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A massive Goldstone (MG) mode, often referred to as a Higgs amplitude mode, is a collective
excitation that arises in a system involving spontaneous breaking of a continuous symmetry, along
with a gapless Nambu-Goldstone mode. It has been known in the previous studies that a pure
amplitude MG mode emerges in superconductors if the dispersion of fermions exhibits the particle-
hole (p-h) symmetry. However, clear understanding of the relation between the symmetry of the
Hamiltonian and the MG modes has not been reached. Here we reveal the fundamental connection
between the discrete symmetry of the Hamiltonian and the emergence of pure amplitude MG modes.
To this end, we introduce nontrivial charge-conjugation (C), parity (P), and time-reversal (T )
operations that involve the swapping of pairs of wave vectors symmetrical with respect to the Fermi
surface. The product of CPT (or its permutations) represents an exact symmetry analogous to
the CPT theorem in the relativistic field theory. It is shown that a fermionic Hamiltonian with a
p-h symmetric dispersion exhibits the discrete symmetries under C, P , T , and CPT . We find that
in the superconducting ground state, T and P are spontaneously broken simultaneously with the
U(1) symmetry. Moreover, we rigorously show that amplitude and phase fluctuations of the gap
function are uncoupled due to the unbroken C. In the normal phase, the MG and NG modes become
degenerate, and they have opposite parity under T . Therefore, we conclude that the lifting of the
degeneracy in the superconducting phase and the resulting emergence of the pure amplitude MG
mode can be identified as a consequence of the the spontaneous breaking of T symmetry but not of
P or U(1).

I. INTRODUCTION

Massive Goldstone (MG) modes, often referred to as
Higgs amplitude modes, and Nambu-Goldstone (NG)
modes are ubiquitous in systems that involve sponta-
neous breaking of continuous symmetries1–4. In the sim-
plest U(1) symmetry breaking, the former induce ampli-
tude oscillation of a complex order parameter5 and the
latter induce phase oscillation. Whereas NG modes have
been studied in various condensed matter systems, MG
modes have evaded observations until recently with only
a few exceptions6–8.

Despite the increasing number of observations,
for example, in superconductors6,9–13, quantum spin
systems14–17, charge-density-wave materials8,18, and ul-
tracold atomic gases19–22, and theoretical studies23–32,
fundamental aspects of MG modes in condensed mat-
ter systems have not been fully understood, in contrast
to NG modes; spontaneous breaking of a continuous
symmetry does not guarantee emergence of MG modes,
while that of NG modes is ensured by the Goldstone
theorem2. For instance, whereas a MG mode appears in
a Bardeen-Cooper-Schrieffer (BCS) superconductor6,24,
it does not exist in a Bose-Einstein condensate (BEC)33,
despite the fact that both of the systems involve U(1)
symmetry breaking and furthermore one evolves contin-
uously to the other through the BCS-BEC crossover34–38.

Varma pointed out that the approximate particle-hole (p-
h) symmetry, i.e., the linearly approximated fermionic
dispersion ξk ≃ vF (k − kF ) (vF is the Fermi ve-
locity and kF is the Fermi wave number), results in
the effective Lorentz invariance of the time-dependent
Ginzburg-Landau equation in the weak-coupling BCS
limit, which yields the decoupled amplitude and phase
modes33. A pure amplitude MG mode also appears in
lattice systems if the energy bands exhibit the rigorous
p-h symmetry26,27.
It has been thus recognized in the previous studies

that a pure amplitude MG mode emerges in supercon-
ductors if the dispersion of fermions ξk exhibits the p-
h symmetry24–27,33. However, the p-h symmetry in the
context of the previous works refers to the character-
istic feature of the fermionic dispersion ξk that should
be distinguished from the symmetry of the Hamiltonian.
Meanwhile, clear understanding of the relation between
the symmetry of the Hamiltonian and MG modes has not
been reached.
In this paper, we reveal the fundamental connec-

tion between the discrete symmetry of the Hamilto-
nian and the emergence of pure amplitude MG modes.
We introduce three discrete operations for general non-
relativistic systems of fermions, which we refer to
“charge-conjugation” (C), “parity” (P), and “time-
reversal” (T ). The product of CPT (or its permutations)
represents an exact symmetry analogous to the CPT the-
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orem in the relativistic field theory39. We show that the
standard BCS Hamiltonian with a p-h symmetric disper-
sion is invariant under C, P , T , and CPT in addition to
the global U(1) gauge invariance. If the U(1) symmetry
is spontaneously broken in the superconducting ground
state, the symmetries under P and T are simultaneously
broken while the symmetry under C is unbroken. We rig-
orously show that amplitude and phase fluctuations of
the gap function are uncoupled due to the unbroken C.
The MG mode thus induces pure amplitude oscillations
of the gap function in a p-h symmetric system. It is also
shown that the MG and NGmodes reduce to the degener-
ate states in the normal phase due to the U(1) symmetry
and they have opposite parity under T . Therefore, the
lifting of the degeneracy in the superconducting phase
and the resulting emergence of the pure amplitude MG
mode can be identified as a consequence of the the spon-
taneous breaking of T symmetry but not of P or U(1).
Thus, the breaking of T proves to be responsible for the
emergence of the pure amplitude MG mode.
This paper is organized as follows: In Sec. II, we

present the model and introduce the pseudospin repre-
sentation. In Sec. III, we define the three discrete op-
erations C, T , and P to discuss the symmetries of the
Hamiltonian under the operations of C, T , P , and CPT .
In Sec. IV, we study the symmetry of the superconduct-
ing ground state. In Sec. V, we discuss collective modes
within the classical spin analysis. In Sec. VI, we give
a rigorous proof of the uncoupled amplitude and phase
fluctuations of the gap function in a p-h symmetric sys-
tem due to the unbroken C. In Sec. VII, we give a direct
demonstration of the relation between the emergence of
the pure amplitude MG mode and the spontaneously bro-
ken T symmetry. In Sec. VIII, we summarize. We set
~ = kB = 1 throughout the paper.

