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A massive Goldstone (MG) mode, often referred to as a Higgs amplitude mode, is a collective
excitation that arises in a system involving spontaneous breaking of a continuous symmetry, along
with a gapless Nambu-Goldstone mode. It has been known in the previous studies that a pure
amplitude MG mode emerges in superconductors if the dispersion of fermions exhibits the particle-
hole (p-h) symmetry. However, clear understanding of the relation between the symmetry of the
Hamiltonian and the MG modes has not been reached. Here we reveal the fundamental connection
between the discrete symmetry of the Hamiltonian and the emergence of pure amplitude MG modes.
To this end, we introduce nontrivial charge-conjugation (C), parity (P), and time-reversal (7)
operations that involve the swapping of pairs of wave vectors symmetrical with respect to the Fermi
surface. The product of CPT (or its permutations) represents an exact symmetry analogous to
the CPT theorem in the relativistic field theory. It is shown that a fermionic Hamiltonian with a
p-h symmetric dispersion exhibits the discrete symmetries under C, P, T, and CP7T. We find that
in the superconducting ground state, 7 and P are spontaneously broken simultaneously with the
U(1) symmetry. Moreover, we rigorously show that amplitude and phase fluctuations of the gap
function are uncoupled due to the unbroken C. In the normal phase, the MG and NG modes become
degenerate, and they have opposite parity under 7. Therefore, we conclude that the lifting of the
degeneracy in the superconducting phase and the resulting emergence of the pure amplitude MG
mode can be identified as a consequence of the the spontaneous breaking of 7 symmetry but not of

P or U(1).
I. INTRODUCTION

Massive Goldstone (MG) modes, often referred to as
Higgs amplitude modes, and Nambu-Goldstone (NG)
modes are ubiquitous in systems that involve sponta-
neous breaking of continuous symmetries' 4. In the sim-
plest U(1) symmetry breaking, the former induce ampli-
tude oscillation of a complex order parameter® and the
latter induce phase oscillation. Whereas NG modes have
been studied in various condensed matter systems, MG
modes have evaded observations until recently with only
a few exceptions® 8.

Despite the
for example, in superconductors
systems'* 17 charge-density-wave materials
tracold atomic gases'? 22, and theoretical studies
fundamental aspects of MG modes in condensed mat-
ter systems have not been fully understood, in contrast
to NG modes; spontaneous breaking of a continuous
symmetry does not guarantee emergence of MG modes,
while that of NG modes is ensured by the Goldstone
theorem?. For instance, whereas a MG mode appears in
a Bardeen-Cooper-Schrieffer (BCS) superconductor®24,
it does not exist in a Bose-Einstein condensate (BEC)?3,
despite the fact that both of the systems involve U(1)
symmetry breaking and furthermore one evolves contin-
uously to the other through the BCS-BEC crossover3* 38,

increasing number of observations,
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Varma pointed out that the approximate particle-hole (p-
h) symmetry, i.e., the linearly approximated fermionic
dispersion & ~ wvp(k — kp) (vp is the Fermi ve-
locity and kg is the Fermi wave number), results in
the effective Lorentz invariance of the time-dependent
Ginzburg-Landau equation in the weak-coupling BCS
limit, which yields the decoupled amplitude and phase
modes®3. A pure amplitude MG mode also appears in
lattice systems if the energy bands exhibit the rigorous
p-h symmetry?6-27,

It has been thus recognized in the previous studies
that a pure amplitude MG mode emerges in supercon-
ductors if the dispersion of fermions & exhibits the p-
h symmetry>* 2733, However, the p-h symmetry in the
context of the previous works refers to the character-
istic feature of the fermionic dispersion & that should
be distinguished from the symmetry of the Hamiltonian.
Meanwhile, clear understanding of the relation between
the symmetry of the Hamiltonian and MG modes has not
been reached.

In this paper, we reveal the fundamental connec-
tion between the discrete symmetry of the Hamilto-
nian and the emergence of pure amplitude MG modes.
We introduce three discrete operations for general non-
relativistic systems of fermions, which we refer to
“charge-conjugation” (C), “parity” (P), and “time-
reversal” (7). The product of CPT (or its permutations)
represents an exact symmetry analogous to the CPT the-



orem in the relativistic field theory®®. We show that the
standard BCS Hamiltonian with a p-h symmetric disper-
sion is invariant under C, P, T, and CPT in addition to
the global U(1) gauge invariance. If the U(1) symmetry
is spontaneously broken in the superconducting ground
state, the symmetries under P and 7 are simultaneously
broken while the symmetry under C is unbroken. We rig-
orously show that amplitude and phase fluctuations of
the gap function are uncoupled due to the unbroken C.
The MG mode thus induces pure amplitude oscillations
of the gap function in a p-h symmetric system. It is also
shown that the MG and NG modes reduce to the degener-
ate states in the normal phase due to the U(1) symmetry
and they have opposite parity under 7. Therefore, the
lifting of the degeneracy in the superconducting phase
and the resulting emergence of the pure amplitude MG
mode can be identified as a consequence of the the spon-
taneous breaking of 7 symmetry but not of P or U(1).
Thus, the breaking of 7 proves to be responsible for the
emergence of the pure amplitude MG mode.

