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In this paper, we present an exactly solvable model for two dimensional topological superconduc-
tor with helical Majorana edge modes protected by time-reversal symmetry. Our construction is
based on the idea of decorated domain walls and makes use of the Kasteleyn orientation on a two
dimensional lattice, which were used for the construction of the symmetry protected fermion phase
with Z2 symmetry by Tarantino et al. and Ware et al. By decorating the time-reversal domain
walls with spinful Majorana chains, we are able to construct a commuting projector Hamiltonian
with zero correlation length ground state wave function that realizes a strongly interacting version
of the two dimensional topological superconductor. From our construction, it can be seen that the
T 2 = −1 transformation rule for the fermions is crucial for the existence of such a nontrivial phase;
with T 2 = 1, our construction does not work.

Introduction – The discovery of topological insulators
and superconductors1–6 demonstrates that a fermionic
system can exhibit nontrivial topological properties if the
fermions occupy a band structure with nontrivial topol-
ogy. The topological nature of the systems is manifested
physically in the existence of gapless edge modes around
a gapped bulk, which cannot be removed unless certain
symmetry is explicitly or spontaneously broken. It is
also manifested at symmetry defects on the boundary of
the system. For example, in a 2D topological supercon-
ductor, a time-reversal domain wall on the 1D boundary
hosts a Majorana zero mode and in a 3D topological su-
perconductor, a time- reversal domain wall on the 2D
boundary hosts a chiral Majorana mode. A complete
classification of topological insulators and superconduc-
tors in free fermion systems was given in Ref.7 and 8.
Such ‘Symmetry Protected Topological (SPT)’ order was
found in interacting boson systems as well. A whole
class of exactly solvable models with commuting projec-
tor Hamiltonian and zero correlation length ground state
wave function were constructed to realize such bosonic
SPT order9,10.

Can topological insulators and superconductors discov-
ered in the free fermion setup be realized with exactly
solvable models as well? This question is interesting not
only out of pure theoretical curiosity; it is also crucial
for formulating a general framework for both fermionic
and bosonic SPT phases which may lead to the discovery
of new phases and a complete classification. Moreover,
it can be useful in answering questions regarding many-
body localization in such phases when strong disorder
is present11. In this paper, we focus on the case of 2D
topological superconductor.

If an exactly solvable model is possible, it necessarily
involves interactions as the free fermion ground states
always have a nonzero correlation length due to the non-
trivial topology of the band structure11. Ref. 12 and 13
gave the exactly solvable model realization of a large class
of fermionic SPT phases which are protected by symme-

tries of the form Gb × Zf2 , where Gb denotes symmetry
transformation on some bosonic degrees of freedom in the

system and Zf2 is the fermion parity part of the symme-
try. The symmetry protecting the topological supercon-
ductor falls out of this class. In the topological supercon-
ductor, time-reversal symmetry acts as T 2 = Pf , where

Pf is the fermion parity operator generating the Zf2 sym-
metry group. Therefore, the total symmetry group is Z4,
with the odd group elements being anti-unitary.

The decorated domain wall construction provides a dif-
ferent approach for constructing exactly solvable models
for SPT phases.14. In this approach, the ground state
wave function is written as a superposition of all possi-
ble symmetry breaking configurations with the symmetry
breaking domain walls decorated with SPT states of one
lower dimension, as shown in Fig.1 (a). The superposi-
tion guarantees that the total wave function is symmet-
ric. Moreover, when symmetry is broken into opposite
domains, the domain wall carries the lower dimensional
SPT state. When the domain wall ends on the boundary
of the system, the end point hence hosts the edge state of
the lower dimensional SPT state, reflecting the nontrivial
nature of the original SPT order, as shown in Fig.1 (b).

In a topological superconductor with helical Majorana
edge mode, a mass term can gap out the edge mode while
breaking time-reversal symmetry. On the symmetry do-
main wall, there is an isolated Majorana mode. There-
fore, if the topological superconductor can be written in
the decorated domain wall way, we should decorate the
time-reversal domain walls with Majorana chains.