II. PSEUDOSPIN REPRESENTATION

We study for simplicity the reduced BCS
Hamiltonian40

H =
∑

k,s

ξkc
†
kscks − g

∑

k,k′

c†
k↑c

†
−k↓c−k′↓ck′↑, (1)

where c†
ks (cks) is the creation (annihilation) operator of

a fermion with momentum k and spin s (=↑, ↓), g(> 0)
denotes the attractive interaction between fermions, and
ξk = εk − µ is the kinetic energy of a fermion measured
from the chemical potential µ. For example, εk = k2/2m
in a continuous system (m is the mass of a fermion). We
do not specify the form of εk for generality of argument.
To discuss the symmetries of the Hamiltonian (1), it is

convenient to introduce the pseudospin representation41:

Sµk = 1
2
Ψ†

k
τµΨk (µ = x, y, z), where τ = (τx, τy, τz)

are Pauli matrices and Ψk = (ck↑, c
†
−k↓)

t is the Nambu

spinor42. Note that Szk is related to the fermion number

operator nks = c†
kscks by Szk = 1

2
(nk↑ +nk↓− 1). In the
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FIG. 1: Illustration of the wave vector k and the dispersion
−ξk in (a) a continuous system and (b) the 1D lattice at half-
filling (µ = 0). (c) k for the half-filled energy band in the
square lattice.

pseudospin language, the fermion vacuum is the spin-
down state (|0〉k = | ↓〉k) and the fully occupied state is

the spin-up state (c†
k↑c

†
−k↓|0〉k = |↑〉k).

The pseudospin representation of the Hamiltonian (1)
is given by

H =
∑

k

2ξkSzk − g
∑

k,k′

S⊥k · S⊥k′ , (2)

where S⊥k = (Sxk, Syk). The kinetic energy (interac-
tion) term is translated into the Zeeman (ferromagnetic
XY exchange) term in the pseudospin language. The ro-
tational symmetry of the Hamiltonian (2) in the xy-plane
represents the U(1) symmetry of Eq. (1) with respect to
the transformation Ψk → eiτzαΨk.

III. HIDDEN DISCRETE SYMMETRIES

In this section, we define three discrete transformations
for fermions and discuss the symmetry of the Hamilto-
nian (2) under those operations.

A. Charge-conjugation

Let us consider a unitary transformation for the
Nambu spinor43:

CΨkC = τxΨk, CΨ†
k
C = Ψ†

k
τx. (3)

Here, k is the mirror reflected wave vector of k with
respect to the Fermi surface, i.e., k and k are on the
opposite side of the Fermi surface and away from it with
the same minimum distance (see Figs. 1 (a)-(c)). For
example, k = (2kF − k)k/|k| in a continuous system.
Note that k = k if k is on the Fermi surface. Since C
transforms a particle (c†) into a hole (c) and vice versa,
it can be referred to as a “charge conjugation” operation.
C is specifically given by

C = F
∏

k

σxk, F =
∏

ξk>0

fk,k, (4)
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where σµk = 2Sµk. The operator fk,k swaps the state of
k and that of k: fk,k|ψ〉k|φ〉k = |φ〉k|ψ〉k. One can show

C† = C and C2 = 1 from Eq. (4).
The pseudospin operators are transformed by C as

CSµkC = (−1)δµ,x+1Sµk, CSµC = (−1)δµ,x+1Sµ, (5)

where Sµ =
∑

k
Sµk is the total spin. Equation (5) shows

that C consists of the π rotation of pseudospins about the
x-axis and the swapping of k and k.
Transforming Eq. (2) by C, we obtain

CHC =
∑

k

2(−ξk)Szk − g
∑

k,k′

S⊥k · S⊥k′ . (6)

Hence, CHC = H and equivalently [H, C] = 0, if the
fermion dispersion satisfies the condition

−ξk = ξk. (7)

Equation (7) indicates the invariance of the dispersion
ξk under the successive mirror reflections with respect to
ξ = 0 and k = kF (see Figs. 1 (a) and 1 (b)), which we
refer to particle-hole (p-h) symmetry in view of the fact
that the density of states N(ξ) =

∑

k
δ(ξ − ξk) is even if

Eq. (7) holds.
Figure 1(a) shows that, whereas ξk = k2/2m−µ is not

p-h symmetric, the linearized dispersion ξk ≃ vF (k−kF )
is p-h symmetric. Therefore, a continuous system has
an approximate p-h symmetry if the interaction is weak
enough. On the other hand, Fig. 1 (b) illustrates that
the tight-binding energy band in the d-dimensional cubic

lattice ξk = −2t
∑d

i=1 cos(ki) (t is the hopping matrix
element) exhibits a rigorous p-h symmetry at half-filling
(µ = 0).

B. Time-reversal

The “time-reversal” operation of the Nambu spinor
and the pseudospin operators are defined to be

T ΨkT
−1 = τyΨk, T Ψ†

k
T −1 = Ψ†

k
τy, (8)

T SµkT
−1 = −Sµk, T SµT

−1 = −Sµ. (9)

The time-reversal T can be written in the form

T = UTK, UT = F
∏

k

(−iσyk), (10)

where K is the complex conjugation operator and UT is
the unitary operator that rotates pseudospins π about
the y-axis and swaps k and k. From Eq. (9), the p-
h symmetric Hamiltonian that satisfies Eq. (7) is time-
reversal invariant T HT −1 = H. T reverses the time in
the Heisenberg representation as T Sµ(t)T

−1 = −Sµ(−t).
It is important to note that T represents “time-

reversal” in the pseudospin space, which is different from
the usual time-reversal operation discussed, for example,
in Ref. 44. Although the usual time-reversal symmetry
is not broken in s-wave superconductors44, T is sponta-
neously broken simultaneously with the U(1) symmetry
breaking as we shall show later.

