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Abstract

In recent years, efficient inter-atomic potentials approaching the accuracy of density functional

theory (DFT) calculations have been developed using rigorous atomic descriptors satisfying strict

invariances, for example, to translation, rotation, permutation of homonuclear atoms, among oth-

ers. In this work, we generalize the spectral neighbor analysis potential (SNAP) model to bcc-fcc

binary alloy systems. We demonstrate that machine-learned SNAP models can yield significant

improvements even over well-established, high-performing embedded atom method (EAM) and

modified EAM (MEAM) potentials for fcc Cu and Ni. We also report on the development of a

SNAP model for the fcc Ni-bcc Mo binary system by machine learning a carefully-constructed

large computed data set of elemental and intermetallic compounds. We demonstrate that this

binary Ni-Mo SNAP model can achieve excellent agreement with experiments in the prediction of

Ni-Mo phase diagram as well as near-DFT accuracy in the prediction of many key properties such

as elastic constants, formation energies, melting points, etc., across the entire binary composition

range. In contrast, the existing Ni-Mo EAM has significant errors in the prediction of the phase

diagram and completely fails in binary compounds. This work provides a systematic model devel-

opment process for multicomponent alloy systems, including an efficient procedure to optimize the

hyper-parameters in the model fitting, and paves the way to long-time, large-scale simulations of

such systems.
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I. INTRODUCTION

Machine learning (ML) models based on robust local environment descriptors have re-

cently emerged as an approach to describe the potential energy surface (PES) of systems of

atoms with near-quantum accuracy at several of orders magnitude lower cost than ab ini-

tio methods.1–6 Effective local environment descriptors must be invariant under translation,

rotation, and permutation of homonuclear atoms, and have the properties of uniqueness

and differentiability.7 Examples of such descriptors include symmetry functions1,8, smooth

overlap of atomic positions (SOAP)4,9, bispectrum2,5, Coulomb matrix3,10,11, among others.

A typical approach is to fit the PES as a function of these descriptors by machine learning

on ab initio data sets, using techniques ranging from simple linear regression5,12 to kernel

ridge regression6,7 to neural networks13–16.

Thus far, the development of ML potentials based on local environment descriptors have

largely been limited to elements and oxides. The Gaussian approximation potential (GAP)

using the SOAP descriptor has been applied on Si4, C17,18, W9, P19, and Fe20, and neural

network models based on symmetry functions have been fitted for Si21, C22, Na23, ZnO24,

TiO2
25, GeTe26, and Li3PO4

27. Thompson and Wood5,28 have developed linear and quadratic

models based on the SO(4) bispectrum - the Spectral Analysis Neighbor Potential or SNAP

- for bcc Ta and W. Chen and Ong12 later showed that a linear SNAP model can achieve

near-DFT accuracy across a wide range of properties and outperforms embedded atom

method (EAM) and modified EAM (MEAM) in the bcc Mo system. Only recently, neural

network models utilizing the symmetry function descriptors have been extended to Al-Mg-

Si29 and LixSi30 alloy systems. The extension of ML models to multi-component oxides

and alloys generally leads to a large expansion in the size of the descriptor feature vector,

and correspondingly, an explosion in the quantity of data (and hence computational cost)

necessary for model fitting.

In this work, we will apply the linear SNAP approach to the bcc Mo-fcc Ni binary alloy

system as well as present an investigation of its performance on fcc metals (Cu and Ni). Our

choice of model is motivated by the relatively simple functional form of the linear SNAP

approach, which reduces the computational effort for model training and minimizes the

risk of over-fitting. While Wood and Thompson 28 have recently shown a quadratic SNAP

model can achieve higher accuracies, this improvement comes at a large increase in the num-
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ber of fitted coefficients (e.g., 481 for quadratic SNAP vs 31 for linear SNAP in Ta) and

consequently, a large increase in the training data set required, an issue which is severely

exacerbated in multi-component systems. On the other hand, the efficiency of the Gaussian

approximation potential based on the SOAP descriptor9 depend on the size of the underly-

ing reference set, which would again be greatly compounded in a multi-component system.