This paper is organized as follows: In Sec. II, we
present the model and introduce the pseudospin repre-
sentation. In Sec. III, we define the three discrete op-
erations C, 7, and P to discuss the symmetries of the
Hamiltonian under the operations of C, T, P, and CPT.
In Sec. IV, we study the symmetry of the superconduct-
ing ground state. In Sec. V, we discuss collective modes
within the classical spin analysis. In Sec. VI, we give
a rigorous proof of the uncoupled amplitude and phase
fluctuations of the gap function in a p-h symmetric sys-
tem due to the unbroken C. In Sec. VII, we give a direct
demonstration of the relation between the emergence of
the pure amplitude MG mode and the spontaneously bro-
ken 7 symmetry. In Sec. VIII, we summarize. We set
h = kg = 1 throughout the paper.

II. PSEUDOSPIN REPRESENTATION

We study for reduced BCS

Hamiltonian?

H = ngchscks —9g Z CTchtkic—k’ick’Ta (1)
k,s kk!

simplicity  the

where c};s (cks) is the creation (annihilation) operator of
a fermion with momentum k and spin s (=7,]), g(> 0)
denotes the attractive interaction between fermions, and
&k = ek — 1 is the kinetic energy of a fermion measured
from the chemical potential p. For example, e = k?/2m
in a continuous system (m is the mass of a fermion). We
do not specify the form of g, for generality of argument.

To discuss the symmetries of the Hamiltonian (1), it is
convenient to introduce the pseudospin representation*!:
Suk = %\I/LTH\I/k (0 = z,y,2), where T = (74, 7y,72)
are Pauli matrices and Uy = (cgr, clf_ki)t is the Nambu
spinor??. Note that S.y is related to the fermion number

operator ngs = c};scks by S.x = %(nm +ng, —1). In the

®) § £, =-2t cosk
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FIG. 1: Illustration of the wave vector k and the dispersion
—£k in (a) a continuous system and (b) the 1D lattice at half-
filling (u = 0). (c) k for the half-filled energy band in the
square lattice.

pseudospin language, the fermion vacuum is the spin-
down state (|0} = |])x) and the fully occupied state is
the spin-up state (CLTCT_MJOM = |Mk)-

The pseudospin representation of the Hamiltonian (1)
is given by

H=> 24Ss—9g> Sik Siw, (2)
k

k'

where S|, = (Sgk, Syk). The kinetic energy (interac-
tion) term is translated into the Zeeman (ferromagnetic
XY exchange) term in the pseudospin language. The ro-
tational symmetry of the Hamiltonian (2) in the zy-plane
represents the U(1) symmetry of Eq. (1) with respect to
the transformation Uy — €™y,

IIT. HIDDEN DISCRETE SYMMETRIES

In this section, we define three discrete transformations
for fermions and discuss the symmetry of the Hamilto-
nian (2) under those operations.

A. Charge-conjugation

Let us consider a unitary transformation for the
Nambu spinor®?:

CUC =T1,0y, CULC=Vlr,. (3)

Here, k is the mirror reflected wave vector of k with
respect to the Fermi surface, i.e., k and k are on the
opposite side of the Fermi surface and away from it with
the same minimum distance (see Figs. 1 (a)-(c)). For
example, k = (2kp — k)k/|k| in a continuous system.
Note that k£ = k if k is on the Fermi surface. Since C
transforms a particle (c') into a hole (¢) and vice versa,
it can be referred to as a “charge conjugation” operation.
C is specifically given by

C=F[]owr, F=]] frr: (4)
k

>0



where o,k = 25,k. The operator fi j swaps the state of
k and that of k: fk&h/)) |k = |®)k|1) k. One can show
C' =C and C? =1 from Eq. (4).

The pseudospin operators are transformed by C as

CSuC = (—=1)%=F1G 4 CS,C = (—1)°=T1S, (5)

where S, = Y, S,k is the total spin. Equation (5) shows
that C consists of the 7 rotation of pseudospins about the
z-axis and the swapping of k and k.

Transforming Eq. (2) by C, we obtain

CHC = Z —&.) Sk — gz Sik-Sik. (6)

kK
Hence, CHC = H and equivalently [H,C] =

fermion dispersion satisfies the condition

—&k = &k (7)

0, if the

Equation (7) indicates the invariance of the dispersion
&k, under the successive mirror reflections with respect to
¢ =0and k = kp (see Figs. 1 (a) and 1 (b)), which we
refer to particle-hole (p-h) symmetry in view of the fact
that the density of states N(§) = >, 0(§ — &) is even if
Eq. (7) holds.