C. Parity

The “parity” operation, denoted by P , is defined to be
the inversion of pseudospins in the xy-plane. It is equiva-
lent to the π rotation about the z-axis and therefore can
be represented as

P =
∏

k

σzk. (11)

It satisfies P† = P and P2 = 1. The transformation by
P is given as

PΨkP = τzΨk, PΨ†
k
P = Ψ†

k
τz , (12)

PSµkP = (−1)δµ,z+1Sµk, PSµP = (−1)δµ,z+1Sµ. (13)

The Hamiltonian (2) is invariant by P : PHP = H. Since
the π rotation in the xy-plane is an element of U(1), P
is trivially broken in the U(1) broken ground state.

D. CPT invariance

The transformation by the product Θ = CPT is given
as

ΘΨkΘ
−1 = iΨk, ΘΨ†

k
Θ−1 = −iΨ†

k
, (14)

ΘSµkΘ = (−1)δµ,y+1Sµk, ΘSµΘ = (−1)δµ,y+1Sµ. (15)

Using Eqs. (4), (10), and (11), we obtain Θ =
∏

k
(−1)·K

and thus ΘHΘ−1 = H. Since the Lagrangian L =
∑

k
iΨ†

k

∂
∂tΨk −H is transformed as ΘL(t)Θ−1 = L(−t),

the action is invariant and therefore CPT and all other
permutations of C, P , and T are exact symmetries anal-
ogous to the CPT invariance in relativistic systems39.

IV. SYMMETRY OF THE GROUND STATE

We study the symmetries of the superconducting
ground state focusing on that of a p-h symmetric sys-
tem. It is reasonable to expect that all the symme-
tries of the true ground state are realized in the BCS
wave function |Ψ〉 =

∏

k
(uk| ↓〉k + vk| ↑〉k). Here,

uk =
√

(1 + ξk/Ek)/2 and vk =
√

(1− ξk/Ek)/2. The
gap function is set positive real in the ground state with-
out loss of generality ∆0 = g

∑

k
〈c−k↓ck↑〉 = g〈Sx〉 > 0.

Ek =
√

ξ2
k
+∆2

0 is the dispersion of single-particle ex-
citations (bogolons). |Ψ〉 represents the ground state of
the mean-field (MF) Hamiltonian HMF = −

∑

k
H0

k
·Sk,

where Sk = (Sxk, Syk, Szk). The effective magnetic field
H0

k
= (2∆0, 0,−2ξk) lies in the xz-plane with the polar

angle ϕk (see Fig. 2 (b)), where sinϕk = ∆0/Ek and
cosϕk = −ξk/Ek. Note that ϕk = π − ϕk, if Eq. (7)
holds. The requirement that the average spin S0

k
= 〈Sk〉

is in parallel with H0
k

leads to the MF gap equation
1 = g

∑

k

1
2Ek

41.
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FIG. 2: Schematic illustration of the pseudospin distribution
Sk described by the BCS wave function |Ψ〉 for a positive real
gap function (a) as a function of k41 and (b) on the Bloch
sphere. (a) Spins rotate in the xz-plane from up to down
towards the positive x-direction as k increases from below to
above kF . (b) In a p-h symmetric system, Sk is the mirror
reflected image of Sk with respect to the xy-plane.

∆0−∆0

|Ψ̄〉 |Ψ〉

T ,P

FIG. 3: Schematic illustration of the double-well potential
for a real gap function and the spontaneous breaking of the
symmetries under T and P . The operation of either T or P
flips the sign of the gap function and transforms |Ψ〉 to |Ψ̄〉.

Figures 2(a) and 2(b) show the pseudospin configu-
ration of the superconducting ground state described by
|Ψ〉. The pseudospins smoothly rotate sidewise in the xz-
plane from up to down towards the positive x-direction
as k increases41. The spontaneous U(1) symmetry break-
ing with respect to the phase of the gap function sets the
direction of rotating spins projected in the xy-plane. In
a p-h symmetric system, Sk is the mirror reflected image
of Sk with respect to the xy-plane.
The symmetry under C is unbroken in the ground state

of a p-h symmetric system. In fact, using uk = vk and
vk = uk, the BCS wave function is shown to be parity
even (C|Ψ〉 = |Ψ〉) that reflects the invariance of the MF
Hamiltonian (CHMFC = HMF). As shown in Fig. 2, the
pseudospin configuration is indeed invariant under the π
rotation of spins about the x-axis followed by the swap-
ping of k and k. In contrast, the symmetries under T
and P are spontaneously broken accompanied with the
U(1) symmetry breaking. The operation of either T or
P flips the sign of the gap as

T HMFT
−1 = PHMFP = −

∑

k

H̄0
k · Sk = H̄MF, (16)

T |Ψ〉 = |Ψ̄〉, P|Ψ〉 =

{

∏

k

(−1)

}

· |Ψ̄〉. (17)

Figure 3 schematically illustrates the spontaneous break-

p-h symmetric p-h non-symmetric
Symmetry H |Ψ〉 H |Ψ〉

C X X × ×
T X × × ×
P X × X ×

Θ = CPT X X X X

U(1) X × X ×

TABLE I: Symmetry of the Hamiltonian H and the ground
state wave function |Ψ〉 for a p-h symmetric system (ξk =
−ξk) and a p-h non-symmetric system (ξk 6= −ξk). Xand ×
mean presence and absence of the symmetry, respectively.

ing of the symmetry under T and P and their opera-
tions on |Ψ〉. Hereafter, the overline represents the re-
placement ∆0 → −∆0, e.g., H̄

0
k
= (−2∆0, 0,−2ξk) and

|Ψ̄〉 =
∏

k
(uk| ↓〉k − vk| ↑〉k).