Ni-Mo alloys are of immense technological interest due to their high corrosion resistance,

low thermal-expansion coefficients, hardness and catalytic properties31–34. The currently

available Ni-Mo embedded atom method (EAM) force field cannot provide satisfactory ac-

curacy on many properties, and even fails in binary compounds. We demonstrate that the

ML SNAP models for both fcc and fcc-bcc mixed binary systems can achieve near-quantum

accuracy across a wide range of properties, including energies, forces, elastic properties,

melting points, surface energy, etc., consistently outperforming the EAM models especially

in the binary systems.

II. METHODS

A. Bispectrum and SNAP formalism

The bispectrum and SNAP formalism have been extensively covered in previous works2,5.

We will only briefly describe the key concepts here for completeness.

The atomic environment is described by the neighbor density ρi(r) for each atom i at

coordinates r , defined as follows:

ρi(r) = δ(r) +
∑
rij<Rc

fc(rij)w
j
atomδ(r− rij). (1)

where δ(r− rij) is the Dirac delta function centered at each neighboring site, the cutoff

function fc ensures a smooth decay for the neighbor atomic density to zero at the cutoff

radius Rc, and the dimensionless atomic weights wjatom distinguish different atom types. This

density function can then be expanded in 4D hyper-spherical harmonics U j

m,m′ (θ, φ, θ0), as

ρi(r) =
∞∑
j=0

j∑
m,m′=−j

uj
m,m′U

j

m,m′ (θ, φ, θ0). (2)

where the radial component is converted into a third polar angle defined by θ0 = θmax0
r
Rc

,

θmax0 is the angle conversion function, which was kept at the default value of 0.99363π in this

3



work, and the coefficients uj
m,m′ are given by the inner product 〈U j

m,m′ |ρ〉. The bispectrum

coefficients are then given by:

Bj1,j2,j =

j1∑
m1,m

′
1=−j1

j2∑
m2,m

′
2=−j2

j∑
m,m′=−j

(uj
m,m′ )

∗ · Cjm
j1m1j2m2

× Cjm
′

j1m
′
1j2m

′
2

uj1
m

′
1,m1

uj2
m

′
2,m2

, (3)

where Cjm
j1m1j2m2

are Clebsch-Gordon coefficients. In practice, j, j1, and j2 need to be trun-

cated with j, j1, j2 ≤ jmax. We found that an order of three for the bispectrum coefficients

(jmax = 3) is sufficient based on our tests, consistent with previous works,2,5,12 which gives

a total of 31 projected bispectrum components.

In the SNAP formalism, the total energy ESNAP and forces FSNAP are expressed as a

linear function of the 31 projected bispectrum components Bk (k = {j, j1, j2}) and their

derivatives, as follows:

ESNAP =
N∑
i=1

βαi
0 +

N∑
i=1

∑
k={j,j1,j2}

βαi
k B

i
k

F j
SNAP = −

N∑
i=1

βββαi ··· ∂B
i

∂rj

(4)

where βαi
k are the fitting parameters in the linear model, αi specifies the atom type of atom

i.

The calculations of bispectrum coefficients (the features) for all the training structures

were performed using the implementation in the LAMMPS software35. The cutoff radius Rc

and atomic weight watom were treated as hyperparameters fitted during the training of the

model, as outlined in subsequent sections.

B. SNAP model fitting

For elemental fcc systems, we adopted the potential fitting workflow developed in Ref.

12, as shown in the left panel of figure 1. We denote this whole optimization process as

one optimization unit, which consists of two optimization loops. The inner loop optimizes

the ML model parameters by mapping the descriptors (bispectrum coefficients) to DFT

energies and forces. The outer loop optimizes the hyper-parameters by minimizing the

difference between the model predicted material properties, i.e. elastic tensors, and DFT

computed values. As introduced in Ref. 12, the hyperparameters are the data weights (ω)
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FIG. 1. Fitting workflow for binary alloy SNAP model. Left panel shows one optimization unit

developed by Chen and Ong12, which optimizes both the model parameters and hyperparameters

with respect to DFT calculated energies, forces, and elastic constants. Right panel shows the

workflow for binary alloy system. α denotes the parameters (hyperparameters) for the bispectrum

calculations, while βββ denotes the model parameters.

from different data groups, and the parameters (α) used in bispectrum calculations, i.e. the

radius cutoff Rc and atomic weight watom. In elemental system, the atomic weight can be

set as unity. The inner loop fitting of the model coefficients was performed with the least

squares algorithm implemented in the scikit-learn package.36 The outer loop optimization

was done using the differential evolution algorithm37 from the SciPy package38.