Figure 1(a) shows that, whereas & = k?/2m — y is not
p-h symmetric, the linearized dispersion & ~ vp(k—kp)
is p-h symmetric. Therefore, a continuous system has
an approximate p-h symmetry if the interaction is weak
enough. On the other hand, Fig. 1 (b) illustrates that
the tight-binding energy band in the d-dimensional cubic
lattice &, = —2t E?:l cos(k;) (t is the hopping matrix
element) exhibits a rigorous p-h symmetry at half-filling

(n=0).

B. Time-reversal

The “time-reversal” operation of the Nambu spinor
and the pseudospin operators are defined to be

TUT TULT ' =¥)r,  (8)
TSuT ' =—=Su, TS, T '=-S. (9
The time-reversal 7 can be written in the form

T =UrK, Urp=F]](~iow), (10)
k

=7y Vg,

where I is the complex conjugation operator and Ur is
the unitary operator that rotates pseudospins w about
the y-axis and swaps k and k. From Eq. (9), the p-
h symmetric Hamiltonian that satisfies Eq. (7) is time-
reversal invariant 7H7 ~* = H. T reverses the time in
the Heisenberg representation as 7.5, (t)7 ' = =S, (—t).

It is important to note that 7T represents “time-
reversal” in the pseudospin space, which is different from
the usual time-reversal operation discussed, for example,
in Ref. 44. Although the usual time-reversal symmetry
is not broken in s-wave superconductors®*, 7 is sponta-
neously broken simultaneously with the U(1) symmetry
breaking as we shall show later.

C. Parity

The “parity” operation, denoted by P, is defined to be
the inversion of pseudospins in the zy-plane. It is equiva-
lent to the 7 rotation about the z-axis and therefore can
be represented as

P=]]oz- (11)
k

It satisfies P*
P is given as

= P and P? = 1. The transformation by

PULP = 1.0, PUIP=Ulr (12)

PSP = (=1)%= 1Sk, PSP = (=1)%=115,. (13)

The Hamiltonian (2) is invariant by P: PHP = H. Since
the 7 rotation in the zy-plane is an element of U(1), P
is trivially broken in the U(1) broken ground state.

D. CPT invariance

The transformation by the product © = CPT is given
as

Ov,0 ! =il,,
08,0 = (—1)%+18,,, 05,0 = (~1

ovle™t = —ivl, (14)
Yo tLS, (15)

Using Egs. (4), (10), and (11), we obtain © = [[,(-1)-K
and thus OHO! = H. Since the Lagrangian £ =
Yok z\I/k 5 W), — M is transformed as OL(1)O ™ = L(—t),
the action is invariant and therefore CP7T and all other
permutations of C, P, and T are exact symmetries anal-
ogous to the CPT invariance in relativistic systems’.

IV. SYMMETRY OF THE GROUND STATE

We study the symmetries of the superconducting
ground state focusing on that of a p-h symmetric sys-
tem. It is reasonable to expect that all the symme-
tries of the true ground state are realized in the BCS
wave function V) = [[(ux| L)k + vk| T)k). Here,
U = (1+€k/Ek:)/2 and Ve = (1_€k/Ek)/2 The
gap function is set positive real in the ground state with-
out loss of generality Ag = g (c—kicrr) = g(Sz) > 0.
Eyp = /& + A% is the dispersion of single-particle ex-
citations (bogolons). |¥) represents the ground state of
the mean-field (MF) Hamiltonian Hyr = — >, Hj - Sk,
where Sk = (Szk, Syk, S:k). The effective magnetic field
H) = (2A0,0, —2&) lies in the zz-plane with the polar
angle ¢, (see Fig. 2 (b)), where sinpr = A¢/Eg and
cospr = —&k/Er. Note that ¢p = ™ — @, if Eq. (7)
holds. The requirement that the average spin Sy = (Sk)
is in parallel with H,g leads to the MF gap equation

1_ng 21 41'




FIG. 2: Schematic illustration of the pseudospin distribution
Sk described by the BCS wave function |¥) for a positive real
gap function (a) as a function of k*' and (b) on the Bloch
sphere. (a) Spins rotate in the zz-plane from up to down
towards the positive z-direction as k increases from below to
above kr. (b) In a p-h symmetric system, S is the mirror
reflected image of Sj with respect to the xy-plane.

v

FIG. 3: Schematic illustration of the double-well potential
for a real gap function and the spontaneous breaking of the
symmetries under 7 and P. The operation of either 7 or P
flips the sign of the gap function and transforms |¥) to |¥).

Figures 2(a) and 2(b) show the pseudospin configu-
ration of the superconducting ground state described by
|¥). The pseudospins smoothly rotate sidewise in the xz-
plane from up to down towards the positive z-direction
as k increases®!. The spontaneous U(1) symmetry break-
ing with respect to the phase of the gap function sets the
direction of rotating spins projected in the xy-plane. In
a p-h symmetric system, S, is the mirror reflected image
of Sy with respect to the xy-plane.

