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We theoretically study magnetic and topological properties of antiferromagnetic kagome spin systems in the
presence of both in- and out-of-plane Dzyaloshinskii-Moriya interactions. In materials such as the iron jarosites,
the in-plane interactions stabilize a canted noncollinear “umbrella” magnetic configuration with finite scalar spin
chirality. We derive expressions for the canting angle, and use the resulting order as a starting point for a spin-
wave analysis. We find topological magnon bands, characterized by non-zero Chern numbers. We calculate the
magnon thermal Hall conductivity, and propose the iron jarosites as a promising candidate system for observing
the magnon thermal Hall effect in a noncollinear spin configuration. We also show that the thermal conductivity
can be tuned by varying an applied magnetic field, or the in-plane Dzyaloshinskii-Moriya strength. In contrast
with previous studies of topological magnon bands, the effect is found to be large even in the limit of small
canting.

PACS numbers: 75.25.-j,75.30.Ds,75.47.-m

I. INTRODUCTION

In recent years there has been a growing interest in cor-
related materials with strong spin-orbit coupling (SOC).1–3

When both electron-electron interactions and SOC are present
novel phases may be found, including spin liquids,4,5 un-
conventional magnetic orders,6–8 and fractional topological
states.9,10 One important class of such materials is Mott insu-
lators at half-filling, which can be described using local mo-
ment (spin) models. When SOC is present it often gives rise
to Dzyaloshinskii-Moriya interactions (DMI),11,12 which pro-
vides one route towards topologically nontrivial magnetic ex-
citations in both ordered,13–17 and disordered13,18,19 systems.
Materials with these properties could potentially be exploited
in antiferromagnetic spintronics,20 and topological magnonic
devices.21

As a result there have been many intriguing proposals to
use magnetic excitations as a platform for realizing analogs of
other topological systems. Recent examples include analogs
of the Haldane-Kane-Mele model,22 Dirac semimetals,23,24

Weyl semimetals,25,26 triple points,27 and chiral topological
insulators.28 The most studied class of systems, however, is
ordered magnetic insulators with topological magnon bands,
associated with nonzero Chern numbers. These systems can
be seen as bosonic, charge-neutral analogs of integer Chern
insulators.29,30 An observable signature of the topology is
found in the thermal Hall effect of magnons (or magnon
thermal Hall effect), in which the magnon edge current pro-
duces a thermal Hall current and transverse thermal conduc-
tivity κxy in the presence of a thermal gradient.13,14,31–33 This
effect has been experimentally observed in pyrochlore and
kagome ferromagnets,14–16,34 where the DMI induces a non-
trivial Berry phase on the magnons. A similar thermal Hall
effect has also been observed above the ordering temperature
in a kagome ferromagnet,16 in the disordered phase of a spin
ice material,18 and in a spin-liquid state.35 The existence of
the signal in the disordered regime can be understood in terms
of spin-linear response theory or Schwinger bosons.19,36 Fi-
nally, a related phenomenon is the magnon spin Nernst effect,
which can be seen as two copies of the magnon thermal Hall

effect.37–39

Despite the experimental emphasis on ferromagnetic sys-
tems, there is no principle ruling out the magnon thermal Hall
effect in antiferromagnetically coupled systems.40,41 Of par-
ticular interest is noncoplanar orders where a finite scalar spin
chirality13 Si ·

(
S j × Sk

)
can produce the non-trivial topology.42

This is the reason why several theoretical predictions focus on
intrinsically non-coplanar magnetic configurations such as in
pyrochlore iridate thin films,43 and bulk systems,27, or non-
collinear configurations canted out-of-plane by a magnetic
field. For the latter case, the magnon thermal Hall effect
has been predicted on the star,42 honeycomb,44 and kagome
lattices.41,42,45,46