For the binary Ni-Mo alloy system, there are four parameters (RNi
c , RMo

c , wi,Ni
atom, wj,Mo

atom) in

the bispectrum calculations, two for each element. As it would be far too time-consuming to

optimize all parameters simultaneously, we propose instead a two-step model fitting work-

flow, as shown in the right panel of Figure 1. The first step involves the independent opti-

mization of the radius cutoff Rc for each elemental system, i.e. Ni and Mo. The maximum

of the two optimized radius cutoffs, max(RNi
c , R

Mo
c ), is then used as a common radius cutoff

for the binary Ni-Mo system. The use of a common radius cutoff is to maintain symmetric

interactions between neighboring atoms of different types, i.e., the interaction between a Mo

and a neighboring Ni should be the same as that between a Ni and a neighboring Mo for

the same distance. The atomic weight for the element with larger radius cutoff (Mo in this

case) is then set at unity. Therefore, only one parameter, the atomic weight for the other
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element, needs to be optimized in the second optimization step, as shown in the right panel

of Figure 1.

C. Training data generation

A diverse set of the training data encompassing a good range of atomic local environments

is critical to developing an effective and robust potential. Our training data can be divided

into five categories:

1. Undistorted ground state structures for Ni, Mo and the two binary intermetallics

Ni3Mo and Ni4Mo;

2. Distorted structures constructed by applying strains of −10% to 10% at 1% intervals

to a bulk supercell in six different modes, as described in Ref. 39;

3. Surface structures of elemental structures obtained from the Crystalium database40,41,

which include the surface structures with Miller indices up to three;

4. Snapshots from NV T ab initio molecular dynamics (AIMD) simulations of the bulk su-

percell at 300, 1000, and 3000 K at the equilibrium 0K volume. In addition, snapshots

were also obtained from NV T AIMD simulations at 300K at 90% and 110% of the

equilibrium 0K volume. Forty snapshots were extracted from each AIMD simulation

at intervals of 0.1 ps;

5. Alloy structures constructed by partial substitution of supercells of the bulk fcc Ni

with Mo and the bulk bcc Mo with Ni. Compositions of the form NixMo1− x were

generated with x ranging from 0 at% to 100 at% at intervals of 12.5 at%.

The supercells used for the distorted structures and AIMD simulations are 3 × 3 × 3

conventional cell for all elemental systems, 3×3×2 for Ni3Mo, and 2×2×3 for Ni4Mo. The

Mo-substituted Ni fcc alloy (NiMo) structures were generated in three steps. First, a 2×2×2

supercell of Ni was doped with 1, 2, 3, 4, 5, 9, 13, 17, 21, 25, 29, 30, 31, and 32 Mo atoms,

respectively. Second, for each doped structure, we performed a structure enumeration42 to

generate all symmetrically distinct structures, from which up to 100 random structures are

selected. Third, we performed a structure relaxation for each selected structure. Both the
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unrelaxed and relaxed structures were included in our data set. The Ni-substituted Mo

bcc alloy (MoNi) structures were constructed using the same procedure with a 2 × 2 × 2

supercell. In addition, since the bcc conventional cell contains half the number of atoms of

the fcc conventional cell, we also generated low-concentration Ni-substituted Mo by doping

a 3× 3× 3 Mo supercell with 1− 4 Ni atoms.

D. DFT calculations

All DFT calculations were performed using the Perdew-Burke-Ernzerhof (PBE)43 ex-

change correlation functional as implemented in the Vienna ab initio simulation package

(VASP)44 within the projector augmented wave (PAW) approach45. The kinetic energy cut-

off was set to 520 eV and the k-point density was at least 3000 per reciprocal atom. Energies

and forces were converged to within 10−5 eV and 0.02 eV/Å, respectively. The AIMD sim-

ulations were performed with a single Γ k point and were non-spin-polarized. However, the

energy and force calculations on the snapshots were performed using the same parameters

as the rest of the data. All structure manipulations and analysis of DFT computations were

carried out using the Python Materials Genomics (pymatgen)46 library and automation of

calculations was carried out using the Fireworks software47.

