Dipolar-octupolar Ising antiferromagnetism in Sm$_2$Ti$_2$O$_7$: A moment fragmentation candidate
C. Mauws, A. M. Hallas, G. Sala, A. A. Aczel, P. M. Sarte, J. Gaudet, D. Ziat, J. A. Quilliam, J.
D. Gaulin, and C. R. Wiebe
Phys. Rev. B 98, 100401 — Published 5 September 2018
DOI: 10.1103/PhysRevB.98.100401
Dipolar-Octupolar Ising Antiferromagnetism in Sm$_2$Ti$_2$O$_7$: A Moment Fragmentation Candidate

C. Mauws,$^{1,2}$ A. M. Hallas,$^{3,4}$ G. Sala,$^5$ A. A. Aczel,$^5$ P. M. Sarte,$^6,7$ J. Gaudet,$^3$
D. Ziat,$^8$ J. A. Quilliam,$^9$ J. A. Lussier,$^3$ M. Bieringer,$^8$ H. D. Zhou,$^9,10$ A. Wildes,$^{11}$
M. B. Stone,$^5$ D. Abernathy,$^5$ G. M. Luke,$^{3,12,13}$ B. D. Gaulin,$^{3,12}$ and C. R. Wiebe$^{1,2,3,12}$

$^1$Department of Chemistry, University of Manitoba, Winnipeg R3T 2N2, Canada
$^2$Department of Chemistry, University of Winnipeg, Winnipeg R3B 2E9, Canada
$^3$Department of Physics and Astronomy, McMaster University, Hamilton L8S 4M1, Canada
$^4$Department of Physics and Astronomy and Rice Center for Quantum Materials, Rice University, Houston, TX, 77005 USA
$^5$Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
$^6$School of Chemistry, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
$^7$Centre for Science at Extreme Conditions, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
$^8$Institut Quantique and Département de Physique, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
$^9$Department of Physics and Astronomy, University of Tennessee-Knoxville, Knoxville 37996-1220, United States
$^{10}$National High Magnetic Field Laboratory, Florida State University, Tallahassee 32306-4005, United States
$^{11}$Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
$^{12}$Canadian Institute for Advanced Research, Toronto M5G 1M1, Canada
$^{13}$TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3

(Dated: August 20, 2018)

Over the past two decades, the magnetic ground states of all rare earth titanate pyrochlores have been extensively studied, with the exception of Sm$_2$Ti$_2$O$_7$. This is, in large part, due to the very high absorption cross-section of naturally-occurring samarium, which renders neutron scattering infeasible. To combat this, we have grown a large, isotopically-enriched single crystal of Sm$_2$Ti$_2$O$_7$.

Rare earth titanate pyrochlores of the form $R_2$Ti$_2$O$_7$ have long been a centerpiece in the study of geometrically-frustrated magnetism [1]. In this family of materials, the magnetism is carried by the $R^{3+}$ rare earth ions, which decorate a network of corner-sharing tetrahedra. The study of this family has led to the discovery of a range of fascinating ground states such as the dipolar spin ice state, rise to an all-in, all-out (AIAO) magnetic ground state in Sm$_2$Ti$_2$O$_7$. The AIAO structure is characterized by adjacent tetrahedra alternating between all spins pointing inwards and all spins pointing outwards (right inset of Fig. 1). Unlike the ferromagnetic spin ice state, the antiferromagnetic AIAO state does not give rise to a macroscopic degeneracy; placing a single spin as “in” or “out” is enough to uniquely constrain the orientations of all other spins on the lattice. A host of neodymium pyrochlores with varying non-magnetic $B$ sites also display the AIAO ground state, Nd$_2$B$_2$O$_7$ ($B$ = Sn, Zr, Hf) [6–9]. Nd$_2$Zr$_2$O$_7$ is a particularly interesting case as magnetic Bragg peaks from the AIAO structure and disordered, spin ice-like diffuse scattering coexist at low temperatures [10]. This exotic phenomenology has been termed moment fragmentation [11]. Recent theoretical work [12] has argued that the origin of this effect is the peculiar dipolar-octupolar symmetry of the Nd$^{3+}$ ground state doublet [7, 8]. When combined with an AIAO ground state, the symmetry properties...
of this dipolar-octupolar doublet allow the decoupling of the divergence-full (AIAO) and divergence-free (spin ice) fluctuations [12]. Here we use neutron spectroscopy to determine the dipolar-octupolar nature of the crystal field ground state doublet of Sm$_2$Ti$_2$O$_7$ and use neutron diffraction to show that it orders into an AIAO structure below $T_N = 0.35$ K. Muon spin relaxation measurements reveal persistent spin dynamics within the magnetically ordered state, down to 0.03 K. Thus, we demonstrate that Sm$_2$Ti$_2$O$_7$ possesses the requisite ingredients for moment fragmentation physics.