In this paper we study kagome quantum antiferromagnets
with intrinsic non-coplanar orders, such as iron jarosites,47–53

chromium jarosites,54,55 veseignite,56 and the recently intro-
duced Nd3Sb3Mg2O14 compound.57 Due to their intrinsic
noncoplanarity several of these materials have been proposed
as suited for experimental studies of the magnon thermal Hall
effect.36,58 However, their finite spin chirality (and thus topo-
logical properties) is believed to be due to in-plane compo-
nents of the Dzyaloshinskii-Moriya (DM) vectors, which have
been neglected in past works on the magnon thermal Hall ef-
fect in kagome systems. (They have, however, been studied
in the related context of Weyl magnons in stacked kagome
models.59) In systems with weak in-plane DMI this can be
justified on energetic grounds,60 but it isn’t necessarily weak
in these materials. Furthermore, it has been shown that even
weak in-plane DMI can have a significant impact on thermo-
dynamic properties.61,62 Our treatment includes the in-plane
DMI, which we will show results in both higher Chern num-
bers, and a large magnon thermal Hall effect. The effect can
be tuned by an applied transverse magnetic field, or the in-
plane DM strength. Remarkably, we find a large effect even
when the spin chirality is very small, which is in clear contrast
to past works on noncollinear systems.

The paper is organized as follows. In Sec.II we introduce
the spin model and derive new expressions for the canting an-
gle, allowing for XXZ anisotropy, next-nearest neighbor ex-
change, and an applied magnetic field. We also comment on
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applicable materials. In Sec.III we carry out a spin-wave anal-
ysis about the groundstate. In Sec.IV the magnon thermal Hall
conductivity is calculated, and shown to be tunable as a func-
tion of the applied field and in-plane DMI strength. Finally, in
Sec.V we end the paper with conclusions.

II. MODEL AND MAGNETIC ORDER

A. Spin model

The kagome lattice is shown in Fig. 1. It has the prop-
erty that the middle point between two lattice sites is not
an inversion center. Consequently, DMI is not forbidden by
symmetry,12,48 and so a natural first spin model for many
kagome Mott insulators is,

H1 =
∑
〈i, j〉

[
J1Si · S j + Di j ·

(
Si × S j

)]
, (1)

where J1 is the strength of the nearest-neighbor (NN) Heisen-
berg exchange, 〈i, j〉 denotes a sum over nearest neighbors,
Di j is the DM vector, and Si is the vector of spin operators
at site i. Since the kagome plane is a mirror plane, Moriya’s
rules prescribe that the DM vector points perpendicular to the
plane, i.e. Di j = Dzẑ.12,48 In the spin-1/2 case one expects
the existence of a quantum critical point at Dc

z/J1 ' 0.1 be-
tween a spin liquid for |Dz| < Dc

z and a coplanar ordered state
for |Dz| > Dc

z .60,63 For both spin-1/2 and higher spins, mean-
field theory predicts two possible q = 0 states, with opposite
sign chirality.48 For Dz < 0 a state with all spins pointing to-
wards or away from the center of triangles is selected, such as
in Fig. 2 (a). This state is known as the 120◦ configuration.
(Note that the DM vectors are determined by symmetry only
up to a sign. Here we use the convention of Matan et al.,52

which is the opposite to that of Elhajal et al.48 In the latter
convention the 120◦ order would correspond to Dz > 0.)

If the symmetry is lowered such that the kagome plane no
longer is a mirror plane, in-plane components of the DM vec-
tor are also allowed. This can occur in e.g. three-dimensional
materials containing stacked kagome layers, such as jarosites,
due to the local crystal environment near the kagome plane.48

In this case we can write Di j = Dpn̂i j + Dzẑ, where n̂i j is
some in-plane DM (unit) vector, and Dp is the strength of
the in-plane DMI. For bond (αβ) in Fig. 1 we write Dαβ =

(0,Dp,Dz). Other DM vectors can then be obtained by rota-
tion, and are shown in Fig. 3. The in-plane DMI Dp cants
the spins out-of-plane, leading to a weak ferromagnetic mo-
ment. This is the so-called “umbrella” configuration shown
in Fig. 2 (b). Experimental results on the spin-1/2 material
veseignite BaCu3V2O8(OH)2 suggests that non-zero Dp can
stabilize this canted order when |Dz| < Dc

z .56 For the spin-5/2
iron jarosites one expects smaller frustration tendencies, and
also finds this canted order.50

The model (1) is, however, not complete. In the iron
jarosites there is also next-nearest neighbor (NNN) Heisen-
berg exchange, for example. For this reason we introduce an

FIG. 1. The kagome lattice is a network of corner-sharing triangles.
The two lattice vectors a1 and a2 are shown, along with the sublat-
tices α, β, γ.

