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We study composite D-wave superconductors consisting of randomly oriented and randomly dis-
tributed superconducting droplets embedded into a matrix. In a certain range of parameters the
application of a small magnetic field enhances the superconductivity in these materials while larger
fields suppress superconductivity as usual in conventional superconductors. We investigate the mag-
netic field dependence of the superfluid density and the critical temperature of such superconductors.

In general, the superconducting order parameter is
a function of two coordinates and two spin indices
∆α,β(r, r′). Conventional low-Tc superconductors have a
singlet order parameter with s-wave symmetry which can
be described by a complex field ∆s(r) = ∆(r, r). Quali-
tatively, this describes the Bose condensation of Cooper
pairs into a zero orbital momentum state. The propa-
gation amplitude of a Cooper pair between two spatial
points can be written as a sum of positive partial ampli-
tudes corresponding to different Feynman paths. In the
presence of a magnetic field, these amplitudes acquire
phases and partially cancel one another. As a result,
s-wave superconductivity is suppressed by the magnetic
field. This qualitative picture is consistent with the cor-
responding solution of the Gorkov equations1.

Over the last decades a number of superconductors
have been discovered in which the order parameter
changes sign under rotation. The primary examples are
the high-Tc superconductors where the order parame-
ter has singlet d-wave symmetry (see e.g.2,3): ∆(r, r′)
changes sign under rotation by π/2, and consequently
∆(r, r) = 0. This means that the Fourier transform ∆(k)
changes sign under a π/2 rotation as well, as is shown
schematically in Fig. 1. Still the solution of the Gor’kov
equation in crystalline materials demonstrates that the
application of a magnetic field suppresses superconduc-
tivity.

In this article, we study the magnetic properties of
a composite of randomly shaped and randomly oriented
d-wave superconducting grains embedded in a metallic
matrix (see Fig. 1). In such systems, the nodes of the
order parameter ∆(k) are locked to the crystalline axes
of each grain. It is known that the macroscopic prop-
erties of such granular materials are distinct from both
s- and d-wave superconductors4–6. Below we show that
the application of a magnetic field enhances the super-
fluid stiffness Ns and the critical temperature Tc of such
materials in certain parameter regimes.

Granular composites are characterized by the follow-
ing lengths: the typical superconducting grain size R,

the inter-grain distance rG, the elastic electron mean
free path in the metal `, the zero-temperature coher-
ence length of the bulk superconductor ξ0, and the co-
herence length of the normal metal LT =

√
D/T . Here,

D = `vF /3 is the diffusion coefficient and vF is the Fermi
velocity in the metal.

In the regime where R, rG > ξ0, and the tempera-
ture T � T bc is smaller than the critical temperature of
the bulk superconductor, one can neglect the fluctuations
of the modulus of the order parameter and reduce the
Hamiltonian to that of a system of Josephson junctions,

H =
~
2e
<
∑
i6=j

Jije
i(θi−θj) (1)

Here, Jij is the Josephson coupling between grains i and
j, and θi is the phase of the order parameter in the i-th
grain. Generally, Jij are complex numbers; however, in
the absence of magnetic field they may be chosen real
but not necessarily positive.

Since in random media all spatial symmetries are bro-
ken, the anomalous Green function F (r, r′) is an admix-
ture of s, d and higher angular momentum components
of the spin singlet state. In the metallic matrix, at dis-
tances from the nearest grain greater than `, only the
singlet component survives. Thus, in the simplest case
where the inter-grain distance rG � `, the singlet com-
ponent controls the value of the Josephson couplings Jij .

