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Abstract

In this work, we study the interlayer interactions between sheets of blue phosphorus with quan-

tum Monte Carlo (QMC) methods. We find that as previously observed in black phosphorus,

interlayer binding of blue phosphorus cannot be described by van der Waals (vdW) interactions

alone within the density-functional theory framework. Specifically, while some vdW density func-

tionals produced reasonable binding curves, none of them could provide a correct, even qualitatively,

description of charge redistribution due to interlayer binding. We also show that small systematic

errors in common practice QMC calculations, such as the choice of optimized geometry and finite-

size corrections, are non-negligible given the energy and length scales of this problem. We mitigate

some of the major sources of error and report QMC-optimized lattice constant, stacking, and in-

terlayer binding energy for blue phosphorus. It is strongly suggested that these considerations are

important and quite general in the modeling of two-dimensional phosphorus allotropes.

PACS numbers: 02.70.Ss, 61.46.-w, 61.50.Lt

∗Electronic address: ykwon@konkuk.ac.kr

2



I. INTRODUCTION

While graphene is arguably the most synthesized and studied two-dimensional (2D) mate-

rial, the difficulty of opening and tuning a band gap has been a perennial problem, hindering

its straightforward application in semiconductor devices. Starting in 2014, there has been

a flurry of activity around potentially-realizable 2D layered materials based on phosphorus

instead of carbon [1, 2]. Allotropes with layered structures such as black phosphorus, blue

phosphorus, and Hittorf’s phosphorus are semiconductors with band gaps in the range of

0.3 to 2.5 eV [3–7]. Some allotropes have been successfully synthesized in a single-layer

form called phosphorene, such as black phosphorene [1] and more recently blue phosphorene

[8, 9].

Given their promise in opto-electronic devices [2], it is essential to understand the under-

lying physics and energetics of 2D phosphorus layers to a high degree of quantitative accu-

racy. Being able to accurately predict the energy differences between different mono-layer

allotropes informs experimental efforts to determine which allotropes are thermodynamically

preferred. Interlayer binding energies are directly related to exfoliation energies, which helps

to screen allotropes for ease of mechanical synthesis. Lastly, charge redistribution helps to

understand what happens to the electronic properties of a multilayer system as layers are

added. We believe that any model capable of simultaneously describing all of these quanti-

ties stands a reasonable chance of aiding in the design of phosphorus-based devices in more

complicated design spaces, such as by subjecting the layers to stress through the placement

on a substrate, or through the addition of defects.

Previous work indicates that at least in black phosphorus, the current generation of

van der Waals (vdW) functionals with density-functional theory (DFT) framework does not

possess sufficient quantitative accuracy to simultaneously predict relative stability, interlayer

binding, and charge redistribution. Benchmarks against fixed-node diffusion Monte Carlo

(DMC) and experiment indicate a large spread in the interlayer binding curves [10]. Of

the functionals that seem quantitatively predictive on energetic grounds, very few were able

to even qualitatively capture the correct charge redistribution. The inconsistency among

different density functionals, including vdW-corrected ones, was also pointed out in recent

DFT study of Aykol et al. on black and red phosphorus [11]. Unfortunately, it is not clear

whether the poor performance of vdW density functionals in black phosphorus is intrinsic
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to this particular allotrope, or whether 2D phosphorus allotropes generically possess novel

physics that the vdW density functionals are systematically failing to capture.

In this paper, we use fixed-node DMC to study the interlayer interactions in a bilayer blue

phosphorene. Using the phosphorene geometries optimized directly within DMC, we com-

pute DMC interlayer binding curves for both AA and AB type stackings. When compared

against the same binding curves calculated using a variety of different vdW density func-

tionals, we find a similar spread in predicted binding curves as was previously observed in

black phosphorus. Moreover, comparison of the fixed-node QMC charge difference between

isolated monolayers and the equilibrium bilayer to those calculated within DFT framework

suggests that the DFT charge densities are qualitatively and quantitatively incorrect in the

same manner as previously observed in black phosphorus. This indicates that the current

generation of density functionals are missing some key physics required to quantitatively

predict the behavior of phosphorus-based 2D layered materials.

As a secondary concern, we comment on some potential pitfalls to avoid in future quantum

Monte Carlo (QMC) work on layered phosphorus materials. While fixed-node DMC is

extremely accurate and has the capacity to gracefully handle vdW interaction, covalent

bonding, and charge transfer within the same coherent framework, systematic errors that

are not intrinsic to the method are often introduced to save computer time. We argue that

some common convenience based practices, such as using DFT based structures or using

DFT based finite-size corrections, could introduce large errors relative to the energy scales

in this problem. We believe this corrects previous QMC calculations which indicated that

blue and black phosphorenes are degenerate in energy [12]. We also assess the accuracy of

charge densities obtained directly from importance-sampled DMC calculations and find that

some quantitative, though not qualitative, differences exist between the DMC estimates and

pure estimates derived from reptation Monte Carlo (RMC) calculations.

II. METHODOLOGY

All DFT calculations in this work were done using the QUANTUM ESPRESSO pack-

age [13]. We aligned the normal vector of the blue phosphorene layers with the z-axis of

our simulation cell. Since QUANTUM ESPRESSO forces periodic boundary conditions, we

added a 20 Å vacuum layer along z to minimize spurious interlayer interactions between
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periodic images.