(a) top

(b) side

FIG. 2. (a) Top, and (b) side views of the canted 120◦ (or “umbrella”)
magnetic configuration. The top view also serves as illustration of the
120◦ order without canting.

expanded model,

H = HJ1 + HDM + HJ2 + HB, (2)
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FIG. 3. (color online) The kagome DM vectors. The in-plane direc-
tions are shown by the green arrows, while the out-of-plane compo-
nent is out-of (into) the plane for the triangles pointing up (down).

where

HJ1 = J1

∑
〈i, j〉

(
Si · S j − ∆S z

i S
z
j

)
, (3)

HJ2 = J2

∑
〈〈i, j〉〉

Si · S j, (4)

HDM =
∑
〈i, j〉

Di j ·
(
Si × S j

)
, (5)

HB = −B
∑

i

S z
i . (6)

Above, ∆ is an XXZ anisotropy for the NN exchange, J2 is the
NNN exchange strength, and B is a magnetic field applied per-
pendicular to the kagome plane. For convenience we also de-
fine J ≡ J1− J1∆+ J2. We neglect any interlayer coupling, be-
cause it is weak compared to the DMI in iron jarosites.52 The
canted 120◦ order can alternatively be explained by single-
ion anisotropy terms,50,64,65 but these are expected to be small
for the Fe3+ ions of iron jarosites.48 We introduce the XXZ
anisotropy to our model to help explain large canting angles
in certain materials. It is, however, not necessary for the de-
scription of current experimental data on jarosites, and will be
assumed to be zero in all calculations for jarosites.

B. Canting angle

Neglecting quantum effects and fluctuations, the canted
120◦ order can be described using classical spin vectors

Sα = S
− √3

2
cos η, −

1
2

cos η, sin η
 , (7)

Sβ = S
+ √3

2
cos η, −

1
2

cos η, sin η
 , (8)

Sγ = S (0, cos η, sin η) , (9)

where S is length of the spin, and η is the canting angle, with
η = 0 corresponding to the uncanted, coplanar order. The

order leads to a scalar spin chirality in the unit cell

χ4 = Sα ·
(
Sβ × Sγ

)
=

3
√

3S 3

2
cos2 (η) sin η. (10)

The vector spin chirality is

~χ4 = Sα × Sβ + Sβ × Sγ + Sγ × Sα =
3
√

3S 2

2
cos2 (η) ẑ (11)

in the ordered state, but can remain non-zero even above the
magnetic ordering temperature TN .66

The classical energy for the Hamiltonian (2) is then found
to be

Ecl (η)
NS 2 =

J
2
−

3J
2

cos 2η − 2J1∆ sin2 η −
B
S

sin η

+
√

3Dz cos2 η +
√

3Dp sin 2η. (12)

The canting angle η is determined by the zeros of

f (η) =
1

NS 2

∂Ecl (η)
∂η

. (13)

To first order in η the solution takes the intuitive form

η(1) ≡
Beff

Bsat
, (14)

where the effective field and saturation field are given by

Beff =
B
S

+ 2
√

3
∣∣∣Dp

∣∣∣ , (15)

Bsat = 6 (J1 + J2) − 4J1∆ + 2
√

3 |Dz| . (16)

Thus, both in-plane DMI and transverse magnetic fields can
cause canting. The XXZ anisotropy increases the canting an-
gle by lowering the saturation field, but does not cause contin-
uous canting in the absence of in-plane DMI or fields.

The equation f (η) = 0 can also be solved for special cases.
For Dp , 0, B = ∆ = 0 we find

tan 2η =
−2Dp

√
3 (J1 + J2) − Dz

, (17)

which is just an extended version of the formula derived by
Elhajal et al.48, also including the NNN exchange. For small
angles η, tan 2η ≈ sin 2η, which results in the formula used in
Refs. [51 and 52]. In the special case of Dp = ∆ = 0, B , 0,

sin η =
B/S

6 (J1 + J2) − 2
√

3Dz
, (18)

consistent with the result of Owerre.58

C. Overview of experimentally relevant materials
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TABLE I. Materials that order in the canted 120◦ configuration with experimentally derived parameters.