In contrast to the extensive studies that have been performed on the other magnetic titanate pyrochlores, $R_2$Ti$_2$O$_7$ ($R =$ Gd, Tb, Dy, Ho, Er, Yb), the magnetic properties of Sm$_2$Ti$_2$O$_7$ have remained largely unexplored. Prior studies of Sm$_2$Ti$_2$O$_7$ were limited to bulk property measurements in the paramagnetic regime, above 0.5 K, which revealed weak antiferromagnetic interactions ($\theta_{\text{CW}} = -0.26$ K) [13]. While the other above-mentioned titanate pyrochlores have been the subjects of a plethora of elastic and inelastic neutron scattering experiments, equivalent experiments on Sm$_2$Ti$_2$O$_7$ are daunting. The first reason is the size of the Sm$^{3+}$ magnetic moment; the Lande $g$-factor associated with the $4f^5$ electronic configuration is its smallest possible non-zero value ($g_J = \frac{2}{7}$), giving rise to small moments even in the absence of crystal field effects (which make the moment smaller still). This small magnetic moment represents a significant hindrance because scattered neutron intensity varies as the moment squared. Compounding this effect is that naturally-occurring samarium is a very strong neutron absorber due to the presence of $^{149}$Sm at the 13.9% level ($\sigma_{\text{abs}} = 42,000$ barns). Neutron scattering measurements of the type we report here are only possible with a sample isotopically-enriched with $^{154}$Sm ($\sigma_{\text{abs}} = 8.4$ barns). However, the neutron absorption cross section of $^{149}$Sm is so high that even trace amounts result in a sample that is still strongly absorbing by neutron scattering standards.

We grew a large single crystal of Sm$_2$Ti$_2$O$_7$ with the optical floating zone technique using 99.8% enriched $^{154}$Sm$_2$O$_3$ (Cambridge Isotopes). Low-temperature heat capacity measurements were performed using the quasiadiabatic technique. Neutron diffraction measurements were performed on the D7 polarized diffuse scattering spectrometer at the Institute Laue-Langevin and beam line HB-1A at the High Flux Isotope Reactor at Oak Ridge National Laboratory (ORNL). Inelastic neutron scattering measurements were performed on the ARCS [14] and SEQUOIA [15] spectrometers at the Spallation Neutron Source at ORNL. Muon spin relaxation measurements were carried out at TRIUMF. Further experimental details are provided in the Supplementary Materials [16].

The Hund’s rules ground state for Sm$^{3+}$ is $J = \frac{5}{2}$. Accordingly, in the reduced symmetry environment of the pyrochlore lattice, the $2J + 1 = 6$ states split into three Kramers’ doublets, one of which forms the crystal electric field (CEF) ground state. Inelastic neutron scattering (INS) measurements on Sm$_2$Ti$_2$O$_7$, which are presented in Fig. 1 and Fig. S2, show intense excitations at 16.3(5) meV and 70.0(5) meV corresponding to transitions to the excited CEF doublets. The lower energy excitation is consistent with one of the modes previously identified in Raman scattering experiments by Singh et al [13]. However, other modes observed in Raman scattering and originally attributed to additional CEF excitations are not visible in our INS data. Malkin et al. attempted to determine the crystal field parameters of Sm$_2$Ti$_2$O$_7$ by modeling magnetic susceptibility data [17]. This work predicts CEF levels at 21.4 and 26.4 meV, both of which are inconsistent with our INS data. It is worth noting that Sm$^{3+}$ has a rather atypical form factor, which rather than monotonically decreasing with $Q$ instead reaches its maximum value near 5 Å$^{-1}$. Both of the CEF transitions