The symmetry under C is unbroken in the ground state
of a p-h symmetric system. In fact, using up = vp and
v = Uk, the BCS wave function is shown to be parity
even (C|W) = |¥)) that reflects the invariance of the MF
Hamiltonian (CHyrC = Hmr). As shown in Fig. 2, the
pseudospin configuration is indeed invariant under the m
rotation of spins about the z-axis followed by the swap-
ping of k and k. In contrast, the symmetries under 7
and P are spontaneously broken accompanied with the
U(1) symmetry breaking. The operation of either 7 or
P flips the sign of the gap as

THurT ' = PHurP = — ZFI,S - Sk = Hur, (16)
k

TIv) = |¥), PI‘I’>—{H(—1)}~I\P>- (17)

k

Figure 3 schematically illustrates the spontaneous break-

p-h symmetric|p-h non-symmetric
Symmetry || H [¥) H [¥)
c v v X X
T v X X X
P v X v X
O =CPT ||V v v v
U(1) v X v X

TABLE I: Symmetry of the Hamiltonian H and the ground
state wave function |¥) for a p-h symmetric system (§ =
—£k) and a p-h non-symmetric system (£ # —&g). vand x
mean presence and absence of the symmetry, respectively.

ing of the symmetry under 7 and P and their opera-
tions on |¥). Hereafter, the overline represents the re-
placement Ag — —Ay, e.g., H) = (24,0, —2&) and
(W) = [Tp(url Dre = vil D)

The symmetries of the Hamiltonian and the ground
state are compared between p-h symmetric and non-
symmetric systems in Table 1. It shows that the broken
symmetry of 7 and unbroken symmetry of C are charac-
teristic to a p-h symmetric system. Given the fact that a
pure amplitude MG mode arises only in a p-h symmetric
system as shown later, Table 1 implies that it results from
the broken 7 and C, which we reveal in the following.

V. COLLECTIVE MODES

We first discuss collective modes within the classical
spin analysis*! (Details are given in Appendix B). We
study dynamics of the pseudospins based on the MF
Hamiltonian Hy;p = — >4 Hi - Sk. Here, the magnetic
field Hy = (2ReA, —2ImA, —2¢k) is self-consistently de-
termined by the gap function A = g3, (c_gjcuy) =
g({Sz) — i(Sy)), which is allowed to take complex val-
ues. The time evolution of Sg(t), which is treated as a
classical spin, is described by the equation of motion

dSk
= H, 1
dt Sk X k- ( 8)

Introducing amplitude and phase fluctuations from the
ground state A = (Ag+6A)e*?; one finds that spin fluc-
tuations in the z-direction induce amplitude fluctuations
0A = ¢dS, and those in the y-direction induce phase
fluctuations 60 = —gdS, /Ao, where §S, = Sk(t) — Sp.
Linearizing Eq. (18) by fluctuations §A, 66 x e~ we
obtain

(1 = 2gXgz(w)) 0A — 29X 4y (w)Aodb = 0, (19)
29Xya(W)0A — (1 = 2gxyy(w)) Aodd =0, (20)

where . (w ) are the dynamical spin susceptibilities de-
fined as X, (w) = —i [; ([Sv, Su(t)])e™ ™" dt (S,(t) is the
Heisenberg representatmn and < .) denotes the aver-
age). For example, x,, represents the coupling of am-
plitude and phase, while x., represents that of density



and amplitude. The susceptibilities are calculated as

=Y g

W
e = 22
Xey = Z Ek 4E2 _w2) ( )

_ 5;3

Using the MF gap equation, one finds that Egs. (19)
and (20) have the NG mode solution (60 # 0, JA = 0)
with w = 0. They also have a solution for a pure ampli-
tude mode (JA # 0 and 60 = 0) with w = 2A, if phase
and amplitude are uncoupled Xz (2A¢) = xy2(24¢) = 0.

From Eq. (22), this leads to the condition
> g = [l - (23)
" Bl EVE+ A2

Equation (23) is satisfied if N(§) is even. Thus, MG

mode arises as a pure amplitude mode in a p-h symmetric
system?®

The p-h symmetry also ensures fermion number con-
servation (65, = 0)%°. 45, is represented as

055 = 2X 22 (W)OA + 2x 4y (w)Aod0, (24)

where xs are given by

Aofk iwAQ/Q

Xez = zk: BR(E? — %) X = Zk: Fe(iE? —®)
The MG mode solution (0A # 0, 60 = 0, and w = 2A)
satisfies 05, = 0, if x..(2A¢) = 0, which reduces to
Eq. (23). Hence, the MG mode does not induce density
fluctuation and indeed conserves total fermion number
N=25 +>,1

If the p-h symmetry is absent, due to x..(w) # 0 and
Xzy (W) # 0, Eq. (24) indicates that A and 66 must be
finite in order to satisfy §S, = 0. As a result, A is
inevitably coupled with 06 and therefore the MG mode
induces both amplitude and phase fluctuations. The en-
ergy of the MG mode becomes greater than 2A¢26:27,

