.,m = (x++
X—)/2 is the mean value of the in-plane oscillation) is
proportional to the off-diagonal exchange couplings I'y
and T,

Xm — XL ~ T 3T +2Iy) . (7)

That is, the observed anisotropy between in-plane and
out-of-plane susceptibility originates from symmetric off-
diagonal T' spin exchange. As discussed below, a small
g-factor anisotropy of the form g, = g, # g. generates
additional terms in these dependencies, however the over-
all trends remain unchanged.

As shown in Fig. 2, the experimentally observed oscil-
lations of x as a function of ¢, and the locations of their
extrema, persist over large temperature ranges. Figure
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FIG. 3. Temperature-dependent susceptibilities at fixed an-
gle, corrected for core diamagnetism [43]. (a) In-plane maxi-
mum and minimum longitudinal susceptibilities x4+ and x—.
(b) Out-of-plane longitudinal susceptibility x 1 and maximum
transverse in-plane susceptibility x%X. x4+, x—, and x% are
measured in the same crystal for which angle-resolved data
are shown. x_ is measured on a second sample with greater
thickness in the ¢ direction. (c¢) Differences x4+ — x— (blue
axis, left) and xm — x 1 (purple axis, right), where X, is the
mean longitudinal in-plane susceptibility, shown in the range
T = 150 — 330 K. Solid lines are a linear fit. (d) Inverse of
the temperature-dependent susceptibilities. x7 is plotted on
a different scale for clarity (green axis, right). Solid lines are
a fit to the Curie-Weiss law above the structural transition Ts
(grey region). The extraction of the small transverse signal
at high temperature leads to large systematic error > 250 K
(see text).

3(a),(b) shows the temperature dependence of the lon-
gitudinal susceptibility measured perpendicular to the
plane x (T) and at the locations of the in-plane extrema
X+(T) and x_(T), as well as the maximum transverse in-
plane susceptibility x} (7). The temperature-dependent
data were collected at fixed angle using standard, low-
background sample holders to avoid diamagnetic con-
tributions from the sample rotation stage. To confirm
the validity of the high-temperature model, the differ-
ences x4+ — X— and xm — x1 are shown in Fig. 3(c).
The data plotted against 7~2 show reasonable correspon-
dence with the linear behavior predicted by Eqn. (6) and
(7).

Curie-Weiss analysis and model parameters. The
good agreement between the ¢-dependence of the ex-

perimentally measured susceptibility and the high-
temperature expansion suggests a route to quantify the
relationships between various model parameters. Due to
symmetry considerations, the susceptibility tensor x““l
in Eq. (3) has four independent components x**, x**,
x*Y, x**, which allows the same number of exchange
couplings to be determined. Since a bond-isotropic Ki-
taev model does not break the cubic symmetry of the
interactions in spin space, it is generally impossible from
susceptibility alone to distinguish between Heisenberg in-
teractions J; and Kitaev exchange K; when fitting our
experimental data to the high-temperature expansion. A
possible set of linearly independent model parameters
that can be determined in a fitting procedure is given
by jl = 2J1 + J{ + Kl, AKl = K1 — Ki, Fl, Fll

Using the expansion in Eq. (3), the inverse of the
four susceptibility datasets shown in Fig. 3(a),(b)
can be brought into the form x=Y(T) ~ T — Tew +
O(T™1) yielding four Curie-Weiss temperatures Tcew . ,
Tewyt, Tow—, and TCTW +- These Curie-Weiss tem-
peratures can be expressed as linear combinations of
the model parameters. Defining the vectors Tocw =
(TCWL7 Tcw+, TCW—7 TgW+) and j = (Jl, AKl, Fl, Fll)
one finds J = kgMTcw, where M is a matrix which
depends on the ratio ¢,/g. (see SI Section II).

The components of Tow were determined by fitting
a linear Curie-Weiss behavior to the high-temperature
inverse susceptibilities x| ', X_T_l, x_!, and xf_‘l (Fig.
3d). The analysis is restricted to the high-temperature
region 175 K < T < 330 K away from the structural
transition at Ts ~150 K [37] that produces kinks in the
susceptibility curves. Fitting the longitudinal suscepti-
bilities yields Tewy = —216.4(3) K, Tcw+ = 39.6(2)
K, and Tew— = 32.6(3) K. At high temperatures, longi-
tudinal contamination in the transverse SQUID coils is
comparable to the intrinsic transverse signal, so that sep-
arating the two components introduces large errors (Fig.
3b,d). Therefore the Curie-Weiss fitting is performed
over a narrower temperature range of 175 K < T < 275
K to determine the intercept, T¢y, = 50(2) K. Based
on these Curie-Weiss temperatures and the reported g-
factor anisotropy of g, /g, = 1.1 [42] we obtain the model
parameters (J;, AK;,T'1,T}) = (14.3,-7.7,29.8,27.9)
meV.

Inelastic neutron scattering [18, 44-47] and most cal-
culations [26] place the magnetic exchange couplings for
a-RuCl; on the order of ~5 - 10 meV, although K; as
high as 16 meV [48] and recently 30 meV [49] have also
been proposed. The discrepancy in energy scale between
lower estimates and the couplings of up to 30 meV in
the model parameters determined above might be due
to the limited temperature ranges in which our Curie-
Weiss fits are performed. Despite the fact that our in-
verse susceptibility data are well described by a linear
behavior within our fitting range (see Fig. 3), shifting the
temperature intervals upwards might still improve the re-



sults. Indeed, it has been argued for a Kitaev-Heisenberg
model that depending on the precise fitting range, exper-
imentally determined Curie-Weiss temperatures need to
be rescaled by factors of 2 or larger to obtain the true
Curie-Weiss intercepts [50]. We speculate that such a
rescaling (which in the simplest case would apply to all
interactions in the same way) would lead to exchange
couplings with an overall size more consistent with other
methods. Independent of such considerations, we con-
clude that off-diagonal exchange I" and I plays a large
role in the susceptibility of a-RuCls, in line with grow-
ing theoretical recognition of the importance of the T’
term in the behavior of the system [23, 26|, including
the recent prediction of a quantum spin liquid ground
state in a Kitaev-I' model [51, 52]. Moreover, assuming
the aforementioned model parameters and mapping out
the classical phase diagram within Luttinger-Tisza as a
function of the remaining free parameters J1 and K1, we
indeed find the experimentally observed zigzag antifer-
romagnetic ground state in a large region of parameter
space (see [38] Section III and Fig. S2). We point out
that no longer-ranged interactions are necessary to sta-
bilize the zigzag ground state in the presence of the bond
anisotropies manifested in the measured oscillations of
the longitudinal susceptibility.

Conclusion. The mapping out of the susceptibility
tensor in single crystals of a-RuCl;s yields new insight
into possibilities for the correct Hamiltonian describing
the system. The phase shifts and periodicity of the ob-
served in-plane oscillations can be understood within a
bond-anisotropic spin Hamiltonian with substantial I" ex-
change. The agreement between the high-temperature
expansion of the theoretical model and the measured os-
cillating susceptibilities x| and x7T is remarkable, and
indicates that the amplitude of the oscillations of suscep-
tibility are proportional to the bond anisotropies in the
Kitaev and T" terms. Our analysis further reveals that the
marked easy-plane anisotropy in the system is a conse-
quence of significant symmetric off-diagonal I' exchange.
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