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
$E_{\text{obs}}$ (meV) & $E_{\text{fit}}$ (meV) & $|\pm \frac{5}{2}|$ & $|\pm \frac{3}{2}|$ & $|\pm \frac{1}{2}|$
\hline
0.0 & 0.0 & 0 & 1 & 0
16.3(5) & 16.5 & 0 & 0 & 1
70.0(5) & 70.3 & 1 & 0 & 0
\hline
\end{tabular}
\caption{Result of the CEF analysis for Sm$_2$Ti$_2$O$_7$, calculated within a point charge model and then refined by fitting the two experimentally observed CEF excitations.}
\end{table}
An especially good starting point is Er$^{3+}$. This material has seven excited crystal field levels, all of which have a large total angular momentum. The magnetic moment within the ground state doublet where the maximum $m_J$ is 8, the Hund’s rules $J$ manifold is separated from the first excited spin-orbit manifold by $\lambda(J+1) \approx 500$ meV [19]. Incorporating this higher manifold into our analysis would require the introduction of four additional free parameters. This would result in an under constrained parameterization of the CEF Hamiltonian and thus, we have neglected it here. Further details of these calculations and the subsequent determination of the CEF eigenvalues and eigenvectors are presented in the Supplementary Material [16].

The CEF parameters that provide the best fit to our INS data for Sm$_2$Ti$_2$O$_7$ within a point charge approximation are: $B_{10} = 3.397$ meV, $B_{14} = 0.123$ meV, and $B_{13} = 8.28 \cdot 10^{-8}$ meV. Table I shows the resulting CEF eigenvectors and eigenvalues. Our refinement gives a ground-state doublet of pure $|m_J = \pm 3/2\rangle$ character. The three-fold rotational symmetry at the rare earth site implies that states within a time-reversal symmetry-paired Kramers doublet must be composed of $m_J$ basis states separated by three units. Accordingly, in our case where the maximum $m_J = 5/2$, it follows that the doublet composed of $|m_J = \pm 3/2\rangle$ cannot be coupled to any other basis state and is hence, necessarily pure. The symmetry nature of this doublet imparts it with an exotic character: while two components of the pseudospin transform like a magnetic dipole, the third component transforms as a component of the magnetic octupole tensor [20]. Thus, the ground state doublet in Sm$_2$Ti$_2$O$_7$ is termed a dipolar- octupolar doublet. This result distinguishes Sm$_2$Ti$_2$O$_7$ from other antiferromagnetic Kramers $R_2$Ti$_2$O$_7$ pyrochlores ($R =$ Er [21] and Yb [22]), which possess ground state doublets that transform simply as a magnetic dipole, effectively mimicking a true $S = 1/2$. Our refined $g$-tensor gives $g_\perp = 0.857(9)$ and $g_{xy} = 0.0$, corresponding to Ising anisotropy, where the spins point along their local [111] direction, which connects the vertices of the tetrahedron to its center (inset of Fig. 1). The magnetic moment within the ground state doublet of Sm$^{3+}$ is $\mu_{CEF} = 0.43(6) \mu_B$.

Finally, as originally discussed in Ref. [23], we can take advantage of the fact that extensive CEF studies have been performed on other rare earth titanate pyrochlores [21, 22, 24–27], allowing us to use scaling arguments. An especially good starting point is Er$^{3+}$ in Er$_2$Ti$_2$O$_7$, which has a large total angular momentum, $J = 15/2$. This material has seven excited crystal field levels, all of which were observed in a recent INS study, leading to a highly constrained CEF Hamiltonian [21]. Armed with these results, scaling arguments give us qualitatively good agreement with the known CEF manifolds for $R_2$Ti$_2$O$_7$ ($R =$ Ho, Tb, and Yb) [21]. When applied to Sm$_2$Ti$_2$O$_7$, these same scaling arguments predict the CEF ground state to be pure $|m_J = \pm 3/2\rangle$ with a large energy gap to the first excited state, consistent with our experimental determination.