Material Ref. S TN (K) η J1 (meV) J2 (meV) |Dp|/J1 Dz/J1

Potassium iron jarosite KFe3(OH)6(SO4)2
50 5/2 65 1.9◦ 3.18 0.11 0.062 -0.062

Potassium iron jarosite (alternate fit) 51 3.225 0.11 0.068 -0.06
Silver iron jarosite 1 AgFe3(OH)6(SO4)2

52 5/2 59 1.8◦ 3.18 0.11 0.057 -0.053
Silver iron jarosite 2 AgFe3(OD)6(SO4)2

52 5/2 59 2.4◦ 3.18 0.11 0.075 -0.053
Veseignite BaCu3V2O8(OH)2

56 1/2 9 6◦ 4.6 N/A 0.19 -0.07
Nd3Sb3Mg2O14

57 1/2 0.56 30.6◦ N/A N/A 0.8 N/A

In Table I we list materials known to order in the um-
brella configuration, along with experimentally determined
values for the ordering temperature, canting angle, and inter-
action strengths. The chromium jarosite KCr3(OD)6(SO4)2
with S = 3/2, TN = 4K also orders in a q = 0 structure, but
is reported to only have slight canting.54,55 The different iron
jarosites have essentially similar behavior, so for the purposes
of this paper we will use potassium iron jarosite as our model
system. It does have the highest ordering temperature, which
tends to produce a stronger magnon thermal Hall effect, as
higher energy bands can be populated before the order breaks
down from thermal fluctuations. It also has the advantages of
an undistorted kagome lattice, and that large single crystals
can be grown.66

We again stress the importance of the in-plane DMI for or-
dering by noting that the vesignite and the putative spin liq-
uid herbertsmithite ZnCu3(OH)6Cl2 have very similar out-of-
plane DM strengths. The reported values for herbertsmithite
is |Dz|/J ≈ 0.08, and |Dp|/J ≈ 0.01.67 Finally, we would also
like to comment on the interesting Nd3Sb3Mg2O14 compound,
which has a considerable canting angle of η = 30.6°. Scheie et
al. estimated that |Dp|/J1 ∼ 0.8 would be required to produce
this angle, even in the limit of Dz → 0.57 Their estimation used
the sine approximation for Eq.(17), which actually underesti-
mates the value of |Dp|/J required. Using Eq.(17) we instead
find |Dp|/J > 1.5. Although even stronger DMI have been
predicted for some materials in first-principles calculations,68

we speculate that, e.g., an XXZ anisotropy term could be
present. If so it would contribute to the large observed canting
angle, and allow for weaker |Dp|/J.

III. SPIN-WAVE ANALYSIS

We now turn to a linear spin-wave analysis for potassium
iron jarosite in the ordered regime (T < TN). We start from
the spin Hamiltonian (2), with ∆ = 0. To describe deviations
about a noncollinear ground state, we rotate the spin quanti-
zation axis at each site i such that the z̃i axis in the new coor-
dinate system points along the direction of the local moment
〈Si〉. This is achieved by the sublattice-dependent SO(3) rota-
tion

S a
i =

[
Ri

(
S̃ i

)]a
= Rab

i S̃ b
i , (19)

where S a
i is the spin operator with a global z axis and S̃ a

i has
the axis unique to site i. Deviations from the groundstate are

represented by Holstein-Primakoff bosons,69 S̃ z
i = s − a†i ai,

S̃ +
i =

√
2s − a†i aiai, S̃ −i = a†i

√
2s − a†i ai. (20)

The Hamiltonian is truncated to quadratic order, Fourier
transformed, and written in a matrix form,

Hk = X†kh (k) Xk, h (k) =

 A (k) B (k)
B? (−k) A? (−k)

 , (21)

Xk =
(
aα (k) , aβ (k) , aγ (k) , a†α (−k) , a†β (−k) , a†γ (−k)

)T
.

For more details, see Appendix A. Since the system is
bosonic, it has to be diagonalized paraunitarily to ensure that
Bogoliubov transformation preserves the bosonic commuta-
tion relations.70 Thus we diagonalize gh (k), where

g =

 I3×3 0
0 −I3×3

 , (22)

and I3×3 is the 3 × 3 identity matrix. We keep the physical
states |un〉, with positive eigenvalues of gh, where n is a band
index.