The symmetries of the Hamiltonian and the ground
state are compared between p-h symmetric and non-
symmetric systems in Table 1. It shows that the broken
symmetry of T and unbroken symmetry of C are charac-
teristic to a p-h symmetric system. Given the fact that a
pure amplitude MG mode arises only in a p-h symmetric
system as shown later, Table 1 implies that it results from
the broken T and C, which we reveal in the following.

V. COLLECTIVE MODES

We first discuss collective modes within the classical
spin analysis41 (Details are given in Appendix B). We
study dynamics of the pseudospins based on the MF
Hamiltonian H′

MF = −
∑

k
Hk · Sk. Here, the magnetic

field Hk = (2Re∆,−2Im∆,−2ξk) is self-consistently de-
termined by the gap function ∆ = g

∑

k
〈c−k↓ck↑〉 =

g(〈Sx〉 − i〈Sy〉), which is allowed to take complex val-
ues. The time evolution of Sk(t), which is treated as a
classical spin, is described by the equation of motion

dSk

dt
= Sk ×Hk. (18)

Introducing amplitude and phase fluctuations from the
ground state ∆ = (∆0+δ∆)eiδθ, one finds that spin fluc-
tuations in the x-direction induce amplitude fluctuations
δ∆ = gδSx and those in the y-direction induce phase
fluctuations δθ = −gδSy/∆0, where δSk = Sk(t) − S0

k
.

Linearizing Eq. (18) by fluctuations δ∆, δθ ∝ e−iωt, we
obtain

(1− 2gχxx(ω)) δ∆− 2gχxy(ω)∆0δθ = 0, (19)

2gχyx(ω)δ∆− (1− 2gχyy(ω))∆0δθ = 0, (20)

where χµν(ω) are the dynamical spin susceptibilities de-
fined as χµν(ω) = −i

∫∞

0
〈[Sν , Sµ(t)]〉e

−iωtdt (Sµ(t) is the
Heisenberg representation and 〈. . . 〉 denotes the aver-
age). For example, χxy represents the coupling of am-
plitude and phase, while χzx represents that of density



5

and amplitude. The susceptibilities are calculated as

χxx =
∑

k

ξ2
k

Ek(4E2
k
− ω2)

,χyy =
∑

k

Ek

4E2
k
− ω2

,(21)

χxy = −χyx =
iω

2

∑

k

ξk
Ek(4E2

k
− ω2)

. (22)

Using the MF gap equation, one finds that Eqs. (19)
and (20) have the NG mode solution (δθ 6= 0, δ∆ = 0)
with ω = 0. They also have a solution for a pure ampli-
tude mode (δ∆ 6= 0 and δθ = 0) with ω = 2∆0, if phase
and amplitude are uncoupled χxy(2∆0) = χyx(2∆0) = 0.
From Eq. (22), this leads to the condition

∑

k

1

Ekξk
=

∫

dξ
N(ξ)

ξ
√

ξ2 +∆2
0

= 0. (23)

Equation (23) is satisfied if N(ξ) is even. Thus, MG
mode arises as a pure amplitude mode in a p-h symmetric
system25.
The p-h symmetry also ensures fermion number con-

servation (δSz = 0)45. δSz is represented as

δSz = 2χzx(ω)δ∆+ 2χzy(ω)∆0δθ, (24)

where χs are given by

χzx =
∑

k

∆0ξk
Ek(4E2

k
− ω2)

,χzy =
∑

k

iω∆0/2

Ek(4E2
k
− ω2)

.(25)

The MG mode solution (δ∆ 6= 0, δθ = 0, and ω = 2∆0)
satisfies δSz = 0, if χzx(2∆0) = 0, which reduces to
Eq. (23). Hence, the MG mode does not induce density
fluctuation and indeed conserves total fermion number
N = 2Sz +

∑

k
1.

If the p-h symmetry is absent, due to χzx(ω) 6= 0 and
χzy(ω) 6= 0, Eq. (24) indicates that δ∆ and δθ must be
finite in order to satisfy δSz = 0. As a result, δ∆ is
inevitably coupled with δθ and therefore the MG mode
induces both amplitude and phase fluctuations. The en-
ergy of the MG mode becomes greater than 2∆0

26,27.

VI. RIGOROUS PROOF OF χxy = χzx = 0

The arguments in the last section are based on the
MF approximation restricted to zero temperature (T =
0). We rigorously show that amplitude is decoupled
from phase and density in a p-h symmetric system at
any temperature. We focus on χzx(ω) and evaluate
〈[Sx, Sz(t)]〉 ∝

∑

n e
−En/T 〈n|[Sx, Sz(t)]|n〉. Here, |n〉 de-

notes an exact eigenstate of H with energy En. Since C
is not broken, |n〉 is parity either even or odd under C.
Using the fact that Sx and Sz have opposite parity under
C, we obtain

〈n|SxSz(t)|n〉 = (〈n|C)(CSxC)(CSz(t)C)(C|n〉)

= −〈n|SxSz(t)|n〉 = 0. (26)

One can analogously show 〈n|Sz(t)Sx|n〉 =
〈n|SzSx(t)|n〉 = 〈n|Sx(t)Sz |n〉 = 0 and therefore
χzx(ω) = χxz(ω) = 0. χxy(ω) = χyx(ω) = 0 can be
shown analogously using the opposite parity of Sx and
Sy. Thus, the unbroken symmetry under C is essential
for the pure amplitude character of the MG mode.