Decorating symmetry domain walls with Majorana
chains has proven to be more difficult than with bosonic
chains. A breakthrough was made recently in Ref.15 and

16 where a fermionic SPT phase with Z2 ×Zf2 symmetry
was realized by decorating the Z2 domain walls with 1D
Majorana chains. Although the protecting symmetry is

still of the form Gb × Zf2 , this particular phase cannot
be realized using the method of Ref.12. It was realized
that the incorporation of a Kasteleyn orientation on the
two dimensional lattice, which corresponds to a discrete
version of spin structure in 2D, is crucial for a consistent
decoration.
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FIG. 1. The decorated domain wall approach. (a) Ground
state is a superposition of all symmetry breaking domain con-
figurations (blue and grey patches) with domain walls deco-
rated with SPT states of one lower dimension (red curves).
(b) The end point of the domain wall on the boundary (star)
hosts nontrivial edge states of the lower dimensional SPT.

Using the Kasteleyn orientation, we present a deco-
rated domain wall construction of the 2D topological su-
perconductor in this paper. Our construction is differ-

ent from that of the Z2 × Zf2 SPT phase in an impor-

tant way. In the case of Z2 × Zf2 , the Majorana chain
used for decoration does not transform under the Z2 part
of the symmetry, which acts only on the symmetry do-
mains. In the case of topological superconductor, time
reversal acts both on the symmetry domains and on the
Majorana chains decorated onto the symmetry domain
walls. In fact, the way the Majorana chains transform
under time reversal is crucial for the construction as we
know that topological superconductivity only exists for
T 2 = −1 fermions but not the T 2 = +1 ones. Indeed, after
we present carefully how a zero correlation length wave
function and a commuting projector Hamiltonian can be
constructed for T 2 = −1 fermions, we will be able to see
why a similar construction fails for the T 2 = +1 ones. Our
discussion below focuses on the Honeycomb lattice, but
the construction works for any trivalent lattice using the
same convention as defined below.

Wave-function – Consider the planar trivalent lattice
in Fig.2 together with a Kasteleyn orientation, i.e., orien-
tation of the bonds of the lattice for which any plaquette
has an odd number of clockwise-oriented bonds. There
are two types of faces in the lattice: the 12-sided faces,
which we will refer to as plaquettes, and the triangular
faces, which we will refer to as triangles. Let t(v) and
t(w) be the triangles that contain the vertices v and w,
respectively. The bonds of the lattice also come in two
types: the ‘short’ bonds which connect different triangles
(t(v) ≠ t(w)), and the ‘long’ bonds that are in the same
triangle (t(v) = t(w)).

The Hilbert space of our model consists of a bosonic
spin-1/2 located on each plaquette p, acted on by the
Pauli operators τxp , τyp , τzp , and a pair of complex fermions
located on each short bond l, created and annihilated by

operators cσ†
l and cσl (σ =↑, ↓), respectively. Let l = ⟨

Ð→
vv′⟩

be oriented from vertex v to vertex v′. Each complex

fermion on l can be represented by a pair of Majorana
modes

γσv = cσ†
l + c

σ
l ,

γσv′ = i(cσ†
l − c

σ
l ), (1)

located at v and v′, respectively. We can also define a
fictitious spin-1/2 degree of freedom τt on each triangle
following the majority rule: The value of τt is set to 1
if the majority of the three plaquettes bordering t have
τzp = 1, and is set to −1 otherwise.

Our system has a time-reversal symmetry T , which
acts on both the plaquette spins and the complex
fermions. In the eigenbasis of τzp , T maps between the
two eigenstates of τzp :

T ∶ ∣1⟩→ ∣−1⟩ , ∣−1⟩→ ∣1⟩ , (2)

together with the complex conjugation operation in this
basis. The fictitious spins on the triangles will also be
flipped due to the majority rule. Since any fixed plaque-
tte spin configuration in the τz basis breaks time-reversal
symmetry, we will refer to a domain of plaquette spins in
the same τz basis state as a time-reversal domain. Fur-
thermore, cσl transforms as a Kramers doublet under T :

c↑l → c↓l , c↓l → −c
↑

l . Written in terms of the Majorana
modes, we have:

T ∶{γ
↑

v → γ↓v
γ↓v → −γ↑v,

{γ
↑

v′ → −γ
↓

v′

γ↓v′ → γ↑v′ .
(3)

where the Kasteleyn orientation points from v to v′.
Now we describe in detail how we decorate the time-

reversal domain walls with Majorana chains. Away from
the domain wall, we pair up Majorana modes that share a

short bond ⟨
Ð→
vv′⟩ as iγ↑vγ

↑

v′ + iγ↓vγ
↓

v′ . On a domain wall, we
pick out one Majorana mode γσv

v from each vertex v and
pair them along the long bonds ⟨Ð→vw⟩ as iγσv

v γσw
w so that

they form a Majorana chain. The spin label σv is deter-
mined as follows: If the left hand side of the short bond is
a ∣1⟩ domain, σv = ↑; otherwise, σv = ↓. After the Majo-
rana modes of the σv species pair into Majorana chains,
we are left with exactly one unpaired Majorana mode on
each vertex on the domain wall. The two unpaired Ma-

jorana modes that share a short bond ⟨
Ð→
vv′⟩ will have the

same spin σ̄v which can be paired as iγσ̄v
v γ

σ̄v′

v′ . This is
the same kind of coupling as that away from the domain
wall, but with only one species of Majorana modes. Fig.2
(b) and (c) give a pictorial illustration of these coupling
rules.

The ground state wave function of a topological super-
conductor is then given by the superposition of all pos-
sible time-reversal domain configurations with domain
walls decorated with Majorana chains. It satisfies the fol-
lowing properties: It’s time-reversal invariant, and every
configuration in the superposition has the same fermion
parity. The latter fact is ensured by the Kasteleyn ori-
entation. The reason for this is very similar to that pre-
sented in Ref.15 and 16 although here we have two species
of fermion modes.
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FIG. 2. (a) illustrates the lattice structure and degrees of
freedom in our model. Here 1 and −1 denote the eigenstates
of τzp with eigenvalues 1 and −1, respectively. The blue bonds
indicate the time-reversal domain wall. The solid red cir-
cles denote the Majorana modes γσv (σ =↑, ↓). The arrow at
each bond denotes the Kasteleyn orientation of the bond. (b)
(resp. (c)) is a detailed illustration of the coupling of Ma-
jorana modes away from (resp. on) the domain wall. The
dots and crosses on the solid red circles indicate the up (↑)
and down (↓) spins of the Majorana modes, respectively. The
yellow (resp. grey) bond denotes the coupling of Majorana
modes that share a long (resp. short) bond.

To see the time-reversal invariance, we note that time
reversal acts by flipping the plaquette spins, and trans-
forms the Majorana modes in a way that conforms to
the decoration rules introduced above. In particular,
for Majorana modes not on a domain wall, they pair
as iγ↑vγ

↑

v′ + iγ↓vγ
↓

v′ on a short bond which is invariant un-
der time reversal. For Majorana modes on a domain wall,
the decoration rule says that the modes that form (do not
form) Majorana chains flip their spin when the plaque-
tte spins are flipped, which is consistent with the time-
reversal transformation action. Moreover, the pairing
terms along the domain wall, whose signs are fixed by the
Kasteleyn orientation, exactly map into each other un-
der time reversal without any sign ambiguity. To see this,
first notice that for the modes which do not form Majo-
rana chains, the pairing maps from iγσv

v γ
σv′

v′ to iγσ̄v
v γ

σ̄v′

v′ ,
which are both consistent with the Kasteleyn orienta-
tion. Secondly, for the modes that are involved in form-
ing Majorana chains, one can check that the pairing term
iγσv
v γσw

w is mapped into iγσ̄v
v γσ̄w

w which are both consis-
tent with the Kasteleyn orientation.17 Therefore, we can
conclude that time reversal maps from one to another
the decorated domain wall configurations in the superpo-
sition. The whole superposition is then time-reversal in-
variant if the weight of the time-reversal partner configu-
rations are complex conjugate of each other. This will be
demonstrated in detail in the Supplemental Material18.

Hamiltonian – The Hamiltonian of our model can be

written as

H =Hdecorate +Htunnel, (4)

where Hdecorate will be defined to realize the domain wall
decoration described in the above section for each plaque-
tte spin configuration, and Htunnel will be defined to tun-
nel between the different plaquette spin configurations.