VI. RIGOROUS PROOF OF Y., = Y2 =0

The arguments in the last section are based on the
MF approximation restricted to zero temperature (T =
0). We rigorously show that amplitude is decoupled
from phase and density in a p-h symmetric system at
any temperature. We focus on y,,(w) and evaluate
(S, S (D)) x 3, € E2/T{n][S,, S. (1) |n). Here, |n) de-
notes an exact eigenstate of H with energy E,. Since C
is not broken, |n) is parity either even or odd under C.
Using the fact that S, and S, have opposite parity under
C, we obtain

(nS:S:(t)[n) = ((n|C)(CSC)(CS:()C)(CIn))
= —(n|S:S:(t)|n) = 0. (26)

One can analogously show (n|S.(t)Sz|n) =
(n|S.Sz(t)|n) = (n]Sx(t)SzIn) = 0 and therefore
Xza(@) = Xaz(w) = 0. Xey(w) = Xya(w) = 0 can be
shown analogously using the opposite parity of S, and
Sy. Thus, the unbroken symmetry under C is essential
for the pure amplitude character of the MG mode.

VII. EMERGENCE OF THE MG MODE BY
THE BROKEN 7 SYMMETRY

We show that the spontaneous breaking of 7 is respon-
sible for the emergence of the MG mode. The creation
operator of the MG mode BIT{ and that of the NG mode

ﬁLG derived by the Holstein-Primakoff theory are given
by (see Appendix C for details)

Si Sy
Pn = AZ <2|Ao| 3B, 2| +2Ek)(’27)
Sk + S )- (28)
k

BNG:A/ZE_

k

Here, S;ci =95, iS;k, which creates and annihilates a
pair of bogolons, are the raising and lowering operators of
the pseudospins for bogolons Sy, = (S}, Sk, Six)- SiE
are transformed as (see Appendix A)

CSC=—SE PSIFP =55 TS T =S5t (29)
Using Eq. (29), one can show that the MG mode is even
and the NG mode is odd under C:

CBiC = Bl CBLeC = Bl (30)

Their opposite parity under C is consistent with the un-
coupled phase and amplitude. A single MG mode is thus
prohibited to decay into odd number of NG modes by the
selection rule. Moreover, since the excited states of en-
ergy 27 with a pair of bogolons are odd under C (see Ap-
pendix A), a MG mode with energy 2A is stable against
decay into independent bogolons.

The MG and NG modes thus have definite parity under
C due to the unbroken C, while the discrete symmetries
under 7 and P are broken. From Eq. (29), we obtain

TBLTt =PaiP = -5, (31)

TBGT " = Bla PBLP = ~Bla:  (32)
where ﬁITI — BITI and BLG — BLG by the replacement
Ay = —Ag. Note that using Egs. (30), (31), and (32),
@ﬂg{@’l = BIT{ and @BLGG*l = ﬂLG are indeed satis-
fied.

Denoting the vacuum state for Sy and Bng (Bu and
Bnc) as |vac) ([vac)), we have the relation 7Tvac) =
P|vac) = |vac), since either 7 or P flips the sign of the



gap function®. From Egs. (30), (31) and (32), one ob-
tains

C(Blvac)) = Blj|vac), (33)
T(Blilvac)) = P(Bf|vac)) = —Bf|vae),  (34)
C(BLglvac)) = —Bliglvac), (35)
T (Bl lvac)) = Blilvae), (36)
P(Blglvac)) = — Bl [vac). (37)

In the normal phase, setting Ay = 0, ﬂluvac) and
BITI|W> trivially reduce to the same state ﬁITIO|FS> =
|ou), while ﬂLG|vac> and BL&W} reduce to BLGO|FS> =
|¢nG). Here, |FS) denotes the vacuum in the normal
phase. BITIO and 51]:1(;0 are given by

1
Bl = Bl > =Sy, (38)
‘AO:O - &k

1
ﬂ;}@o = BLG’AO:O x Z g—kSzk- (39)
k

Since BLGO can be transformed to 5120 by the 7/2 rota-
tion about the z-axis in the pseudospin space, Egs. (38)
and (39) indicate that the |¢n) and |¢png) states are de-
generate in the normal phase before breaking the U(1)
symmetry™48. Setting Ag = 0 in Egs. (33), (34), (35),
(36), and (37), we obtain®?

Clon) = |¢n), Tlou) = Plou) = —|¢n), (40)
Tlona) = |ona), Cléna) = Plone) = —|éna). (41)
)

The above equations show that |¢n) is odd and |png

is even under 7. On the other hand, both |¢n) and
|¢nG) are odd under P. From these facts, we can con-
clude that the lifting of the degeneracy of |¢n) and |pna)
in the superconducting phase should be induced by the
spontaneous breaking of 7 symmetry, not by the break-
ing of P or U(1) symmetry. Consequently, the break-
ing of T proves to be responsible for the emergence of
the pure amplitude MG mode. The spontaneously in-
duced magnetic field that breaks the 7 symmetry is
given by HY = 2A,. Therefore, the energy splitting
between the MG and NG modes should be of the order
of |H%,| = 2. This is consistent with the fact that the
energy gap of the MG mode is 2A.