Using the parameters for potassium iron jarosite from
Matan et al.,50 reproduced in Table I, we obtain the spin-wave
spectrum shown in Fig. 4 (a). In Fig. 4 (b) we provide close-
up views of the dispersion near the Γ and K points, which
show that the bands are separated by small gaps for these pa-
rameters, with a narrow avoided crossing between the lower
two bands. The gaps between bands at the Γ, M, and K sym-
metry points are 1.45K, 2K, and 3.46K, respectively, in good
agreement with previously obtained approximate analytical
expressions.51 The bands remain separated throughout the en-
tire Brillouin zone. This situation should be contrasted with
the coplanar order for Dp = 0, where there is a twofold pro-
tected degeneracy at the Γ and K points. The umbrella order,
however, is associated with a trivial symmetry group,71 and
hence has no protected degeneracies in the spin-wave spectra.
Any gap closings would thus be accidental.

In the absence of NNN exchange there would be a very flat
band throughout the entire Brillouin zone.51 Chernyshev pro-
poses another mechanism for the observed dispersion of this
band for J2 = 0, in which the flat band is broadened by de-
cay from higher bands.72,73 We also note that magnon-magnon
interactions can have significant damping effects on topolog-
ical magnon bands, as demonstrated in S = 1/2 kagome
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(b) Zoomed in dispersion near Γ and K points

FIG. 4. Spin-wave spectrum for potassium iron jarosite. The full
spectrum is shown in (a), and detailed views showing gaps and
avoided crossings near the Γ and K points are shown in (b).

ferromagnets.74 For the purposes of our calculations, only the
energetics of the dispersion is important, not its exact ori-
gin, so we proceed with the non-interacting phenomenolog-
ical model with J2 , 0.

The presence of gaps allow us to define the Berry curvature
Ωz

n (k) = i
〈
∂un
∂k

∣∣∣×∣∣∣ ∂un
∂k

〉
for the nth magnon band, and calculate

Chern numbers of individual bands,

Cn ≡
1

2π

∫
BZ

Ωz
n (k) dk2. (23)

In practice we calculate these numbers using a momen-
tum space lattice discretization with 2000 × 2000 lattice
points.75 We find the Chern numbers to have the unusual
structure (−3,+1,+2), going from the lowest to the highest
band. Most previous works considering topological magnon
bands on kagome lattices have only found two topological
bands, with Chern number structures that are permutations of
(0,−1,+1).30,46,58,76–78 The exception appears to be Mook et
al.,79,80 who found several regions with higher Chern numbers
for ferromagnetic J1, J2, and Dp = 0. For the current case of
antiferromagnetic J1, the higher Chern numbers appear to be
linked to the in-plane DMI Dp, as they can be found also when
J2 = 0. Given that the bands are only separated by small gaps
in this system, it is natural to wonder whether the Chern num-
bers are sufficiently protected to e.g. broadening effects. This
question is, however, somewhat moot as the main experimen-
tal signature, the magnon thermal Hall conductivity, is due to

0 1 2 3 4 5

0

10-3

2×10-3

3×10-3

kBT (meV)

κ
x
y
(W

/K
m
)

FIG. 5. Magnon thermal Hall conductivity for potassium iron jarosite
in zero magnetic field as a function of temperature, up to the ordering
temperature TN = 65K. The dashed vertical line marks T0 = 50K.

the Berry curvature rather than the Chern number. (Since this
is a bosonic system, the thermal Hall effect is not quantized.)
The Berry curvature itself will persist until an actual gap clos-
ing.

IV. MAGNON THERMAL HALL EFFECT

The magnon thermal Hall conductivity can be expressed

κxy = −
k2

BT

(2π)2 ~

∑
n

∫
BZ

[
c2

[
g (εnk)

]
−
π2

3

]
Ωz

n (k) d2k. (24)

This formula is valid for a two-dimensional lattice and gen-
eral spin-wave Hamiltonians that do not necessarily conserve
magnon number.30,40,81 For stacks of two-dimensional layers,
we can simply divide by the interlayer distance l to find the
thermal conductivity in units of W/Km.82 In Eq. (24), g (εnk)
is the Bose-Einstein distribution, and the c2 function is defined
as

c2 (x) = (1 + x)
[
ln

(
1 + x

x

)]2

− [ln x]2 − 2Li2 (−x) , (25)

where Lin (x) is the polylogarithm. It has the limits
c2

[
g (εnk)

]
→ π2/3 (0) as βε → 0 (βε → ∞). Hence, κxy

vanishes as T → 0 and is generically non-zero for higher tem-
peratures.