In this diffusive regime and within the mean-field
approximation, the s-components of the normal G
and anomalous F Green functions satisfy the Usadel
equation8,

εFε −
D

2
∇̂
(
Gε∇̂Fε − Fε∇Gε

)
= 0 (2)

G2
ε + |Fε|2 = 1

where ∇̂ = ∇ + 2eiA is the covariant derivative, A is
the vector potential, and Fε(r) and Gε(r) are Fourier
transforms of the Matsubara Green functions F (r, r, (t−
t′)) and G(r, r, (t− t′)).
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FIG. 1. (Left) Pictorial representation of a D-wave superconducting grain and its normal-metallic environment. The grain,
colored grey, hosts a non-zero order parameter having the form indicated above the grain. The wavevector dependence of the
order parameter is represented by the red-and-blue rosette on the grain: red corresponds to ∆(k) > 0 and blue to ∆(k) < 0.
The shading outside the grain represents the sign of the anomalous Green function produced by the proximity effect: red is
again positive and blue negative. (Right) A granular D-wave superconductor sandwiched between two homogenous S-wave
superconductors, shaded grey. Each individual grain has a randomly oriented order parameter owing to the random orientation
of its crystalline axes. Γ1 and Γ2 indicate two directed paths across the granular system.

In the case where T � T bc , the size of the grain is larger
than ξ0 and the Andreev reflection from its boundary is
effective, the boundary conditions for Eq. (2) at the d-n
boundary have been derived in Ref.7. Since the relevant
energy for computing the Josephson coupling, ε ∼ D/r2

G,
is much smaller than the value of the order parameter
in the puddles, the boundary condition for F (r, ε) is in-
dependent of ε and depends only on the angle between
the unit vector parallel to the direction of a gap node n∆

and the unit vector, n(r), normal to the boundary at the
point r on the surface: F (ε, r) = f [(n∆ · n(r))2]. Here
f(x) is a smooth function, which grows from f(0) = 0 to
f(1) ∼ 1.

In the absence of magnetic field H, a typical spatial
distribution of the solution of Eq. (2) for the anomalous
Green function F (r, ε → 0) due to an isolated grain is
shown in Fig. 1. Red and blue colors are used to indicate
the regions where F (r, ε → 0) has positive and negative
signs, respectively. The lines where F = 0 will be of
particular interest to us.

At H = 0, the phase diagram of the system of d-wave
droplets embedded into a metal was studied in Refs.4–6 .
It has been shown that in the case where the droplets are
randomly oriented, the Josephson couplings Jij in Eq. 1
are real quantities which can be decomposed as

Jij = ηiηjI
(0)
ij + ηijI

(1)
ij (3)

Here

ηi = sign (

∫
si

F (r)dr) = ±1 (4)

and ηij are random signs and the integral in Eq. (4) is
taken over the surface si of grain i. The positive quanti-

ties I
(0),(1)
ij are randomly distributed on the scales

I
(0)
ij ∝

GD

R2

Rd

rdij
exp(−rij/LT ), I

(1)
ij ∝

R2

r2
ij

I
(0)
ij , (5)

where G is the conductance of a block of the metal of
linear size R. Note that the two terms in Eq. (3) have
different character. The first has its sign determined by
a product of quantities that depend on the properties of
each grain separately, roughly related to the shape of the
grains. Conversely, the sign of the second term is deter-
mined by a joint property of the pair of grains i and j (re-
lated to the relative orientation of their crystalline axes).
At large grain concentration where typically I(0) � I(1),
this problem is a version of the standard model of an
XY spin glass11, while in the opposite limit, the system
reduces to the well known Mattis model12.

In the presence of a magnetic field the Josephson cou-
plings Jij in Eq. (1) become complex. We can generally
represent the Josephson coupling at finite H by

Jij(H) = ±eiζij
∣∣Aij −Bijeiχij

∣∣Iij . (6)

Each factor requires some explanation. The overall scale
of the coupling is set by Iij and depends on rij/R, while
the sign depends on the specific arrangement of grains
i and j. Together, these factors should be thought of
as a rewriting of Eq. (3), with Iij the modulus and the

± the sign. In the limit rij � R, Iij maps onto I
(0)
ij

and the ± becomes ηiηj . In the limit rij � R, Iij maps

onto I
(1)
ij and the ± becomes ηij . The remaining factors

indicate the effects of a magnetic field. ζij = A(r) · rij ,
where rij is a vector connecting the centers of grains i and
j. The factor

∣∣Aij − Bijeiχij
∣∣ represents the geometry-

dependent proportionality constant from Eq. (3). Aij
captures the positive-weight diffusion paths and Bij the
negative-weight paths. χij = (HSij/Φ0), where Φ0 is
the flux quantum and Sij is the area associated with
the diffusion paths, which accounts for the relative phase
between positive and negative paths in the field.