E. Melting points and phase diagram

The melting temperatures Tm were calculated using the solid-liquid coexistence approach.48

MD simulations were performed using the 30× 15× 15 bcc (13,500 atoms) and 30× 10× 10

(12,000 atoms) fcc supercells under zero pressure at different temperatures. The time step

was set to 1 fs, and simulations were carried out for at least 100 ps. The Tm was identified

when the initial solid and liquid phases were at equilibrium (no interface motion).

With the fully equilibrated solid-liquid structures at the melting points, we conducted

hybrid MC/MD simulations to calculate the solidus and liquidus lines at different tempera-

tures. At each temperature below Tm, the global composition of dopant atoms was adjusted

to find solid-liquid equilibrium phases. The solidus and liquidus lines were then determined

by calculating the composition of dopant atoms in the solid and liquid phases, respectively.

To reduce statistical errors, all calculations were averaged based on five random structures
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in the last 10 ps.

The CALculation of PHAse Diagrams (CALPHAD) Ni-Mo phase diagram49 was con-

structed using the Pandat software.50 In the CALPHAD approach, the liquid phase and two

solid terminal phases of Ni-Mo alloy were treated using a subregular solution model,51 and

the model parameters were fitted to experimental data on phase equilibria in the Mo-Ni

system.

F. Data availability

To ensure the reproducibility and use of the models developed in this work, all data (struc-

tures, energies, forces, etc.) used in model development as well as the final fitted model coeffi-

cients have been published in an open repository (https://github.com/materialsvirtuallab/snap).

We will also work with the developers of LAMMPS to include the elemental and binary

SNAP models in the LAMMPS software package.

III. RESULTS

A. Optimized SNAP model coefficients

The optimized SNAP model coefficients (βk in equation 4) for elemental fcc Ni, Cu and

mixed bcc Ni-fcc Mo systems are provided in the Supplementary Information (SI).52 The

optimized elemental cutoff radius RNi
c and RCu

c are 3.9 and 3.7 Å, respectively, slightly larger

than the second nearest neighbor distance in the respective fcc crystals. For bcc Mo, the

optimized RMo
c is 4.6 Å.12 For the mixed bcc Ni-fcc Mo model, the overall cutoff radius Rc

is set as max(RNi
c , R

Mo
c ) = 4.6 Å, wMo

atom = 1.0, and the optimized value for wNi
atom is 0.5.

B. Performance of fcc Ni SNAP model

We will first discuss the performance of the SNAP model for fcc metals, given that

the SNAP approach has hitherto been applied to only bcc metals such as W, Ta and Mo.

Here, we will focus our discussion on the elemental fcc Ni SNAP model and compare its

performance to that for the binary fcc Ni-bcc Mo model. We have constructed a SNAP

model for Cu as well using a similar approach and compared its elastic properties with
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FIG. 2. Plot of SNAP predictions versus DFT for energies (left panel) and forces (right panel) in

elemental Ni system for different data groups. The MAE for energy and force are 1.2 meV/atom,

0.05 eV/Å, respectively.

experiment.53 The qualitative results are similar with Ni and reported in the Supplementary

Information.52

1. Energies and forces.

A comparison of the DFT and SNAP predicted energies and forces for elemental Ni is

shown in Figure 2. For both energies and forces, SNAP model predictions are in line with the

DFT results with a unity slope. EAM potentials are well known to have a good performance

in fcc metals54. The mean absolute error (MAE) in the energies and forces (relative to DFT)

for the EAM potential55 are 10.6 meV/atom and 0.06 eV/Å, respectively, while that for the

MEAM potential56 are 17.8 meV/atom and 0.08 eV/Å, respectively. The Ni SNAP model

can achieve a much lower MAE in energy of 1.2 meV/atom, and slightly improved MAE in

force of 0.05 eV/Å.

To further validate our model, we generated test structures by performing additional Ni

surface calculations with Miller indices up to four, and also extracting 40 snapshots from

AIMD simulations on the vacancy-containing supercell of Ni at 1000 K. The predicted MAEs

for the energies and forces are 2.3 meV/atom and 0.08 eV/Å, respectively, comparable to

the model performance on the training datasets. This validation of the model on previous
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unseen data indicates that the model can be generalized.

TABLE I. Comparison of the calculated and experimental melting points (Tm), elastic constants

(cij), Voigt-Reuss-Hill57 bulk modulus (BV RH), shear modulus (GV RH), Poisson’s ratio (µ), va-

cancy formation energy (Ev), and migration energy (Em) of fcc Ni. Error percentages of the SNAP,

EAM and MEAM predictions with respect to DFT values are shown in parentheses. The values of

BV RH , GV RH and µ in Exp. column are derived from the experimental elastic constants.