VIII. CONCLUSIONS

Extending the previous understanding of the emer-
gence of the MG mode in the presence of the p-h sym-
metric fermionic dispersion, we have revealed the fun-
damental connection between the emergence of the pure
amplitude MG mode and the discrete symmetry of the
Hamiltonian in superconductors, which has not been
clarified in the previous works. We have shown that a

non-relativistic Hamiltonian for fermions with a p-h sym-
metric dispersion exhibits nontrivial discrete symmetries
under C, P, T, and CPT. In the U(1) broken supercon-
ducting ground state of such a p-h symmetric system,
T and P are spontaneously broken, while C is unbro-
ken. We have shown that the spontaneous breaking of
the discrete 7 symmetry leads to the emergence of the
MG mode that induces pure amplitude oscillation of the
gap function due to the unbroken C. It may be possible to
show a similar relation between the discrete symmetry of
the Hamiltonian and the emergence of the MG modes in
other non-relativistic systems, such as ultracold bosons
in optical lattices?%32 and quantum spin systems!'®16.
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Appendix A: Pseudospin representation for bogolons

In this Appendix, we introduce a pseudospin represen-
tation for bogolons and examine the symmetries of the
states involving excited bogolons. The pseudospins for
bogolons Sy, = (8%, S}, %) are defined as

S —cosgr —singg 0 Sik
S'e | = sinpr —cosgr 0 Sere | . (A1)
Syk 0 0 1 Syk

Using Eq. (A1), the MF Hamiltonian is represented as

Hur = Y 2E3S,.
k

(A2)

Denoting the eigenstates of S7, as | 1)r and | |")&,
they can be written as

[Tk = ur| Te — k| D,
e = uk| Dk + vk Dk,

(A3)
(A4)
where | |/) represents the vacuum of bogolons and | 1/)

the excited state of energy 2E), in which a pair of bo-
golons are excited. Since Sk is rotated about the angle



T — @k in the zz-plane in Eq. (A1), all the rotated pseu-
dospins S}, are aligned downward in the z direction in
the ground state. In fact, the BCS wave function can be

written as
=1[1¥)-
k

The raising and lowering operators, which creates and
annihilates a pair of bogolons, are given by

Sit = Sh £iS

(A5)

gk Ao
= T :l:
By Son £ S+ 5 e

Equation (29) can be derived from the above equation.
If we denote the excited state with a single pair of

bogolons as
lew) = SEH1®) = [ [ 110w
k'#k

(A6)

(A7)

both |ex) and |eg) have excitation energy 2Ej and de-
generate in a p-h symmetric system. Using Eq. (29), we
obtain

Clek) = —lek). (A8)

From Eq. (A8), it can be easily shown that |ex) — |ex)
is parity even, while |ex) + |eg) is parity odd under C.
The even parity states vanish at k = k = kpr because of
lex) = |ex). It means that the lower edge of the single-
particle continuum with energy 2A, consists of parity
odd states.

Appendix B: Classical spin analysis

In this Appendix, we give details of the classical spin
analysis. Linearizing Eq. (18) with respect to fluctuation

§Sk = Sk(t) — Sy, (6H (t) = H(t) — HY), we obtain
d 1
a(SS”k. = —§5Hy + H25Syk, (B1)
d 1
%58‘% = §5Hx COS Y — Hl(c)(SSHk (BZ)

Here, we decompose the spin fluctuation into the two
orthogonal directions as 6Skx = 0.S,xY +0S|kPk- Y is the
unit vector in the y-direction and ¢ = cos P& —sin pE2
is the unit vector illustrated in Fig. 4. We note that

0H, =2g0S, =29 ) 0Spcospr,  (B3)
k
§H, = 2g6S, =29 >  6Syk. (B4)
k
Using Eqgs (B2) and (B1), we obtain
%552 =— Zk: %wﬂk sin o,
= %M{y D singr —2A¢) 68, =0. (B5)
k k

X

FIG. 4: Illustration of the unit vectors d;k and 9.

Since 65, = 0 at the initial moment, Eq. (B5) shows that
the fermion number is conserved (05, = 0) through the
dynamics.

If the gap function is constant in time, setting 0H, =
dH, = 0 in Egs. (B1) and (B2), each pseudospin under-
goes precession independently with frequency w = 2FE}.
It represents a pair of bogolons arising from a broken
Cooper pair.

We consider collective dynamics of pseudospins involv-
ing nonzero 0 H, and/or 0 H,. Assuming 6Sg(t), 0 H (t)
e~ in Egs. (B2) and (B1), we obtain

- fk iw/2

6S|‘k = 4E,% — 25H1 + 4E,2€ — wzéHy, (BG)
B _zwcoscpk/2 Ey

0SSy = 152 - 0H, + 152 _w25Hy. (B7)

Substituting the above equations into Egs. (B3) and
(B4), we obtain the coupled equations for H, and 0H,
as

(1 = 29Xaa(w)) 6Hy + 2gXay(w)0H, =0, (B8)
29ny(w)5Hz + (1 - 29ny(w)) 5Hy =0, (B9)
05: = Xaoa(W)0Hy — Xzy(w)dH,, (B10)

where ys are given by Egs. (21), (22), and (25). Equa-
tions (19), (20), and (24) can be readily derived from
Egs. (B8), (B9), and (B10) by rewriting them in terms
of A and 66.