We next turn to the low-temperature collective magnetic properties of Sm$_2$Ti$_2$O$_7$. The heat capacity of Sm$_2$Ti$_2$O$_7$, shown in Fig. 2(a), contains a lambda-like anomaly at $T_N = 0.35$ K, indicative of a second-order phase transition to a long-range magnetically ordered state. This ordering transition was not observed in previous studies as their characterization measurements did not extend below 0.5 K [13]. The low temperature region of the anomaly, below 0.3 K, is well-fit by a $T^3$ power law, consistent with gapless, three-dimensional antiferromagnetic spin waves. In order to compute the entropy release associated with this anomaly, we extrapolate the $T^3$ behavior to 0 K. Then, an integration of $C/T$ up to 1 K returns an entropy of $0.84 \cdot R \ln 2$, close to the fall $R \ln 2$ expected for a well-isolated Kramers doublet. Thus, a small fraction of the entropy release in this system may be taken place at temperatures above 1 K or some fraction of the moment may remain dynamic below $T_N$.

We used the D7 polarized neutron scattering spectrometer at the ILL to search for magnetic diffuse scattering.
in Sm$_2$Ti$_3$O$_7$. While none could be resolved above or below $T_N$, we did observe the formation of magnetic Bragg peaks at the (220) and (113) positions in the spin flip channel (Figure 3). The observed magnetic Bragg reflections were indexed against the possible $\vec{k} = 0$ ordered structures for the 16c Wyckoff position in the $Fd\bar{3}m$ pyrochlore lattice (Table II). The errors on the observed peak intensities are rather high due to the small magnetic signals ($\mu_{ord} \leq \mu_{CEF} = 0.43 \mu_B$) located on large nuclear Bragg peaks, the absorption from residual $^{149}$Sm, as well as the relatively poor $Q$-resolution of a diffuse scattering instrument. However, as can be seen by careful examination of Table II, the observed magnetic Bragg reflections nicely map onto the $\Gamma_3$ irreducible representation. All other representations can be ruled out by the absence of magnetic reflections at the (002) and (111) positions in the experimental data. $\Gamma_3$ corresponds to the AIAO magnetic structure (right inset of Fig 1), which is the expected result when Ising anisotropy is combined with net antiferromagnetic exchange interactions. The neutron order parameter, shown in Fig. 2, reveals a sharp onset below $T_N = 0.35$ K, fully-consistent with the anomaly observed in the heat capacity.

While the D7 data allowed a definitive determination of the magnetic structure of Sm$_2$Ti$_3$O$_7$, it is not appropriate for estimating the value of the ordered moment due to the coarse $Q$-resolution of the instrument. The triple axis spectrometer HB-1A, with its significantly-improved $Q$-resolution, was therefore used for this purpose. Since HB-1A uses an unpolarized neutron beam, magnetic intensity was only observed at the (220) Bragg peak position in this experiment, which corresponds to the strongest magnetic reflection expected for the AIAO magnetic structure but also a relatively weak nuclear Bragg peak. We determined the Sm$^{3+}$ ordered magnetic moment by comparing the ratio of the magnetic intensity to the nuclear intensity at this Bragg position. This procedure, which incorporated both the $j_0$ and $j_2$ spherical Bessel function contributions to the Sm$^{3+}$ magnetic form factor, yielded an ordered moment of $\mu_{ord} = 0.44(7) \mu_B$.

Last, we turn to zero-field muon spin relaxation ($\mu$SR) measurements on Sm$_2$Ti$_3$O$_7$, the results of which are presented in Fig. 4. The temperature-independent contribution from muons that land outside the sample has been subtracted, leaving only the sample asymmetry. At 1 K and above, the asymmetry is non-relaxing, indicating that the Sm$^{3+}$ moments are in a fast-fluctuating paramagnetic regime. Approaching $T_N$, the relaxation gradually increases, consistent with a critical slowing of the spin dynamics. Over the full temperature range, the asymmetry is well-described by a Gaussian relaxation, $A(t) = A_0 e^{-\lambda t^2}$, where $\lambda$ is the temperature-dependent relaxation rate. The fitted relaxation rates, which are weak at all temperatures, are plotted in the inset of Fig. 4 where we see the rate sharply increase at $T_N$ and then ultimately plateaus below 0.2 K.