DFT SNAP EAM55 MEAM56 Exp.

Tm (K) − 1785 1520 1765 1728

c11 (GPa) 276 276 (0.0%) 248 (−10.1%) 260 (−5.8%) 26158

c12 (GPa) 159 159 (0.0%) 147 (−7.5%) 151 (−7.5%) 15158

c44 (GPa) 132 132 (0.0%) 125 (−5.3%) 131 (−0.8%) 13258

BV RH (GPa) 198 198 (0.0%) 181 (−8.6%) 187 (−5.6%) 188

GV RH (GPa) 95 95 (0.0%) 87 (−8.4%) 92 (−3.2%) 93

µ 0.29 0.29 (0.0%) 0.29 (0.0%) 0.29 (0.0%) 0.29

Ev (eV) 1.46 1.68 (15.1%) 1.68 (15.1%) 1.16 (−20.5%) 1.54− 1.8059

Em (eV) 1.12 1.07 (−4.5%) 0.90 (−19.6%) 1.46 (30.4%) 1.01− 1.4859

Ea = Ev + Em (eV) 2.58 2.75 (6.6%) 2.58 (0%) 2.62 (1.6%) 2.77− 2.9559

2. Materials properties

Table I provides a comparison of the Ni SNAP model predictions of the melting points and

elastic properties with DFT, EAM/MEAM potentials and experiments58. We find that both

the SNAP and MEAM models predict melting points that are in excellent agreement (within

2-3%) with the experimental value, but the EAM model greatly underestimates the melting

point by ∼ 12%. The Ni elastic moduli predicted by the SNAP model are in extremely

good agreement with the DFT, but those predicted by the MEAM model are much closer to

the experimental values. These differences are the result of the data used for model fitting

- the SNAP model was fitted using DFT-calculated data, while the MEAM model56 was

fitted using the experimental elastic moduli. The EAM-predicted elastic moduli deviates

significantly from both the DFT and experimental values. The SNAP model also predicts
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FIG. 4. Comparison of calculated surface energies for Ni surfaces with Miller indices up to a

maximum of four using DFT, SNAP, EAM, and MEAM.

vacancy formation and migration energies60 that are much closer to the DFT values. The

EAM model greatly underestimates Em by ∼ 20%, while MEAM significantly overestimates

Em by more than 30%.

Figure 3 shows the equation of state curves constructed using the DFT, SNAP, EAM, and
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TABLE II. Comparison of the MAEs in predicted energies and forces relative to DFT for the three

SNAP models (elemental Ni, elemental Mo12, and binary Ni-Mo) and the binary Ni-Mo EAM

model55. The “Overall” column refers to the MAE across the entire training dataset.

Model Mo Ni4Mo Ni3Mo MoNi NiMo Ni Overall

Energy (meV/atom)

Ni SNAP − − − − − 1.2 −

Mo SNAP 13.2 − − − − − −

Ni-Mo SNAP 16.2 4.0 5.2 22.7 33.9 7.9 22.5

EAM 58.9 211.2 255.6 46.5 147.6 10.6 117.2

Force (eV/Å)

Ni SNAP − − − − − 0.05 −

Mo SNAP 0.25 − − − − − −

Ni-Mo SNAP 0.29 0.14 0.16 0.13 0.55 0.11 0.23

EAM 0.31 0.20 0.19 0.21 0.57 0.06 0.26

MEAM models. We observe that the SNAP curve overlaps with DFT for the whole covered

region with volume changes in the range of −17% to 21% from the equilibrium volume. The

EAM potential deviates significantly from the DFT curve at both tensile and compressive

strains, and the MEAM potential slightly underestimates the energy at large compressive

strains. By fitting the Murnaghan equation of state, the estimated bulk moduli from Fig

3 are 188, 190, 160, and 177 GPa for DFT, SNAP, EAM, and MEAM, respectively. All

three models (SNAP, EAM and MEAM) lead to very similar phonon dispersion curves that

are slightly underestimated relative to the DFT curves (see Figure S3 in the Supplementary

Information52).