We calculate κxy for full magnetization up to TN = 65K,
using the parameters for potassium iron jarosite of Matan et
al.50 listed in Table I. The conductivity is plotted as a func-
tion of temperature in Fig. 5, showing a monotonically ris-
ing behavior. Close to TN we expect a decrease in the signal
due to decrease in sublattice magnetization. Since the mag-
netic transition is experimentally observed to be mean-field
like,52,66 we will use the fixed magnetization approximation
up T0 = 50K ∼ 3TN/4 going forward. While linear, or non-
interacting, spin-wave theory is most accurate at low temper-
atures for collinear systems, this is a noncollinear system with



6

-0.5 0 0.5

-2.0

-1.0

0.0

1.0

2.0

B/J1

κ
0
(1
0-
2
W
/K
m
)

0
1
2
3
4
5

η

FIG. 6. (color online) The magnon thermal Hall conductivity as a
function of an applied staggered magnetic field perpendicular to the
kagome plane. The magnon thermal Hall signal at T = T0 is shown
in blue, and the canting angle (in degrees) is shown in red. The sign
change of the conductivity is associated with a sign reversal of all
the Chern numbers. We note that the effect does not vanish with the
scalar spin chirality as the canting angle approaches zero. The disks
correspond to the values for iron jarosites in ambient conditions.

potentially important interaction effects. It thus remains to
be seen whether the approximation is justified up to T0 or
not. The signal at T0 is 1.8 · 10−12 W/K for a single kagome
layer. Using the interlayer distance l ∼ 5.7Å,83,84 we find a
thermal conductivity of 3.15 · 10−3 W/Km at T0. (If we in-
stead use the DMI parameters fit by Yildirim and Harris,51 a
slightly higher value of 3.41 · 10−3 W/Km at T0 is found. The
silver iron jarosites AgFe3(OX)6(SO4)2 yield similar values,
2.91 · 10−3 W/Km or 3.15 · 10−3 W/Km at T = T Ag

0 = 45K,
for X=H and X=D, respectively.) The predicted values are
on the same or better order as experimental observations for
the magnon thermal Hall effect,14–16,18 and predicted values
for pyrochlore iridates in the noncollinear all-in–all-out spin
configuration.27

We next explore regions of higher canting, where stronger
effects are expected.42,45,58 Recalling the effective field
Eq. (15), we achieve this by tuning the applied transverse
field, or the in-plane DMI strength. In Fig. 6 we plot the
size of the effect κ0 at T = T0 as a function of the applied
field, along with the canting angle determined from Eq. (13).
Since the sign of the out-of-plane spin components alternate
in sign between adjacent kagome planes in potassium iron
jarosite,49,52,66 the values plotted in Fig. 6 are valid for a stag-
gered field. If the field is not staggered, different layers will
be canted differently, producing different conductivity values.
As shown in Fig. 7 there is, however, still a tunable signal. We
also note that, in other materials, such as Nd3Sb3Mg2O14 the
sign of this net ferromagnetic moment does not alternate,57

avoiding this complication. In such systems we expect a be-
havior similar to Fig. 6 in non-staggered fields.85

The range of staggered fields we consider in Fig. 6 is
B/J1 ∈ [−.54, .92], or B ∈ [−4.67, 8]T using the effective
magnetic moment µeff = 6.3µB.66 The lower limit is chosen
to make the canting angle approach zero. Note that we can-

0.0 0.1 0.2 0.3 0.4 0.5
1.0

1.5

2.0

2.5

3.0

3.5

B/J1

κ
0
(1
0
-
3
W
/K
m
)

FIG. 7. (color online) The magnon thermal Hall conductivity as a
function of an applied non-staggered magnetic field perpendicular
to the kagome plane. The magnon thermal Hall signal at T = T0 is
shown in blue, and is obtained by averaging the responses for positive
and negative fields in Fig. 6.