We will show that the magnetic field corrections to
physical quantities of the system associated with Eq. (6)
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are asymptotically larger than H2 for small H. This is
the reason why we neglect the quadratic in H suppression
of Aij and Bij in Eq. (6).

The value of the area Sij in Eq. (6) is also random. Its
characteristic value S is not universal. For example, if
the diffusion coefficient on the metal in Eq. (2) does not
exhibit spatial fluctuations, S ∼ R2.

I. MAGNETOENHANCEMENT OF
SUPERCONDUCTIVITY IN ONE DIMENSION

To illustrate the physical origin of the magnetic field
enhancement of superconductivity let us first consider a
quasi-one-dimensional case where the droplets are em-
bedded into a metallic wire. In the absence of mag-
netic field the ground state of the system corresponds
to (θi − θj) = 0 if Jij > 0, and (θi − θj) = π if Jij < 0.
To calculate the macroscopic superfluid stiffness of the
system, 〈NS〉, we expand Eq. (1) up to quadratic terms
in θi − θj near the ground state. (We define the super-
fluid stiffness by the usual equation 〈j〉 = 〈Ns〉∇θ with
〈j〉 the current density coarse-grained on a macroscopic
scale.) As a result, we get the expression,

〈Ns(H)〉 = lim
L→∞

〈
L

(∑ 1

|Jij |

)−1
〉

= rG

[∫
p(|J |)
|J |

d|J |
]−1

(7)

where the sum is taken over neighbor grains, and L is the
length of the wire, and brackets 〈〉 represent averaging
over random distribution of Jij .

At H = 0, the probability density p(|Jij |) for the ran-
dom quantity |Jij | is finite at |Jij | = 0. As a result the
integral in Eq. (7) diverges logarithmically and the su-
perfluid stiffness is 0. Physically, this follows from the
presence of arbitrarily weak links in the long wire.

At H 6= 0, the cancellations which produce small |Jij |
are less effective because they must cancel in the complex
plane. The upshot is that p(|Jij | = 0) = 0 at finite H.
This cuts off the logarithmic divergence in Eq. (7) and
we obtain

〈Ns(H)〉 ∼ N
(0)
s

| log(φ2)|
. (8)

where N
(0)
s = 〈|Jij |〉, and φ = (HS/Φ0) is a dimension-

less measure of the characteristic flux between grains.
According to Eq. (8), the magnetic field enhancement of
the superfluid density is non-analytic, which justifies our
neglect of the quadratic in H corrections to Jij : physi-
cally, the magnetic field suppresses the density of weak
links in the long wire.

II. MAGNETOENHANCEMENT OF
SUPERCONDUCTIVITY IN d > 1 DIMENSIONS

In higher dimensions, the disordered D-wave composite
superconductor can be frustrated and form a supercon-
ducting glass. This complicates the theoretical analysis.
Below we discuss several cases where we can nonetheless
prove the existence of the magnetoenhancement of su-
perconductivity. The suppression of the probability for
small couplings |Jij | by a magnetic field is general and
independent of dimension although their effect on the
macroscropic superfluid density is dimension-dependent.
As we will show, in two and three dimensions the mag-
netoenhancement is smaller than in one dimension but
remains non-analytic in H (namely |H|). We accordingly
may neglect all quadratic and higher-order contributions.

A. Magnetoenhancement of superfluid stiffness in
the Mattis regime

If the typical intergrain distance is larger than their
size and the normal metal coherence length, rG � R,LT ,
the second term in Eq. (3) can be neglected. In the ab-
sence of magnetic field, the Hamiltonian Eq. (1) reduces
to a Mattis model, for which the random factors ηi can be
gauged out4–6 and accordingly in Eq. (6) the ± sign may
be taken positive. In this regime, the phases χij(H) and
ζij(H) play different roles. We will show that the factors
χij(H) inside the modulus in Eq. (6) lead to linear-in-|H|
enhancement of the superfluid stiffness, Ns(H), and crit-
ical temperature, Tc(H). On the other hand, the ζij(H)
phases produce quadratic in H corrections to physical
quantities and so we neglect them in the following anal-
ysis. Thus, in this section we take for Jij(H) the simpler
expression