Figure 4 compares the performance of the Ni SNAP model with DFT40 and the EAM/MEAM

models in the prediction of Ni surface energies up to a maximum Miller index of four. The

surface energies computed by the SNAP model are in excellent agreement with the DFT

calculations, while both the EAM and MEAM models significantly underestimate surface

energies. It should be noted that the surfaces with Miller indices beyond three, e.g., (411),

(421), etc., are not part of the training dataset and constitutes test data that further

validates the applicability of the SNAP model beyond already-seen data.
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C. Performance of binary Ni-Mo SNAP model

In this section, we will discuss the performance of the optimized binary Ni-Mo SNAP

model. We will not only compare the performance of the binary SNAP model to DFT

and EAM, but also the performance of the binary SNAP model relative to the optimized

elemental Ni and Mo SNAP models and discuss any compromises in the performance on the

elemental end members in going from a single component to a binary model.

1. Energies and forces

Table II compares the MAEs in predicted energies and forces relative to DFT for the

elemental and binary Ni-Mo SNAP models and the binary Ni-Mo EAM model55. It should

be noted that the binary EAM model was constructed from normalized elemental EAM

potentials with a relative scaling factor between elements. The relative scaling factor along

with the EAM parameters are fitted to the experimentally measured properties, such as

lattice constants, elastic constants, vacancy formation energies, heats of solution, etc. As

such, our discussion of the relative performance of the Ni-Mo SNAP and EAM models will

focus on qualitative trends (especially in the binary alloys and intermetallics) rather than

quantitative comparisons.

We may observe that the binary Ni-Mo SNAP model significantly outperforms the binary

Ni-Mo EAM model across almost all data sets, with the exception of a larger MAE in

predicted forces for pure Ni. In particular, the MAEs in the predicted energies for the

binary phases (Ni4Mo, Ni3Mo and the Mo-doped fcc Ni) are especially large for the EAM

model relative to the end member elemental phases, while those for the binary Ni-Mo SNAP

are much smaller and comparable for both binary as well as elemental phases. This indicates

that a clear bias for the elemental phases in the construction of the binary EAM potential.

However, relative to the elemental Mo and Ni SNAP models, the binary Ni-Mo SNAP

model clearly sacrifices accuracy on the end member elements with somewhat larger errors

in predicted energies and forces for both bcc Mo and fcc Ni. We attribute this decrease

in accuracy to the substantially more complex and diverse training structures when fitting

binary potential compared with elemental potential.
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2. Materials Properties

Table III compares the elastic properties computed by the elemental and binary SNAP

models, the EAM model, DFT and experiments58,61. Again, we observe that the binary

Ni-Mo SNAP model generally outperforms the binary EAM model in the prediction of the

elastic constants, bulk and shear moduli, and Poisson’s ratio for the binary intermetallics

Ni3Mo and Ni4Mo. The binary EAM model performs especially poorly in this regard,

with absolute percentage errors exceeding 100% in some instances (e.g., shear modulus and

Poisson’s ratio for Ni4Mo). Compared to the elemental SNAP models, the binary Ni-Mo

SNAP model does suffer a slight decrease in prediction accuracy, but still manages to retain

better agreement with DFT compared with EAM.

TABLE III: Comparison of elastic constants (cij), Voigt-Reuss-Hill57 bulk modulus (BV RH), shear

modulus (GV RH), and Poisson’s ratio (µ) for fcc Ni, bcc Mo, and binary compound Ni4Mo and

Ni3Mo. Error percentages of the SNAP (elemental Ni SNAP, Mo SNAP and binary Ni-Mo SNAP)

and EAM predictions relative to DFT values are shown in parentheses. The values of BV RH , GV RH

and µ in Exp. column are derived from the experimental elastic constants.

DFT Mo SNAP12 Ni SNAP Ni-Mo SNAP EAM Exp.