not reach η = 0 exactly, as the coplanar order would have
protected degeneracies. Hence, the smallest canting angle
plotted in Fig. 6 is η ≈ 1.12 × 10−6◦, below which we run
into numerical instabilities. As is expected, a positive (stag-
gered) magnetic field (directed along +ẑ in the first kagome
plane) increases the canting angle, and affects the size of the
effect. It decreases, and then shifts sign at B/J1 ≈ 0.06 due
to a topological phase transition in which all Chern numbers
change sign from the (−3,+1,+2) structure to (+3,−1,−2).
This transition may have additional structure, as discussed in
Appendix B. Following the transition, the effect gets enhanced
by almost an order of magnitude at the largest fields. A field
along −ẑ decreases the canting angle, but remarkably also pro-
duces a stronger transport signature even as the canting angle
approaches zero, and the gap at the Γ point vanishes. This be-
havior is in stark contrast to previous results on kagome and
star lattices that linked the signal in noncollinear systems di-
rectly to the scalar spin chirality,42,45,58 and found that the ef-
fect vanished in the absence of canting. Our results underline
the importance and subtle role of the in-plane DMI.

In Fig. 8 we instead vary the strength of the in-plane DMI at
zero magnetic field, while keeping the other parameters fixed.
There is a topological transition near |Dp|/J1 = 0.25 where
one band becomes topologically trivial, and the more common
(−1, 0,+1) structure is obtained. While the canting angle in-
creases monotonically with |Dp|, the effect has a maximum at
|Dp|/J1 = 0.6. The reason for this maximum is that the bands
begin to separate, while also moving to higher energies for
higher |Dp|. Hence, both the Berry flux and the occupation (at
fixed temperature) are reduced. See Appendix B for the evo-
lution of the spectrum as a function of |Dp|. However, both B
and Dp can potentially stabilize the umbrella order at higher
temperatures T > TN , a fact we do not account for here. A
correspondingly higher T0 value would result in higher occu-
pation numbers for large Dp, and larger effects throughout the
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FIG. 8. (color online) The magnon thermal Hall conductivity at T =

T0 as a function of the in-plane component of the DM interaction
is shown in blue. In red, the canting angle (in degrees) is plotted.
Near |Dp|/J1 = 0.25 there is a topological transition from a situation
where all bands are topological, to one where the middle band is
topologically trivial. The blue disk marks the value obtained in Fig. 5
for the experimental canting angle 1.9◦ (marked by a red disk).

parameter space considered. The effect vanishes as |Dp|/J1
approaches zero, along with the spin chirality. Taken together,
the results in Figs. 6 and 8 imply that the in-plane compo-
nent of the DMI has important effects on the topology of the
magnon bands, and on the magnon thermal Hall conductivity.

V. CONCLUSION

We have predicted a strong and tunable magnon thermal
Hall effect in iron jarosites. These systems are also good
insulators, which implies that there should be a clear trans-
port signal. We thus propose that iron jarosites are a promis-
ing experimental candidate system to observe the effect for
a noncollinear magnetic configuration. While we have fo-
cused on the topological edge transport, spin-wave transmis-
sion through the bulk is generically also present. However,
it tends to get suppressed by disorder, which only weakly af-
fects the topological edge modes.86 In addition to tuning by
magnetic fields, additional control may be achieved by ap-
plying pressure, which can increase the ordering temperature
in the jarosites.87 More generally, topological transitions in
magnon band structures may be driven by periodic driving,78

and strain.77

Our results show that in-plane Dzyaloshinskii-Moriya in-
teraction can have important effects on the topology of the
magnons, including higher Chern numbers. Most strikingly,
we find that it can induce a magnon thermal Hall effect even
when a staggered magnetic field is applied to make the cant-
ing angle and scalar spin chirality very small. In collinear sys-
tems, an out-of-plane DMI acts as an effective magnetic field
on the magnons, and for noncollinear systems, a noncoplanar
spin texture can induce the nontrivial topology. In the latter
case, the magnon thermal Hall conductivity vanishes along
with noncoplanarity. Our system, however, does not fall into

either class. In fact, it is not entirely clear what mechanism
produces the nontrivial topology in this limit, but the in-plane
DMI must play a role.