In a small moment sample such as Sm$_2$Ti$_3$O$_7$, where the background relaxation is weak, one would expect to observe spontaneous oscillations in the asymmetry spectra below $T_N$. However, they are strikingly absent in our measurement. The Gaussian relaxation observed here, combined with the lack of oscillations in the asymmetry spectra below $T_N$, is reminiscent of recent $\mu$SR measurements on another Ising antiferromagnet, Nd$_2$Zr$_2$O$_7$ [28]. In that case, the Gaussian relaxation was attributed to strong spin fluctuations that coexist microscopically with AIAO magnetic order, which generates a dynamic local magnetic field at the muon sites below $T_N$. This coexistence is argued to arise from magnetic moment fragmentation, which had been demonstrated in Nd$_2$Zr$_2$O$_7$ via neutron scattering [8, 10]. More specifically, the INS

**TABLE II.** Bragg peak intensities for the possible $\vec{k} = 0$ magnetic structures for Sm$_2$Ti$_3$O$_7$. The best agreement is obtained with the $\Gamma_3$ all-in all-out structure.

<table>
<thead>
<tr>
<th></th>
<th>(111)</th>
<th>(002)</th>
<th>(220)</th>
<th>(113)</th>
<th>(004)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed</td>
<td>0.00</td>
<td>0.78±0.27</td>
<td>0.05±0.4</td>
<td>0.66±0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>$\Gamma_3$</td>
<td>0.00</td>
<td>1.00</td>
<td>0.35</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>$\Gamma_5$</td>
<td>0.88</td>
<td>0.00</td>
<td>0.11</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>$\Gamma_7$</td>
<td>0.52</td>
<td>1.00</td>
<td>0.44</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>$\Gamma_9$ [110]</td>
<td>0.69</td>
<td>1.00</td>
<td>0.43</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>$\Gamma_9$ [100]</td>
<td>0.06</td>
<td>0.37</td>
<td>0.44</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
data on Nd$_2$Zr$_2$O$_7$ revealed that the dynamic component of the ground state has a characteristic frequency on the order of $10^{10}$ Hz which is well within the $\mu$SR timescale. The persistent spin dynamics observed in our $\mu$SR spectra for Sm$_2$Ti$_2$O$_7$ could well arise from a similar origin. The absence of oscillations in an ordered state may also arise from a cancellation of the static dipolar field at the muon site from different ordered moments. However, this scenario is ruled out here by three simple observations: (1) there are no potential high-symmetry muon sites in the pyrochlore structure where the field could cancel by symmetry, (2) an oscillatory component has been observed in the $\mu$SR of another A1IO pyrochlore Nd$_2$Sn$_2$O$_7$ [6], where it is important to note that, unlike Nd$_2$Zr$_2$O$_7$, fragmentation physics has not been demonstrated and (3) Sm$_2$Ti$_2$O$_7$ is iso-structural with Nd$_2$Sn$_2$O$_7$ and therefore the muon stopping sites are expected to be very similar.

We have demonstrated that Sm$_2$Ti$_2$O$_7$ possesses all the requisite ingredients for moment fragmentation physics. Crystal field analysis of our neutron spectroscopy measurements confirms that Sm$_2$Ti$_2$O$_7$ has an Ising dipolar-octupolar crystal field ground state doublet. Through symmetry analysis of our neutron diffraction data, we find that Sm$_2$Ti$_2$O$_7$ orders into an all-in, all-out magnetic structure below $T_N = 0.35$ K, with an ordered moment of $\mu_{ord} = 0.44(7) \mu_B$. Muon spin relaxation measurements identify persistent spin dynamics to temperatures well-below $T_N$ and an absence of oscillations, consistent with a fragmentation scenario.

This research was supported by NSERC of Canada.

A portion of this research used resources at the High Flux Isotope Reactor and Spallation Neutron Source, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory. CRW thanks the Canada Research Chair program (Tier II). CM thanks the Manitoba Government for support through the MGS. JAQ acknowledges technical support from M. Lacerte and S. Portier and funding from FRQNT and CFREF. GS thanks J. Lin and A.T. Savici for useful discussions, and support in the analysis. HDZ acknowledges support from NSF DMR through Grant No. DMR-1350002.

---


See Supplementary Material [url] for further information on the crystal growth, experimental details, and the crystal field analysis. Works cited in the Supplementary Material are Refs. [18, 21, 23–29–35].