Mo

c11 (GPa) 472 473 (0.2%) − 475 (0.6%) 457 (−3.2%) 47961

c12 (GPa) 158 152 (−3.8%) − 163 (3.2%) 168 (6.3%) 16561

c44 (GPa) 106 107 (0.9%) − 111(4.7%) 116 (9.4%) 10861

BV RH(GPa) 263 259 (−1.5%) − 267 (1.5%) 264 (0.4%) 270

GV RH (GPa) 124 126 (1.6%) − 127 (2.4%) 127 (2.4%) 125

µ 0.30 0.29 (−3.3%) − 0.29(−3.3%) 0.29 (−3.3%) 0.30

Ni

c11 (GPa) 276 − 276 (0.0%) 269 (−2.5%) 248 (−10.1%) 26158

c12 (GPa) 159 − 159 (0.0%) 150 (−5.7%) 147 (−7.5%) 15158

c44 (GPa) 132 − 132 (0.0%) 135 (2.3%) 125 (−5.3%) 13258

BV RH (GPa) 198 − 198 (0.0%) 190 (−4.0%) 181 (−8.6%) 188

GV RH (GPa) 95 − 95 (0.0%) 97 (2.1%) 87 (−8.4%) 93
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µ 0.29 − 0.29 (0.0%) 0.28 (−3.4%) 0.29 (0.0%) 0.29

Ni3Mo

c11 (GPa) 385 − − 420 (9.1%) 195 (−49.4%) −

c12 (GPa) 166 − − 197 (18.7%) 98 (−41.0%) −

c13 (GPa) 145 − − 162 (11.7%) 98 (−32.4%) −

c23 (GPa) 131 − − 145 (10.7%) 107 (−18.3%) −

c22 (GPa) 402 − − 360 (−10.4%) 351 (−12.7%) −

c33 (GPa) 402 − − 408 (1.5%) 295 (−26.6%) −

c44 (GPa) 94 − − 84 (−10.6%) 36 (−61.7%) −

BV RH (GPa) 230 − − 243 (5.7%) 156 (−32.2%) −

GV RH (GPa) 89 − − 100 (12.4%) 61 (−31.5%) −

µ 0.33 − − 0.32 (−3.0%) 0.33 (0.0%) −

Ni4Mo

c11 (GPa) 300 − − 283 (−5.7%) 172 (−42.7%) −

c12 (GPa) 186 − − 179 (−3.8%) 158 (−15.1%) −

c23 (GPa) 166 − − 164 (−1.2%) 80 (−51.8%) −

c22 (GPa) 313 − − 326 (4.2%) 158 (−49.5%) −

c44 (GPa) 130 − − 126 (−3.1%) 125 (−3.8%) −

BV RH (GPa) 223 − − 220 (−1.3%) 161 (−27.8%) −

GV RH (GPa) 91 − − 95 (4.4%) −56 (−162%) −

µ 0.33 − − 0.31 (−6.1%) 0.70 (112%) −

TABLE IV. Melting temperatures (in K) for pure Mo and Ni with different methods. EAM and

SNAP values are calculated using the binary force field.

Experiment CALPHAD EAM SNAP

Pure Mo 2898 2899 3750 3250

Pure Ni 1728 1728 1520 1810

Figure 5 displays the equation of state curves constructed using the DFT, SNAP, and
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FIG. 5. Energy vs volume curves of a conventional Ni3Mo (left panel) and Ni4Mo (right panel)

cell for the DFT, SNAP, and EAM models. The energy at the equilibrium volume has been set as

the zero reference.

EAM models for the binary compounds Ni3Mo and Ni4Mo. We observe that for both Ni3Mo

and Ni4Mo, the SNAP curve overlaps with DFT for volume changes in the range of −21%

to 10% from the equilibrium volume, but begins to slightly overestimate the energies with

volume expansions beyond 10%. The EAM potential completely fails in the equation of

state prediction for binary compounds. It significantly underestimates the energies at both

tensile and compressive strains. Similar conclusions can be made from the prediction of the

phonon dispersion curves - the binary SNAP model produces phonon dispersion curves that

are in excellent agreement with DFT for both Ni3Mo and Ni4Mo, while the EAM potential

produces curves with imaginary frequencies, in contradiction to DFT (see Figure S4 in the

Supplementary Information52).

Figure 6a compares the 0K Ni-Mo pseudo-binary formation energy diagram calculated

using DFT and the binary SNAP and EAM models. The binary EAM model fails to re-

produce even qualitatively the convex hull, predicting positive formation energies for Ni3Mo

and Ni4Mo, while the binary SNAP model predictions are in good agreement with DFT.

This is consistent with the large prediction error in the energies of the binary intermetallics

for the EAM model discussed in the previous section.