VII. EMERGENCE OF THE MG MODE BY

THE BROKEN T SYMMETRY

We show that the spontaneous breaking of T is respon-
sible for the emergence of the MG mode. The creation

operator of the MG mode β†
H and that of the NG mode

β†
NG derived by the Holstein-Primakoff theory are given

by (see Appendix C for details)

β†
H = A

∑

k

ξk
Ek

(

S′+
k

2|∆0| − 2Ek

+
S′−
k

2|∆0|+ 2Ek

)

,(27)

β†
NG = A′

∑

k

1

Ek

(S′+
k

+ S′−
k
). (28)

Here, S′±
k

= S′
xk ± iS′

yk, which creates and annihilates a
pair of bogolons, are the raising and lowering operators of
the pseudospins for bogolons S′

k
= (S′

xk, S
′
yk, S

′
zk). S

′±
k

are transformed as (see Appendix A)

CS′±
k
C = −S′±

k
,PS′±

k
P = −S̄′±

k
, T S′±

k
T −1 = S̄′±

k
. (29)

Using Eq. (29), one can show that the MG mode is even
and the NG mode is odd under C:

Cβ†
HC = β†

H, Cβ†
NGC = −β†

NG. (30)

Their opposite parity under C is consistent with the un-
coupled phase and amplitude. A single MG mode is thus
prohibited to decay into odd number of NG modes by the
selection rule. Moreover, since the excited states of en-
ergy 2∆0 with a pair of bogolons are odd under C (see Ap-
pendix A), a MG mode with energy 2∆0 is stable against
decay into independent bogolons.
The MG and NG modes thus have definite parity under

C due to the unbroken C, while the discrete symmetries
under T and P are broken. From Eq. (29), we obtain

T β†
HT

−1 = Pβ†
HP = −β̄†

H, (31)

T β†
NGT

−1 = β̄†
NG, Pβ†

NGP = −β̄†
NG, (32)

where β†
H → β̄†

H and β†
NG → β̄†

NG by the replacement
∆0 → −∆0. Note that using Eqs. (30), (31), and (32),

Θβ†
HΘ

−1 = β†
H and Θβ†

NGΘ
−1 = β†

NG are indeed satis-
fied.
Denoting the vacuum state for βH and βNG (β̄H and

β̄NG) as |vac〉 (|vac〉), we have the relation T |vac〉 =
P|vac〉 = |vac〉, since either T or P flips the sign of the
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gap function46. From Eqs. (30), (31) and (32), one ob-
tains

C(β†
H|vac〉) = β†

H|vac〉, (33)

T (β†
H|vac〉) = P(β†

H|vac〉) = −β̄†
H|vac〉, (34)

C(β†
NG|vac〉) = −β†

NG|vac〉, (35)

T (β†
NG|vac〉) = β̄†

NG|vac〉, (36)

P(β†
NG|vac〉) = −β̄†

NG|vac〉. (37)

In the normal phase, setting ∆0 = 0, β†
H|vac〉 and

β̄†
H|vac〉 trivially reduce to the same state β†

H0|FS〉 ≡

|φH〉, while β
†
NG|vac〉 and β̄

†
NG|vac〉 reduce to β

†
NG0|FS〉 ≡

|φNG〉. Here, |FS〉 denotes the vacuum in the normal

phase. β†
H0 and β†

NG0 are given by

β†
H0 ≡ β†

H

∣

∣

∣

∆0=0
∝
∑

k

1

ξk
Syk, (38)

β†
NG0 ≡ β†

NG

∣

∣

∣

∆0=0
∝
∑

k

1

ξk
Sxk. (39)

Since β†
NG0 can be transformed to β†

H0 by the π/2 rota-
tion about the z-axis in the pseudospin space, Eqs. (38)
and (39) indicate that the |φH〉 and |φNG〉 states are de-
generate in the normal phase before breaking the U(1)
symmetry47,48. Setting ∆0 = 0 in Eqs. (33), (34), (35),
(36), and (37), we obtain49

C|φH〉 = |φH〉, T |φH〉 = P|φH〉 = −|φH〉, (40)

T |φNG〉 = |φNG〉, C|φNG〉 = P|φNG〉 = −|φNG〉. (41)

The above equations show that |φH〉 is odd and |φNG〉
is even under T . On the other hand, both |φH〉 and
|φNG〉 are odd under P . From these facts, we can con-
clude that the lifting of the degeneracy of |φH〉 and |φNG〉
in the superconducting phase should be induced by the
spontaneous breaking of T symmetry, not by the break-
ing of P or U(1) symmetry. Consequently, the break-
ing of T proves to be responsible for the emergence of
the pure amplitude MG mode. The spontaneously in-
duced magnetic field that breaks the T symmetry is
given by H0

xk = 2∆0. Therefore, the energy splitting
between the MG and NG modes should be of the order
of |H0

xk| = 2∆0. This is consistent with the fact that the
energy gap of the MG mode is 2∆0.