Jij(H) =
∣∣Aij −Bijeiχij

∣∣J0e
−rij/LT . (9)

We take Aij + Bij = 1 with Aij uniformly distributed
in [0, 1] and χij uniformly distributed in [−π|φ|, π|φ|].
Finally, J0 is the characteristic energy scale of the non-
exponential front factors in Eq. (5). Neglecting the vari-
ation in J0 is a valid approximation because the disorder
in the front factors is subleading compared to that of the
exponent.

It is convenient to represent the Josephson couplings
in logarithmic variables,

Jij = J0 exp(−ξij), (10)

where ξij = ξ
(0)
ij + δξij with

ξ
(0)
ij = rij/LT , δξij = − ln

∣∣Aij −Bijeiχij
∣∣. (11)

This decomposition highlights that the distribution of

δξij is much narrower than that of ξ
(0)
ij in the rG � LT

limit.
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To calculate the superfluid stiffness of the system, Ns,
at H = 0, we expand the Mattis Hamiltonian, Eq. (1),
up to quadratic terms in θi. Calculating the superfluid
stiffness is then equivalent to calculating the macroscopic
conductance of a random resistor network where θi and
|Jij | are analogs of the voltage and conductances, respec-
tively. In the rG � LT regime, the |Jij | are broadly dis-
tributed and we can estimate Ns using percolation the-
ory, as is well known in the context of hopping conduc-
tivity9. In this approach, we consider switching on cou-
plings Jij from strongest to weakest, until at a critical
value Jc ≡ J0 exp(−ξc) the network of bonds percolates.
If the couplings are broadly distributed, then the super-
fluid stiffness Ns is essentially given by Jc, analogous to
the global conductance of a resistor network being set by
the bottleneck with lowest individual conductance. Ref. 9
gives a more detailed discussion.

In the zeroth approximation, where δξij = 0, we obtain

〈N (0)
s 〉 = J0r

2−d
G

(
LT

r
(0)
c

)ν
e
− r

(0)
c
LT (12)

where r
(0)
c ≡ LT ξ

(0)
c is the value of rij at which the net-

work percolates and ν is the exponent governing the cor-
relation radius of the percolating cluster (e.g., ν = 4/3
in 2d, ν ≈ 0.9 in 3d10). See Ref.9 (Sec. 5.6) for details.

To calculate the magnetic field correction to the su-
perfluid density we use the perturbation theory of per-
colation theory developed in Ref.9 (Sec. 8.3): The first
order correction δξc to the percolation threshold ξc for

typical δξij � ξ
(0)
c is given by the average perturbation,

δξc = 〈δξij〉. Thus,

δξc(H) = −
〈
ln
∣∣Aij −Bijeiχij

∣∣〉
= −

∫ πφ

−πφ

dχ

2πφ

∫ 1

0

dA ln
∣∣A− (1−A)eiχ

∣∣
∼ 1− π2

8
|φ| (13)

Thus the superfluid density, which is proportional to

exp(−ξ(0)
c − δξc(H)), is enhanced in small magnetic field

φ� 1:

〈∆Ns(H)〉
〈Ns(0)〉

≡ 〈Ns(H)〉 − 〈Ns(0)〉
〈Ns(0)〉

∼ π2

8

|H|S
Φ0

(14)

Note that Eq. (14) does not depend on any details of the

percolating cluster such as ν, ξ
(0)
c , or even dimensionality.

It depends only on having a non-zero probability density
for Jij = 0, which comes from the fact that the D-wave
order parameter changes sign as a function of momentum.