VI. ACKNOWLEDGEMENTS

We gratefully acknowledge funding from ARO grant
W911NF-14-1-0579, NSF DMR-1507621, and NSF MR-
SEC DMR-1720595. GAF gratefully acknowledges support
from a Simons Fellowship. We acknowledge the Texas Ad-
vanced Computing Center (TACC) at The University of Texas
at Austin for providing computing resources that have con-
tributed to the research results reported within this paper.
www.tacc.utexas.edu

Appendix A: Spin-wave Hamiltonian

As described in the main text and Eq. (19) we introduce
sublattice-dependent transformations rotating the local zi axis
onto the direction of the local magnetic moment. This can be
implemented using the rotation matrices

Rα =


1
4 (3 sin(η) + 1)

√
3

4 (sin(η) − 1) −
√

3
2 cos(η)

√
3

4 (sin(η) − 1) 1
4 (sin(η) + 3) −

cos(η)
2√

3
2 cos(η) cos(η)

2 sin(η)

 , (A1)

Rβ =


1
4 (3 sin(η) + 1) −

√
3

4 (sin(η) − 1)
√

3
2 cos(η)

−
√

3
4 (sin(η) − 1) 1

4 (sin(η) + 3) −
cos(η)

2

−
√

3
2 cos(η) cos(η)

2 sin(η)

 (A2)

Rγ =


1 0 0
0 sin(η) cos(η)
0 − cos(η) sin(η)

 . (A3)

We write the original spin Hamiltonian on the general form

H =
∑

i j

S a
i

(
Λab

i j + Ξab
i j

)
S b

j , (A4)

where Λ and Ξ are the nearest (NN) and next-nearest neigh-
bor (NNN) interaction matrices, respectively. After the spin
rotation (a linear transformation) the interaction matrices are
transformed into Λ̃ab

i j =
[
RT

i Λi jR j

]ab
, Ξ̃ab

i j =
[
RT

i Ξi jR j

]ab
.

The submatrices A(k) and B(k) of the spin-wave Hamilto-
nian Eq. (22) are built from sums of elements of the rotated
interaction matrices. We first split them into nearest (NN) and
next-nearest neighbor (NNN) terms,

A(k) = ANN(k) + ANNN(k), (A5)

B(k) = BNN(k) + BNNN(k). (A6)

www.tacc.utexas.edu
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FIG. A1. Evolution of the magnon spectrum as the magnetic field
strength B is varied.

We have

ANN
µν (k) = S

[
Λ̃xx
µν + Λ̃

yy
µν − iΛ̃xy

µν + iΛ̃yx
µν

]
cos

(
k · rµν

)
− S δαβ

∑
γ

Λ̃zz
αγ, (A7)

BNN
µν (k) = S

[
Λ̃xx
µν − Λ̃

yy
µν + iΛ̃xy

µν + iΛ̃yx
µν

]
cos

(
k · rµν

)
, (A8)

where µ ∈ {α, β, γ}, ν ∈ {α, β, γ} are sublattice indices. rµν ≡
rµ−rν are vectors connecting nearest neighbors. ANNN(k) and
BNNN(k) are given by analogous expressions in terms of Ξ̃.
Explicit expressions for the A and B matrices are not given
here — the number of cosine and sine terms introduced by the
rotation would make their inclusion impractical.
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FIG. A2. Upper panel: Evolution of the upper gap as the magnetic
field strength B is varied. Lower panel: Evolution of the lower gap –
the avoided crossing.

Appendix B: Band evolution as function of B and Dp

In Fig. A1 we plot the evolution of the spin wave spec-
trum for selected values of B. Near the topological transition
the changes are relatively small, and hard to observe on this
level of detail. We therefore plot the upper and lower gaps
in Fig. A2. The upper gap closes twice, at B/J1 ≈ 0.039,
and B/J1 ≈ 0.104. The lower band closes only once, at
B/J1 ≈ 0.105. Reaching numerical convergence of the Chern
numbers is challenging inbetween the two gap closings, but it
does appear that the set of Chern numbers (from lowest to
highest band) goes from (−3,+1,+2) for B < 0.039J1, to
(−3,+3, 0) for 0.039 . B/J1 . 0.105, to (+3,−1,−2) for
B > 0.105J1. The sign change of the thermal conductivity ob-
served in Fig. 6 near B/J1 = 0.06 can be related to the reversal
in Chern numbers across this range of field strengths, but as
this discussion shows, this reversal may have a substructure of
consecutive topological transitions.

In Fig. A3 we plot the evolution of the magnon bands for
different values of Dp. It is instructive to focus on the Γ point.
As Dp is increased, the lowest band moves up and trades
places with the middle band near the topological transition.
Eventually the bands begin to separate and move to higher
energies, explaining the downturn in Fig. 8.
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