VIII. CONCLUSIONS

Extending the previous understanding of the emer-
gence of the MG mode in the presence of the p-h sym-
metric fermionic dispersion, we have revealed the fun-
damental connection between the emergence of the pure
amplitude MG mode and the discrete symmetry of the
Hamiltonian in superconductors, which has not been
clarified in the previous works. We have shown that a

non-relativistic Hamiltonian for fermions with a p-h sym-
metric dispersion exhibits nontrivial discrete symmetries
under C, P , T , and CPT . In the U(1) broken supercon-
ducting ground state of such a p-h symmetric system,
T and P are spontaneously broken, while C is unbro-
ken. We have shown that the spontaneous breaking of
the discrete T symmetry leads to the emergence of the
MG mode that induces pure amplitude oscillation of the
gap function due to the unbroken C. It may be possible to
show a similar relation between the discrete symmetry of
the Hamiltonian and the emergence of the MG modes in
other non-relativistic systems, such as ultracold bosons
in optical lattices20,32 and quantum spin systems15,16.
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Appendix A: Pseudospin representation for bogolons

In this Appendix, we introduce a pseudospin represen-
tation for bogolons and examine the symmetries of the
states involving excited bogolons. The pseudospins for
bogolons S′

k
= (S′

xk, S
′
yk, S

′
zk)

41 are defined as





S′
zk
S′
xk
S′
yk



 =





− cosϕk − sinϕk 0
sinϕk − cosϕk 0

0 0 1









Szk

Sxk

Syk



 . (A1)

Using Eq. (A1), the MF Hamiltonian is represented as

HMF =
∑

k

2EkS
′
zk. (A2)

Denoting the eigenstates of S′
zk as | ↑′〉k and | ↓′〉k,

they can be written as

| ↑′〉k = uk| ↑〉k − vk| ↓〉k, (A3)

|↓′〉k = uk| ↓〉k + vk| ↑〉k, (A4)

where | ↓′〉k represents the vacuum of bogolons and | ↑′〉k
the excited state of energy 2Ek, in which a pair of bo-
golons are excited. Since Sk is rotated about the angle
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π−ϕk in the xz-plane in Eq. (A1), all the rotated pseu-
dospins S′

k
are aligned downward in the z direction in

the ground state. In fact, the BCS wave function can be
written as

|Ψ〉 =
∏

k

| ↓′〉. (A5)

The raising and lowering operators, which creates and
annihilates a pair of bogolons, are given by

S′±
k

= S′
xk ± iS′

yk

=
ξk
Ek

Sxk ± iSyk +
∆0

Ek

Szk. (A6)

Equation (29) can be derived from the above equation.
If we denote the excited state with a single pair of

bogolons as

|ek〉 = S′+
k
|Ψ〉 = | ↑′〉k

∏

k′ 6=k

| ↓′〉k′ , (A7)

both |ek〉 and |ek〉 have excitation energy 2Ek and de-
generate in a p-h symmetric system. Using Eq. (29), we
obtain

C|ek〉 = −|ek〉. (A8)

From Eq. (A8), it can be easily shown that |ek〉 − |ek〉
is parity even, while |ek〉 + |ek〉 is parity odd under C.
The even parity states vanish at k = k = kF because of
|ek〉 = |ek〉. It means that the lower edge of the single-
particle continuum with energy 2∆0 consists of parity
odd states.

Appendix B: Classical spin analysis

In this Appendix, we give details of the classical spin
analysis. Linearizing Eq. (18) with respect to fluctuation
δSk = Sk(t)− S0

k
(δH(t) = Hk(t)−H0

k
), we obtain

d

dt
δS‖k = −

1

2
δHy +H0

kδSyk, (B1)

d

dt
δSyk =

1

2
δHx cosϕk −H0

kδS‖k. (B2)

Here, we decompose the spin fluctuation into the two
orthogonal directions as δSk = δSykŷ+δS‖kϕ̂k. ŷ is the
unit vector in the y-direction and ϕ̂k = cosϕkx̂−sinϕkẑ

is the unit vector illustrated in Fig. 4. We note that

δHx = 2gδSx = 2g
∑

k

δS‖k cosϕk, (B3)

δHy = 2gδSy = 2g
∑

k

δSyk. (B4)

Using Eqs (B2) and (B1), we obtain

d

dt
δSz = −

∑

k

d

dt
δS‖k sinϕk

=
1

2
δHy

∑

k

sinϕk − 2∆0

∑

k

δSyk = 0. (B5)

x

z

φ
k

φ
k

y

FIG. 4: Illustration of the unit vectors φ̂k and ŷ.

Since δSz = 0 at the initial moment, Eq. (B5) shows that
the fermion number is conserved (δSz = 0) through the
dynamics.
If the gap function is constant in time, setting δHx =

δHy = 0 in Eqs. (B1) and (B2), each pseudospin under-
goes precession independently with frequency ω = 2Ek.
It represents a pair of bogolons arising from a broken
Cooper pair.
We consider collective dynamics of pseudospins involv-

ing nonzero δHx and/or δHy. Assuming δSk(t), δH(t) ∝
e−iωt in Eqs. (B2) and (B1), we obtain

δS‖k = −
ξk

4E2
k
− ω2

δHx +
iω/2

4E2
k
− ω2

δHy, (B6)

δSyk = −
iω cosϕk/2

4E2
k
− ω2

δHx +
Ek

4E2
k
− ω2

δHy. (B7)

Substituting the above equations into Eqs. (B3) and
(B4), we obtain the coupled equations for δHx and δHy

as

(1− 2gχxx(ω)) δHx + 2gχxy(ω)δHy = 0, (B8)

2gχyx(ω)δHx + (1− 2gχyy(ω)) δHy = 0, (B9)

δSz = χzx(ω)δHx − χzy(ω)δHy , (B10)

where χs are given by Eqs. (21), (22), and (25). Equa-
tions (19), (20), and (24) can be readily derived from
Eqs. (B8), (B9), and (B10) by rewriting them in terms
of δ∆ and δθ.
If we set ω = 0 in Eqs. (B8) and (B9), since χxy(0) =