The perturbative treatment of the problem which leads
to Eq. (14) is valid when the relevant δξij � ξc. On
the other hand, as φ → 0, the main contribution to
Eqs. (13) and (14) come from inter-grain couplings with
|Aij − Bij | → 0 for which δξij diverges logarithmically.
The magnetic field suppresses the probability of such

 

FIG. 2. The numerical simulations of the Mattis regime are
carried out on a square lattice of superconducting grains with
random couplings Jij . Two large superconducting leads are
placed at either end, with θL = 0, θR = ∆θ, while the system
is periodic in the transverse direction.

events. This means that Eqs. (13) and (14) are valid
if φ > exp(−ξc). In the opposite limit, at very small
magnetic field, the correction to the superfluid stiffness
〈∆Ns(H)〉/〈Ns(0)〉 ∼ cφ2 > 0 is quadratic. However,
even in this regime, we expect the magnetic field correc-
tion to the stiffness is still positive. Indeed, at φc ∼ e−ξc
the linear and quadratic dependence should match. This
gives us an estimate for the coefficient,

c ∼ eξc � 1 (15)

On the other hand, the conventional negative contribu-
tions to the magnetic field dependence of the superfluid
density 〈∆Ns(H)〉/〈Ns(0)〉 ∼ −aφ2 with a coefficient a
of order 1. Therefore they are dominated by the magne-
toenhancement we discuss even for φ < φc ∼ e−ξc .

B. Numerical simulations of magnetoenhancement
in Mattis regime

In order to verify the applicability of the perturbative
analysis, we simulate the model of Eq. (1) numerically
in the Mattis regime. We carry out simulations on a
regular square lattice of L× L Josephson coupled grains
as in Fig. 2. At the two boundaries in x direction, the
system is put in contact with a large superconducting
reservoir at fixed phase, while the y direction is periodic.
Since each reservoir is modeled as a single site in contact
with all sites on the corresponding boundary, the system
has L2 + 2 sites.

In our simulations, we sample couplings according to
the form of Eq. (9) with ξij ≡ rij/LT ∈ [−W,W ] uni-
formly distributed (in units where J0 = 1). The pa-
rameter W thus represents the typical distance between
puddles, in units of LT .

To compute the enhancement in the superfluid stiffness
NS , as a function of the dimensionless magnetic flux φ,
we consider the change in energy due to a small phase
difference ∆θ (numerically, ∆θ = 1) applied between the
two reservoirs. To leading order, the phases θi at each



5

FIG. 3. Magnetoenhancement of superfluid stiffness in the
Mattis regime of a disordered Josephson network. Square
lattice of linear dimension L = 60 with N = 1000 samples
per data point; data for smaller sizes are indistinguishable.
(Main) Relative enhancement of superconductivity ∆NS/NS
as a function of dimensionless flux φ, for several disorder

strengths W . The line π2

8
|φ| is the perturbative prediction

of Eq. (14) which should hold at large W over the range
φc ∼ e−ξc < φ < O(1). At smaller fields φ, the crossover
to quadratic behavior is visible. The crossover point φc(W )
is marked by vertical ticks. Inset: Numerically extracted
crossover point φc as a function of W . The straight line fit
shows the exponential dependence expected at large W .

site i minimize the energy

H =
1

2

∑
ij

Jij(φ) (θi − θj)2
. (16)

We find the minimal energy H∗ using a quadratic op-
timization algorithm. The superfluid stiffness is simply
given by

NS ∝ H∗/∆θ2. (17)

We work at disorder strength 0 ≤ W ≤ 8 and average
each measurement of NS over N = 1000 random samples.

The main panel of Fig. 3 shows the dependence of the

relative increase of the superfluid stiffness ∆Ns(H)
Ns(0) with

φ, for several disorder strengths W . Two regimes are
clearly visible: for φ > φc ∼ e−ξc , the behavior is linear,
and matches the prediction from the perturbative treat-
ment of the percolation theory, ∆NS/NS = φπ2/8. For
φ � φc, however, the curves crossover toward quadratic
behavior, as expected.

The inset shows the dependence of the crossover point
φc, at which ∆NS becomes linear, on W . To extract the
crossover point numerically, we evaluate the derivative
with respect to φ of the data. Such derivative grows for
small φ, and then saturates to a finite value. We estimate
φc as the point at which the derivative stops growing.
The error bars indicate the spacing δφ between two con-
secutive values of φ. The inset compares the numerical

data to an exponential fit function φc ∝ exp(−pW ), with
p = 0.4± 0.1.