Figure 6b, c compares the high-temperature (> 1000 K) Ni-Mo phase diagram normalized

by the melting temperature calculated from hybrid MC-MD simulations using the binary
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FIG. 6. Plots of the (a) 0K Ni-Mo pseudo-binary formation energy diagram calculated using

DFT, SNAP and EAM, and high-temperature Ni-Mo phase diagram normalized by the melting

temperature for (b) Mo-rich domain and (c) Ni-rich domain, from experiments62, CALPHAD,

SNAP and EAM models.

SNAP and EAM models with those from experiments and CALPHAD.62 Again, we note

that the EAM calculated phase diagram exhibits large errors, greatly overestimating the

solubility of Ni in Mo by more than 10 times and the melting point of Mo by about 29.4%

(see Table IV). In contrast, the SNAP model predicts a maximum solubility of Ni in Mo

of about 2.6% for SNAP, which is in excellent agreement with the experimental value of

1.9%, and the predicted melting points for Mo are also closer to the experimental values

( 12.2% higher, see Table IV). The liquidus line calculated by SNAP exhibits concave-

like transitions with temperatures, consistent with the experimental phase diagram, but

EAM gives a linear relationship. At the Ni-rich domain, the experimental and CALPHAD

liquidus and solidus lines are almost overlapping with each other close to Tm of Ni, and this

behavior is successfully reproduced by the SNAP model. EAM, on the other hand, shows

a large segregation to liquid phases as the temperature decreases from Tm, contradictory to

experiment. In addition, the solubility of Mo in Ni predicted by EAM is only about one

tenth of the experimental value. The main major discrepancy for the binary SNAP model

is in the separation of the solidus and liquidus lines. The binary SNAP model predicts

an extremely small separation between the solidus and liquidus lines as the temperature is

decreased from the Ni melting point, whereas experimentally, these lines are separated by

∼ 5% Ni.
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IV. DISCUSSION AND CONCLUSION

To conclude, we have developed SNAP models for fcc Ni, Cu as well as the binary Ni-Mo

system.

For fcc metals such as Ni and Cu, we find that the elemental SNAP models offer only a

modest improvement over well-established EAM/MEAM potentials. This is unlike the case

for bcc metals such as Mo, Ta and W, for which EAM/MEAM potentials generally perform

relatively poorly and SNAP models have been demonstrated to lead to significant reductions

in prediction error in energies, forces and various materials properties5,12,28.

Where the SNAP formalism truly shines is its extensibility to multi-component systems,

achieving consistently low and comparable MAEs in the energies and forces for the elemental

end members as well as the binary intermetallics and solid solutions for the bcc Mo-fcc Ni

binary alloy system. This performance is achieved using the same simple linear model with a

doubling of the number of fitted coefficients and hyper-parameters. We have proposed a two-

step fitting approach to efficiently determine the hyper-parameters. In contrast, the EAM

model is significantly biased for better error performance in the elemental end members, with

extremely large errors and failing even on a qualitative level for the binary intermetallics and

alloys. We have successfully applied this SNAP model to reproduce the high-temperature

Ni-Mo phase diagram, to excellent agreement with experiments. We believe SNAP models

developed using the same principles and approach can enable high accuracy studies of micro-

structure and other phenomena requiring large-scale simulations over long-time scales on

multi-component systems.

The main trade-off is the 2− 3 orders of magnitude higher computational cost of SNAP

models compared to EAM. Nevertheless, it should be noted that SNAP models still scale lin-

early with the number of atoms and are orders of magnitude cheaper than DFT calculations.

The combination of near-DFT accuracy at several orders of magnitude lower computational

cost has enabled us to construct from first principles the high-temperature Ni-Mo phase

diagram in Figure 6b, which is shown to be in excellent agreement with the experimental

phase diagram. This effort, which requires long-time scale simulations of large MD simula-

tion boxes exceeding 10,000 atoms, is beyond the scope of DFT calculations today. Most

critically, the binary SNAP model is able to reproduce the correct formation energies and

solubilities across a wide range of Ni-Mo structures (fcc, bcc, solid solutions, intermetallics,
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surfaces), which is indicative of its general applicability to the study of micro-structure and

segregation phenomena in this highly important alloy system.

Finally, it is our belief that the development of potential models should account on

a holistic basis the trade-offs between prediction accuracy in energies, forces and various

properties, computational cost of the models, training data size and extensibility beyond

single-component systems.
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