If we set w = 0 in Egs. (B8) and (B9), since x44(0) =
Xyz(0) = 0, 0H, and 0H, are uncoupled. Using 1 —
29Xyy(0) = 0 that reduces to the MF gap equation and
1-2¢gx42(0) # 0, we obtain the solution for the NG mode:
0H, = 0 and 6Hy # 0 (0A = 0 and 60 # 0). Equa-
tion (B10) indicates that the NG mode solution fulfills
the number conservation §S, = 0, because x.,(0) = 0.
From Eq. (B6) and (B7), one obtains

1

5S||k. - O, E

0Syk = 0H,. (B11)
The NG mode thus induces oscillations of pseudospins in
the y-direction as illustrated in Fig. 5 (a). Since 0S5y, =
0Syk, the NG mode induces in-phase oscillation of 0.5y
and 55@&.

In a p-h symmetric system, if we set w = 24, in
Egs. (B8) and (BY), since xuy(2A0) = Xyz(240) = 0,



FIG. 5: Illustration of pseudospin oscillation induced by the
NG mode (a) and the MG mode (b) in a system with p-h
symmetric €. (a) The NG mode induces in-phase oscillation
of 0Syk and 6Syk. (b) The MG mode induces out-of-phase
oscillation of §.5), and 05|, as well as 0Syx and 6Syk.

dH, and dH, are uncoupled. Using 1 — 2gx,2(2A¢) =0
that reduces to the MF gap equation and 1 —2gx,,(0) #
0, we obtain the solution for the MG mode: 6H, # 0 and
0H, =0 (0A # 0 and §6 = 0). Equation (B10) indicates
that the MG mode solution fulfills the number conserva-
tion 4.5, = 0, because x..(24¢) = 0 if & satisfies Eq. (7).
From Eq. (B6) and (B7), one obtains

-1 1Ag
v Hxa =
o0t 05y

The MG mode thus induces oscillations of pseudospins
both in the y-direction and the direction of qZ)k as illus-
trated in Fig. 5 (b). Since 65|, = —6S)x and 6Syx =
—6Syk, the MG mode induces out-of-phase oscillation of
5S||k. and 5Syk.

5S )k = oH

15y, He (B12)

Appendix C: Holstein-Primakoff theory

In this Appendix, we develop the Holstein-Primakoff
theory for the pseudospin Hamiltonian (2) to derive the
creation and annihilation operators of the MG and NG
modes.

Substituting Eq. (A1) into Eq. (2), one obtains

H= Z 281 (— cos prSLy, + sin rShy)
k

—g Z(cos Qk COS Qs St St + Sin Qg cos s { e, Sukr
k!

+ sin Pk sin (%) % S,/sz,/Zk/ + S’;kS;k')

Spin fluctuation can be quantized by the Holstein-
Primakoff transformation®?:

SeF =af\/1—afax, S =(SH, (€2

1
e = — <5 — a};ak) , (C3)

where a}; and oy denote, respectively, the creation and
annihilation operators of a boson that represents spin

(C1)

fluctuation. They satisfy the usual commutation rela-

tions [ak,az/] = 6k,k/ and [ak,ak/] = [OéL,O[L/] = 0.
When fluctuation is small a};ak < 1, S’,’j ~ a}; and

S’,'c_ ~ qy and therefore «ayp and a}; reduce to the an-
nihilation and creation operators of a pair of bogolons,
respectively.

We expand Eq. (C1) in terms of o and a};. The zeroth
and first order terms read

& A3
Ho = — == — — C4
o= XS (1)
Hi = E (§ksing0k—l—Aocosgok)(ak—i—a};). (C5)

k

The first order term vanishes in the ground state H; =
0 using sinpg = Ag/Fg and cosyr, = —&/Er. The
second order term reads

Ho =2 ZEka};ak + % Z {(1 — cos g cos pg)
k K k/

X (ozkozk/ + OALOZL,) — (1 —+ COs @y, cos (pk/)

X (ozkoz;fc/ + aLak/)} . (C6)

We diagonalize Ho by a Bogoliubov transformation

Br =D (Xipok + Yial), (C7)
k

BI\ = Z(kaa}; + Yakok), (C8)
k

where A labels the excited states. The bosonic operator
[ satisfies the commutation relations

B, BL) = D (Xxe Xk — Y3 York) = dx v, (C9)
k

81, 81 = > (= XakYak + YauXak) = 0. (C10)
k

From Egs. (C7) and (C8), one can easily derive the in-

} verse transformation

ap = Z(X/\kﬁA - Y,{“kﬁ:r\), (C11)
A

of = 3 (X5kBL — YawBy)- (C12)
A

Assuming that the second order term is diagonalized
as Ho =), WAﬁj\ﬁA + const., we obtain

ok, Ho) = Y wox(XawBr+ YaB).  (C13)
A



On the other hand, using Eq. (C6), one obtains

Setting X;, = Y{ = 0, we obtain X = X and Y3, =
Y?. The condition b + d = 0, which is obtained from