C. Magnetoenhancement of the critical
temperature in the Mattis regime

One can similarly estimate the change in Tc in a mag-
netic field. At the mean-field level, all couplings Jij
greater than T are “rigid”, so that the phase on the grains
connected by such couplings are locked. Therefore, the
critical temperature may be found by determining when
the set of rigid couplings defined by the condition

Tc(H) <
~
2e
|Jij | (18)

percolates.
A similar procedure has been applied previously to

calculate the critical temperature of disordered ferro-
magnets14,15. The difference is that in the present case
ξc ≡ rc/LT depends on temperature so that Tc is deter-
mined by the equation

Tc =
~
2e
J0 exp (−rc/LTc

). (19)

In the absence of the δξij , rc = r
(0)
c independent of tem-

perature as previously discussed in Sec. II A. Including
the δξij then shifts rc/LT according to Eq. (13), thus the
equation determining Tc is written

Tc =
~
2e
J0 exp (−r(0)

c /LTc
− 1 +

π2

8

∣∣φ∣∣), (20)

Expanding with respect to small φ, we obtain

Tc(H)− Tc(0)

Tc(0)
∼ π2

4

LTc(0)

r
(0)
c

∣∣HS∣∣
Φ0

. (21)

The above analysis has a mean-field character in that
it neglects fluctuations of the phase between “rigid” cou-
plings. However, we expect the conclusions to be correct
in the strong-disorder limit (W � LT ), where all but a
vanishing fraction of couplings in the percolating network
are much stronger than the putative Tc. Indeed, the au-
thors of15 checked the validity of the percolation theory
via Monte Carlo simulations, and found that Tc is given
by Eq. (19) up to a factor of order 1.

The magnetoenhancement of Tc behaves analogously
to the magnetoenhancement of Ns. Namely, the linear
dependence on |H| applies for fields larger than the pre-
viously mentioned exponentially small cutoff φ > e−ξc .

III. MAGNETOENHANCEMENT IN THE
SUPERCONDUCTING GLASS REGIME AT

HIGH TEMPERATURE.

In the superconducting glass regime (rG . R), the
couplings Jij in Eq. (1) have random signs in the ab-
sence of magnetic field. The frustration this induces at
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low temperature makes this theoretical problem difficult.
As with spin glasses, most physical properties are out-
of-equilibrium and time-dependent. It is not even clear
how to define the superfluid density in general. There-
fore, in this section we restrict ourselves to the case of
high temperatures T � (~/2e)|Jij |, where the system is
in the normal state, and show that the superconducting
correlation function,

Akl =
〈
ei(θk−θl)

〉
= Tr

[
ei(θk−θl)

e−βH

Z

]
, (22)

is enhanced by a magnetic field. Here, H is given by
Eq. (1), β = 1/T and Z is the partition function.

This correlation function controls the critical current in
a junction composed of two s-wave bulk superconductors
forming a sandwich around a granular d-wave composite
(see Fig. 1) in the regime where the temperature is below
the critical temperature of the s-wave leads.

The sign of the coupling Jij in the glass regime de-
pends on the relative orientation of the order parameter
between the two grains. We model this dependence by in-
cluding a factor cos 2(Θi −Θj) in Eq. (6), where Θi is the
orientation of the positive node of the order parameter on
grain i. This factor respects the D-wave symmetry of the
grains: it retains its sign if either grain rotates by π and
changes sign if either grain rotates by π/2. Furthermore,

since the enhancement of the correlation function relies
on long-distance universal behavior, as discussed below,
we neglect the variation in all other quantities affecting
Jij for simplicity. This includes the relative phases χij
in Eq. (6). Thus we model the Josephson couplings as

Jij = J0 e
iζij cos 2

(
Θi −Θj

)
, (23)

where ζij = A(r) · rij and Θi is uniformly distributed in
[−π, π].