χyx(0) = 0, δHx and δHy are uncoupled. Using 1 −
2gχyy(0) = 0 that reduces to the MF gap equation and
1−2gχxx(0) 6= 0, we obtain the solution for the NGmode:
δHx = 0 and δHy 6= 0 (δ∆ = 0 and δθ 6= 0). Equa-
tion (B10) indicates that the NG mode solution fulfills
the number conservation δSz = 0, because χzy(0) = 0.
From Eq. (B6) and (B7), one obtains

δS‖k = 0, δSyk =
1

4Ek

δHy. (B11)

The NG mode thus induces oscillations of pseudospins in
the y-direction as illustrated in Fig. 5 (a). Since δSyk =
δSyk, the NG mode induces in-phase oscillation of δSyk

and δSyk.
In a p-h symmetric system, if we set ω = 2∆0 in

Eqs. (B8) and (B9), since χxy(2∆0) = χyx(2∆0) = 0,
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x

y

z

S
k

S
k

δS
yk

δS
yk

x

y

z

S
k

S
k

δS
yk

δS
yk

δS
ǁk

δS
ǁk

(a) (b)

0

00

0

FIG. 5: Illustration of pseudospin oscillation induced by the
NG mode (a) and the MG mode (b) in a system with p-h
symmetric ξk. (a) The NG mode induces in-phase oscillation
of δSyk and δSyk. (b) The MG mode induces out-of-phase
oscillation of δS‖k and δS‖k, as well as δSyk and δSyk.

δHx and δHy are uncoupled. Using 1− 2gχxx(2∆0) = 0
that reduces to the MF gap equation and 1− 2gχyy(0) 6=
0, we obtain the solution for the MG mode: δHx 6= 0 and
δHy = 0 (δ∆ 6= 0 and δθ = 0). Equation (B10) indicates
that the MG mode solution fulfills the number conserva-
tion δSz = 0, because χzx(2∆0) = 0 if ξk satisfies Eq. (7).
From Eq. (B6) and (B7), one obtains

δS‖k =
−1

4ξk
δHx, δSyk =

i∆0

4Ekξk
δHx. (B12)

The MG mode thus induces oscillations of pseudospins

both in the y-direction and the direction of φ̂k as illus-
trated in Fig. 5 (b). Since δS‖k = −δS‖k and δSyk =
−δSyk, the MG mode induces out-of-phase oscillation of
δS‖k and δSyk.

Appendix C: Holstein-Primakoff theory

In this Appendix, we develop the Holstein-Primakoff
theory for the pseudospin Hamiltonian (2) to derive the
creation and annihilation operators of the MG and NG
modes.
Substituting Eq. (A1) into Eq. (2), one obtains

H =
∑

k

2ξk(− cosϕkS
′
zk + sinϕkS

′
xk)

−g
∑

k,k′

(cosϕk cosϕk′S′
xkS

′
xk′ + sinϕk cosϕk′ {S′

zk, Sxk′}

+sinϕk sinϕk′S′
zkS

′
zk′ + S′

ykS
′
yk′). (C1)

Spin fluctuation can be quantized by the Holstein-
Primakoff transformation50:

S′+
k

= α†
k

√

1− α†
k
αk, S′−

k
= (S′+

k
)†, (C2)

S′
zk = −

(

1

2
− α†

k
αk

)

, (C3)

where α†
k
and αk denote, respectively, the creation and

annihilation operators of a boson that represents spin

fluctuation. They satisfy the usual commutation rela-

tions [αk, α
†
k′ ] = δk,k′ and [αk, αk′ ] = [α†

k
, α†

k′ ] = 0.

When fluctuation is small α†
k
αk ≪ 1, S′+

k
≃ α†

k
and

S′−
k

≃ αk and therefore αk and α†
k
reduce to the an-

nihilation and creation operators of a pair of bogolons,
respectively.

We expand Eq. (C1) in terms of αk and α†
k
. The zeroth

and first order terms read

H0 = −
∑

k

ξ2
k

Ek

−
∆2

0

g
, (C4)

H1 =
∑

k

(ξk sinϕk +∆0 cosϕk)(αk + α†
k
). (C5)

The first order term vanishes in the ground state H1 =
0 using sinϕk = ∆0/Ek and cosϕk = −ξk/Ek. The
second order term reads

H2 = 2
∑

k

Ekα
†
k
αk +

g

4

∑

k,k′

{(1 − cosϕk cosϕk′ )

× (αkαk′ + α†
k
α†
k′ )− (1 + cosϕk cosϕk′ )

× (αkα
†
k′ + α†

k
αk′ )

}

. (C6)

We diagonalize H2 by a Bogoliubov transformation

βλ =
∑

k

(X∗
λkαk + Y ∗

λkα
†
k
), (C7)

β†
λ =

∑

k

(Xλkα
†
k
+ Yλkαk), (C8)

where λ labels the excited states. The bosonic operator
βλ satisfies the commutation relations

[βλ, β
†
λ′ ] =

∑

k

(X∗
λkXλ′k − Y ∗

λkYλ′k) = δλ,λ′ , (C9)

[β†
λ, β

†
λ′ ] =

∑

k

(−XλkYλ′k + YλkXλ′k) = 0. (C10)

From Eqs. (C7) and (C8), one can easily derive the in-
verse transformation

αk =
∑

λ

(Xλkβλ − Y ∗
λkβ

†
λ), (C11)

α†
k
=
∑

λ

(X∗
λkβ

†
λ − Yλkβλ). (C12)

Assuming that the second order term is diagonalized

as H2 =
∑

λ ωλβ
†
λβλ + const., we obtain

[αk,H2] =
∑

λ

ωλ(Xλkβλ + Y ∗
λkβ

†
λ). (C13)
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On the other hand, using Eq. (C6), one obtains