[k, Ha] = { <2EkX)\k _9 Z(Cos o1 €08 P + 1) X Egs. (C19) and (C20), reduces to

1%

Z COS Q) COS Pl — 1)Y>\k’> B
%

+9

2

< 2EkY 5 — Z(cos Pk COS Pp
kl

+4

2

Z COS P COS Pir + l)Y/\k/> [3/\} (C14)
%

Comparing Eqgs. (C13) and (C14), one obtains sets of
equations for X x and Yyx as

2Bk Xk — g {(ax —cx) cospp + (bx +dx)}

= w,\X,\k, (015)
—2FELY \k — g {(CL)\ — C)\) COS Pf — (b>\ + dk)}
= w)\Y)\k, (016)
where the coefficients ay, by, ¢y, and dy are given by
A = ZCOS ngka, b>\ = ZX)"‘“ (017)
k k
C) = ZCOS ngY)\k, d>\ = ZYM“' (018)
k

k
Equations (C15) and (C16) can be formally solved as
g (ax —cx)cospy + (br +dy)
Xy =2 C19
Ak 2 2Ek N ) ( )
q (a)\ - C)\) COS Y — (b)\ + d)\)
Yie =—2 . C20
T 2E), + wy (C20)

We omit A below.
If the p-h symmetric condition (7) is satisfied,
Egs. (C15) and (C16) can be decoupled by introducing
the even and odd components as
X = (Xo+ Xg)/2, Vi = (Ve +Ye)/2,
Xp=Xe = Xg)/2, YQ =Y —Yi)/2,

(C21)

(C22)

where the former two are even as X;, = X and Y){ = Y},

while the latter two are odd as Xp = —Xp and Y =

-Yyg. B a
The equations for odd components read

2FE Xp — g(a —c)cospp = wXp, (C23)
—2FELY;] — 5 (a —¢)cos pr = wYy, (C24)
(C25)

a= ZcosgakX,‘;, c= Zcosmka,f.
k k

If a — ¢ # 0, the formal solutions of Eqs. (C23) and (C24)
are given by
g (a—c¢)cosyp Y

g
Xo=21 JPFk yoJ
k=9 9F,—w ' kT2

(¢ —a)cos g

2B, +w (026)

- DX

wék
. B (C27)
Zk: Er(4EZ — ?)
Since Eq. (C27) is equivalent to xzy(w) = 0, it ensures

the uncoupled phase and amplitude fluctuations.
Substituting Eq. (C26) into Eq. (C25), we obtain

1-2g ZE24E2_w2:o. (C28)

The above equation is equivalent to 1 —2¢x..(w) = 0 and
therefore has the MG mode solution w = 2|Ag| for which
it reduces to the MF gap equation. We thus obtain

Acos pr,
X = ——— T~ YS = —
k 2|Ao| — 2B, K

Acos pg

———(C29
2|A0| +2Ek( )

where A is the normalization constant. A is determined
by the normalization condition (C9) as

R (C30)

3 NS
k Ekzgk

The creation operator of the MG mode is thus obtained

(&31)

1 1
A T
Z (2|A0| —oh, M T oAy + 2B,

The equations for even components read

2EL X5 — g(b +d) = wXE, (C32)
2BLYE + g(b +d) = wYy, (C33)
(C34)

b=> Xg, d=)_ Y.
k k

If b+d # 0, the formal solutions of Eqgs. (C32) and (C33)
are given by

Xe_g b+d e 9 b+d
k™99, —w’ T 2%2Ep 4w’

Setting X7 = Y = 0, we obtain X = X and Y3, =

Y$. The condition @ — ¢ = 0, which is obtained from

Egs. (C19) and (C20), reduces to Eq. (C27).
Substituting Eq. (C35) into Eq. (C34), we obtain

Ey
=200 g =0
k

The above equation is equivalent to 1 —2gy,,(w) = 0 and
therefore has the NG mode solution w = 0, for which it
reduces to the MF gap equation. We thus obtain

(C35)

(C36)

XE =Yg =A/Ey, (C37)



where A’
Eq.

is the normalization constant.  However,
(C37) does not fulfill the normalization condition

(C9). This anomaly is typical for zero energy modes.
It can be avoided by introducing a small fictitious exter-
nal field in the Hamiltonian (2)%!. The creation operator
of the NG mode is thus obtained as

10

11

12

13

14

16

17

Blg=4>" Eik(aL + ). (C38)

k

10

T T

In the limit of small fluctuation aj o < 1, using a;, ~

S,’j and oy ~ S}, the creation operators for the Higgs

mode and the NG mode can be obtained as Eqs. (27) and
(28).
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