More explicitly, let D
⟨
Ð→vw⟩ = 1

2
(1 − τzfÐ→vw

τzf ′Ð→vw

) be the op-

erator which detects if the bond (either short or long)
⟨Ð→vw⟩ is on a domain wall. fÐ→vw denotes the left-hand-side
face of the bond ⟨Ð→vw⟩; f ′Ð→vw denotes the right-hand-side

one. If ⟨Ð→vw⟩ is a long bond, we denote by ⟨vv′⟩ (⟨ww′⟩)
the short bond that includes vertex v(w).19 We can de-

fine two operators W ±

vw = 1
4
(1 ± τzf

vv′
)(1 ∓ τzf ′

ww′

) to de-

termine which γsv,w( s =↑, ↓) to pair in the Majorana chain
on the domain wall. If W +

vw = 1, W −

vw = 0, the pairing
over the long bond ⟨Ð→vw⟩ is iγ↑vγ

↓

w; if W −

vw = 1, W +

vw = 0, it
is iγ↓vγ

↑

w. If both are zero, ⟨Ð→vw⟩ is not on a domain wall.
Now we write the decoration part of the Hamiltonian

as

Hdecorate

= − ∑
⟨
Ð→vw⟩

t(v)=t(w)

[iD
⟨
Ð→vw⟩W

+

vwγ
↑

vγ
↓

w + iD⟨Ð→vw⟩W −

vwγ
↓

vγ
↑

w)]

− ∑
⟨
Ð→vw⟩

t(v)≠t(w)

[iD
⟨
Ð→vw⟩(

1 + τzf
2

)γ↓vγ↓w + iD⟨Ð→vw⟩(
1 − τzf

2
)γ↑vγ↑w

+ i(
1 −D

⟨
Ð→vw⟩

2
)(γ↑vγ↑w + γ↓vγ↓w)], (5)

where t(v) (resp. t(w)) denotes the triangular face that
includes the vertex v (resp. w). Htunnel can be defined
by

Htunnel =∑
p

τxpXp, (6)

where the sum over p only involves the plaquettes, not
the triangles. The plaquette term Xp rearranges the Ma-
jorana chains to comply with the domain wall decoration
rules defined above after τxp is applied. Specifically,

Xp = ∑
µp=±1
{µq=±1}

V {µp,q}

p ΠpP
{µp,q}

p , (7)

where the sum over {µq = ±1} denotes the summation
over all the adjacent plaquette spin configurations around

p .20 The operators P
{µp,q}

p and Πp are projectors: P
{µp,q}

p

projects onto bosonic spin states with precisely τzp = µp
and τzq = µq, and Πp projects onto states in the fermionic
Hilbert space that conform to those spin configurations:

P {µp,q}

p = (
1 + τzpµp

2
)∏
{q}

(
1 + τzq µq

2
) (8)
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Πp = ∏
⟨
Ð→vw⟩∈∂′p
t(v)=t(w)

D
⟨
Ð→vw⟩[W +

vw(
1 + iγ↑vγ↓w

2
) +W −

vw(
1 + iγ↓vγ↑w

2
)]

∏
⟨
Ð→vw⟩∈∂′p
t(v)≠t(w)

{(
1 −D

⟨
Ð→vw⟩

2
)(1 + iγ↑vγ↑w

2
)(1 + iγ↓vγ↓w

2
)+

D
⟨
Ð→vw⟩[(

1 + τzfvw

2
)(1 + iγ↓vγ↓w

2
) + (

1 − τzfvw

2
)(1 + iγ↑vγ↑w

2
)]}

(9)

Here ∂′p includes the 36 Majoranas in the triangles sur-
rounding the plaquette p, as shown in Fig.3(a). The first
line and third line of Eq.(9) enforce the pairing of Ma-
jorana modes on the domain wall, and the second line
of Eq.(9) enforces the pairing of Majorana modes away
from the domain wall.