[αk,H2] =
∑

λ

{(

2EkXλk −
g

2

∑

k′

(cosϕk cosϕk′ + 1)Xλk′

+
g

2

∑

k′

(cosϕk cosϕk′ − 1)Yλk′

)

βλ

+

(

−2EkY
∗
λk −

g

2

∑

k′

(cosϕk cosϕk′ − 1)X∗
λk′

+
g

2

∑

k′

(cosϕk cosϕk′ + 1)Y ∗
λk′

)

β†
λ

}

. (C14)

Comparing Eqs. (C13) and (C14), one obtains sets of
equations for Xλk and Yλk as

2EkXλk −
g

2
{(aλ − cλ) cosϕk + (bλ + dλ)}

= ωλXλk, (C15)

−2EkYλk −
g

2
{(aλ − cλ) cosϕk − (bλ + dλ)}

= ωλYλk, (C16)

where the coefficients aλ, bλ, cλ, and dλ are given by

aλ =
∑

k

cosϕkXλk, bλ =
∑

k

Xλk, (C17)

cλ =
∑

k

cosϕkYλk, dλ =
∑

k

Yλk. (C18)

Equations (C15) and (C16) can be formally solved as

Xλk =
g

2

(aλ − cλ) cosϕk + (bλ + dλ)

2Ek − ωλ
, (C19)

Yλk = −
g

2

(aλ − cλ) cosϕk − (bλ + dλ)

2Ek + ωλ
. (C20)

We omit λ below.
If the p-h symmetric condition (7) is satisfied,

Eqs. (C15) and (C16) can be decoupled by introducing
the even and odd components as

Xe
k = (Xk +Xk)/2, Y e

k = (Yk + Yk)/2, (C21)

Xo
k
= (Xk −Xk)/2, Y o

k
= (Yk − Yk)/2, (C22)

where the former two are even asXe
k
= Xe

k
and Y e

k
= Y e

k
,

while the latter two are odd as Xo
k
= −Xo

k
and Y o

k
=

−Y o
k
.

The equations for odd components read

2EkX
o
k
−
g

2
(a− c) cosϕk = ωXo

k
, (C23)

−2EkY
o
k
−
g

2
(a− c) cosϕk = ωY o

k
, (C24)

a =
∑

k

cosϕkX
o
k, c =

∑

k

cosϕkY
o
k . (C25)

If a−c 6= 0, the formal solutions of Eqs. (C23) and (C24)
are given by

Xo
k =

g

2

(a− c) cosϕk

2Ek − ω
, Y o

k =
g

2

(c− a) cosϕk

2Ek + ω
.(C26)

Setting Xe
k
= Y e

k
= 0, we obtain Xk = Xo

k
and Yk =

Y o
k
. The condition b + d = 0, which is obtained from

Eqs. (C19) and (C20), reduces to

∑

k

ωξk
Ek(4E2

k
− ω2)

= 0. (C27)

Since Eq. (C27) is equivalent to χxy(ω) = 0, it ensures
the uncoupled phase and amplitude fluctuations.
Substituting Eq. (C26) into Eq. (C25), we obtain

1− 2g
∑

k

ξ2
k

E2
k

Ek

4E2
k
− ω2

= 0. (C28)

The above equation is equivalent to 1−2gχxx(ω) = 0 and
therefore has the MG mode solution ω = 2|∆0| for which
it reduces to the MF gap equation. We thus obtain

Xo
k

= −
A cosϕk

2|∆0| − 2Ek

, Y o
k
= −

A cosϕk

2|∆0|+ 2Ek

,(C29)

where A is the normalization constant. A is determined
by the normalization condition (C9) as

A =
1

√

∑

k

|∆0|
Ekξ2k

. (C30)

The creation operator of the MG mode is thus obtained
as

β†
H = A

∑

k

ξk
Ek

(

1

2|∆0| − 2Ek

α†
k
+

1

2|∆0|+ 2Ek

αk

)

.(C31)

The equations for even components read

2EkX
e
k
−
g

2
(b+ d) = ωXe

k
, (C32)

−2EkY
e
k
+
g

2
(b + d) = ωY e

k
, (C33)

b =
∑

k

Xe
k, d =

∑

k

Y e
k . (C34)

If b+d 6= 0, the formal solutions of Eqs. (C32) and (C33)
are given by

Xe
k =

g

2

b+ d

2Ek − ω
, Y e

k =
g

2

b+ d

2Ek + ω
. (C35)

Setting Xo
k
= Y o

k
= 0, we obtain Xk = Xe

k
and Yk =

Y e
k
. The condition a − c = 0, which is obtained from

Eqs. (C19) and (C20), reduces to Eq. (C27).
Substituting Eq. (C35) into Eq. (C34), we obtain

1− 2g
∑

k

Ek

4E2
k
− ω2

= 0. (C36)

The above equation is equivalent to 1−2gχyy(ω) = 0 and
therefore has the NG mode solution ω = 0, for which it
reduces to the MF gap equation. We thus obtain

Xe
k
= Y e

k
= A′/Ek, (C37)
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where A′ is the normalization constant. However,
Eq. (C37) does not fulfill the normalization condition
(C9). This anomaly is typical for zero energy modes.
It can be avoided by introducing a small fictitious exter-
nal field in the Hamiltonian (2)51. The creation operator
of the NG mode is thus obtained as

β†
NG = A′

∑

k

1

Ek

(α†
k
+ αk). (C38)

In the limit of small fluctuation α†
k
αk ≪ 1, using α†

k
≃

S′+
k

and αk ≃ S′−
k
, the creation operators for the Higgs

mode and the NG mode can be obtained as Eqs. (27) and
(28).
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