The standard high-temperature expansion of Eq. (22)
gives the correlation function as a sum over paths Γ from
grain k to grain l:

Akl =
∑

Γ

AΓ, AΓ ≡
∏
〈ij〉∈Γ

(π~β
2e

Jij
)
. (24)

The product over 〈ij〉 ∈ Γ runs over all links along path
Γ. Furthermore, since (~β/e)|Jij | � 1, the leading-order
terms in the path sum Eq. (24) correspond to directed
paths. See Fig. 1 for a qualitative example of such di-
rected paths. In the high-temperature regime, the cor-
relation function decays exponentially at large distance:
〈ln |Akl|〉 ∼ −r/Ξ(H).

It follows from Eq. (24) that

1

Ξ(H)
= ln

2e

π~βJ0
− lim
r→∞

1

r
ln
∣∣∣∑

Γ

∏
〈ij〉∈Γ

eiζij cos 2
(
Θi −Θj

)∣∣∣. (25)

We have evaluated Eq. (25) using numerical simulations
of this model on a 2D square lattice in a uniform perpen-
dicular magnetic field. The average change in correlation
length, E[Ξ(H)] − E[Ξ(0)], is plotted as a function of H
in Fig. 4. At low magnetic field, Ξ increases in a non-
analytic way:

Ξ(H)− Ξ(0)

Ξ(0)
∼
(

Ξ(0)2 |H|
Φ0

)α
, (26)

with α = 0.59 ± 0.03. This non-analyticity derives from
the statistics of directed paths in disordered media. Di-
rected path sums have a long history (see Ref.20 and ref-
erences therein), and it is well-known that the governing
exponents are universal. Different microscopic models for
the couplings, as long as they include fluctuations, give
the same long-distance behavior upon coarse-graining.
Thus we are justified in using the simple Eq. (23) for
Jij , and Eq. (26) holds.

Indeed, the model defined by Eqs. (23,24) belongs
to the same universality class as of that used to de-
scribe negative magnetoresistance in hopping conductiv-
ity16–19,21 so the exponents at small field are the same.
However, at short distances, the model Eq. (23) has much

more constructive interference than that in hopping con-
ductivity, because the sign of the paths going to grain
i are all correlated with the orientation θi. As a result,
at large field where the magnetic length becomes com-
parable to the “sign disordering length” of Eq. (24) at
H = 0, the magneto-correction to Θ becomes negative as
observed in Fig. 4.

IV. CONCLUSION

We have shown that in certain parametric regimes, the
application of a magnetic field leads to non-analytic en-
hancement of both superfluid stiffness and the critical
temperature in disordered composites of d-wave grains
embedded in a metallic matrix. Heuristically, the mag-
netoenhancement stems from the suppression of destruc-
tive interference between Cooper pairs carrying positive
and negative amplitudes in the absence of the field, al-
though the length scale on which this suppression takes
place varies between the cases we have considered.

Specifically, we have considered three cases where an-
alytic control is possible. First, in quasi-one-dimensional
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FIG. 4. The disorder-averaged change in correlation length
(in units of lattice spacing) as a function of magnetic field H
(in units of flux quantum per lattice plaquette). The sum in
Eq. (25) is evaluated between opposite corners of a 1000 ×
1000 square lattice. Data for smaller sizes are indistinguish-
able.

wires the macroscopic superfluid stiffness can be inverse
logarithmically enhanced from zero by the application of
the field. The strength of this effect follows from the sup-
pression of the density of weak nearest neighbor Joseph-
son couplings by the application of the field. Second,

in d > 1 where the inter-grain distance is much greater
than the typical grain size and normal metal coherence
length (rG � R,LT ) , frustration in the effective system
of Josephson couplings is suppressed and we find that
the superfluid stiffness Ns and critical temperature Tc
are both enhanced linearly in |H| by mapping onto per-
colation theory. Third, in the geometrically frustrated
regime (rG ∼ R) but at sufficiently high temperature
that the Josephson network is disordered, we find that
the superconducting correlation length is enhanced with
a non-trivial power law |H|α, α < 1.

We view our results as proof of principle for magne-
toenhancement of superconductivity. In all of the cases
we have presented, our analysis is possible because the
system is essentially unfrustrated at H = 0 and we can
neglect the effects of glassiness and metastability to lead-
ing order. It is an interesting future direction to treat the
intermediate, frustrated regimes of this problem directly
using more sophisticated numerical techniques.
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