The third part in the definition of Xp is

V {µp,q}

p = 2−
n+1
2 (1 + is2,3γ

σ2

2 γσ3

3 )(1 + is4,5γ
σ4

4 γσ5

5 ) . . .
(1 + is2n,1γ

σ2n

2n γσ1

1 ). (10)

which takes the initial fermion configuration ∣Ψi⟩ deter-
mined by Πp corresponding to a fixed bosonic configu-

ration determined by P
{µp,q}

p , and maps it to ∣Ψf ⟩. The
constant in the front is chosen so that ∣Ψf ⟩ has the same
norm as ∣Ψi⟩. The labels σi (i = 1,2...2n) can take val-
ues ↑ and ↓, specifying the spins of the Majorana modes,
and are determined by the bosonic spin configuration on
and around the plaquette p following the aforementioned
decoration rules. The Majorana modes γi are arranged
so that the initial state satisfy is2i−1,2iγ

σ2i−1

2i−1 γ
σ2i

2i = 1.

Then V
{µp,q}

p maps this state into a state ∣Ψf ⟩ with
is2i,2i+1γ

σ2i

2i γ
σ2i+1

2i+1 = 1. Here si,j = 1 if the edge ⟨vivj⟩
points from vi to vj and si,j = −1 otherwise. A pictorial
illustration is given in Fig.3(b).

V
{µp,q}

p defined above determines the relative weight
and phase factor of different configurations. With re-
peated application of Vp and τxp , we can start from any
initial configuration (including both boson and fermion
degrees of freedom) satisfying Hdecorate, and reach any
other final configuration. The total ground state wave
function is then a superposition of all the configura-
tions obtained in this way. The fact that the relative
weight and phase factor of different configurations can
be uniquely and consistently determined is guaranteed
by the commutativity of different Vp terms, which we
prove in the Supplemental Material18. Moreover, as we
discuss in the Supplemental Material, the Hamiltonian as
defined is time-reversal invariant and ensures the time-
reversal invariance of the ground state wave function.

Why T 2 = 1 fermion does not work – We now discuss
why our decoration procedure discussed above does not
work for spinless fermions with T 2 = 1. Let there be one

complex fermion on each short bond l = ⟨
Ð→
vv′⟩, created

and annihilated by cl and c†l , respectively. We define
a pair of Majorana modes for each complex fermion by

1

1

1

-1

-1

-1

-1

-1 -1

-1

1

11

1 1

11

1

1

(a)

3

(b)

P

1

2

4
5

67

8

9
10

11
12

13 14

FIG. 3. (a) The 36 Majorana modes denoted by the 18 red
dots in this figure are the Majorana modes surrounding the
plaquette p, denoted by ∂′p. (b) Majorana modes (labeled

1− 14) involved in the definition of V
{µp,q}
p when flipping the

middle plaquette starting from this particular initial configu-
ration. Red rectangles correspond to the pair projector terms

involved in V
{µp,q}
p . Note that the spins of the involved Ma-

jorana modes are not shown in the figure.

γv = c†l + cl, γv′ = i(c
†
l − cl), located at vertices v and v′,

respectively. Under time reversal, T ∶ cl → cl. Written in
terms of the Majorana modes, we have:

T ∶ γv → γv, γv′ → −γv′ . (11)

We may decorate the time-reversal domain walls with
Majorana chains in a way similar to our construction
above and similar to Ref.15 and 16. Away from the
domain wall, we pair up Majorana modes that share a

short bond l = ⟨
Ð→
vv′⟩ as iγvγ

′

v. On a domain wall, we pair

up Majorana modes that share a long bond l̃ = ⟨Ð→vw⟩ as
iγvγw. This coupling rule ensures that different domain
wall configurations have the same fermion parity. How-
ever, one can check explicitly that the domain-wall cou-
pling terms are odd under time reversal, hence breaking
time-reversal symmetry. In the Supplemental Material18,
we will further argue that modifications of the above cou-
pling rule which preserve the time-reversal symmetry in-
evitably breaks the fermion parity invariance of the do-
main wall configurations. This strongly suggests that our
construction cannot be generalized to spinless fermions
with T 2 = 1. This is consistent with the fact that there
are no nontrivial fermionic short-range entangled phases
with T 2 = 1.
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