We used an LDA based norm-conserving Troullier-Martins [14] pseudopotential with a

neon core. Details regarding pseudopotential construction and validation can be found in

our previous work [10]. After performing convergence tests, we found that a 250 Ry plane-

wave cut off and 12×12×1 Monkhorst-Pack grid [15] converged the DFT energies to within

3 × 10−10 Ry. We considered the following functionals in this work: LDA [16], PBE [17],

PBE+D2 [18], rVV10 [19], TS [20], vdW-DF [21], and vdW-DF2 [22].

All QMC simulations were performed using QMCPACK [23]. The trial wavefunction

used in all calculations was the standard Slater-Jastrow type wavefunction. The Jastrow

contains short-ranged one- and two-body correlation functions. The one- and two-body

functions are expressed using spherically symmetric b-splines, each with a real-space cutoff

at the Wigner-Seitz radius of the simulation cell. For the single particle orbitals, we used

periodic 3D b-splines fit to the plane wave orbital solutions obtained from QUANTUM

ESPRESSO. It was previously established that the lowest variational energies and variances

were obtained using the LDA functional [10]. Details of our trial wavefunction can be seen

in Ref. 24.

For each geometry considered, we performed the following sequence of QMC calculations.

First, all free parameters in the trial wavefunction were optimized with variational Monte

Carlo (VMC) using the linear method of Umrigar [25]. Then, DMC was performed with a

timestep of τ = 0.005 Ha−1 and a population size of 4096 walkers. Unless otherwise specified,

imaginary time projection was done with the full non-local Hamiltonian using T-moves [26].

For observables that don’t commute with the Hamiltonian, such as the electron density,

expectation values taken over the mixed distribution of ΨTΦFN sampled from DMC can

produce a bias of order ΨT −ΦFN , where ΨT is the trial wavefunction and ΦFN is the fixed

node wavefunction. We can combine both VMC and DMC estimates to form “extrapolated

estimates” that are accurate to order (ΨT − ΦFN)
2. In this work, we consider the following

two extrapolation formulae: XEXT = 2XDMC − XVMC and XGEO = (XDMC)
2/XVMC . To

benchmark the validity of these extrapolation formulae, we also computed expectation values

over |ΦFN |
2 directly on a small selection of geometries. Pure estimates without the trial wave

function bias were obtained using RMC [27] as implemented in QMCPACK. For reptation

calculations only, propagation was done within the locality approximation. We used reptiles

with projection lengths of β = 14 Ha−1 and a time step of τ = 0.01 Ha−1, which was shown
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to converge both mixed and pure estimates of the potential energy. We equilibrated 144

reptiles for 1,500,000 time steps. The average acceptance ratio was 98.45%.

Single-particle finite size effects were mitigated using twist-averaged boundary conditions.

We considered between 9 twists for the largest supercell and 16 twists for the smallest

supercell and used the same variational parameters for different twists of a simulation cell.

Residual many-body finite size effects were handled using a standard 1/N extrapolation

based on 3D homogeneous systems. Supercell sizes of 5× 5× 1, 6× 6× 1 and 8× 8× 1 were

used to perform the extrapolation. While the finite-size effects in strictly 2D homogeneous

systems are expected to behave like 1/N5/4, we found a negligible difference in the finite-size

extrapolations between the 1/N5/4 and 1/N models, only about 2 meV/atom.

III. RESULTS

A. Optimizing the Monolayer

In order to accurately calculate interlayer binding in blue phosphorus, we need an accu-

rate representation of the monolayer to serve as a reference. For computational convenience,

we fixed the P-P bond length to 2.23 Å which is the average of two different bond lengths of

black phosphorus [28] and is also within the range of the bond lengths reported in previous

DFT studies on blue phosphorene [29–31]. Small variations of the P-P bond length were

found to have little effect on our DMC results presented below. In addition, we assume

the hexagonal symmetry in optimizing the structure of blue phosphorene because it was

predicted in previous DFT studies [32, 33] to be a stable 2D allotrope with a puckered

honeycomb structure (see Fig. 1(a)). Due to the hexagonal symmetry of blue phosphorene

and the fixed bond length, there is only one free parameter determining the geometry of

the monolayer, the lattice constant. Thus to find the lowest energy structure of blue phos-

phorene, we calculated the fixed-node DMC energies for the aforementioned three supercell

sizes with several different lattice constants. The quality of the 1/N extrapolation of our

supercell energies to the bulk limit can be seen in the Supplemental Material [34]. We show

the finite size corrected DMC results in Figure 1. Fitting this curve to Vinet function and

finding the minimum, we report the DMC lattice constant of 3.226(2) Å.

Using DMC to calculate the energy of a single phosphorus atom allows us to calculate
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FIG. 1: (Color online) (a) The puckered honeycomb structure of the monolayer blue phosphorene

with the hexagonal symmetry (|~a1| = |~a2|) and (b) DMC energy versus lattice constant for blue

phosphorene. ∆E is measured relative to the DMC energy of the monolayer with a lattice constant

3.234 Å.

the cohesive energy of blue phosphorene, which we report as 3.272(2) eV/atom. Using

the cohesive energies from prior QMC work on black phosphorus [10], we report an energy

difference of 32(3) meV/atom between blue and black phosphorene. In Table I, we summarize

our findings and compare them to lattice constants, cohesive energies, and relative phase

stabilities estimated with LDA and PBE. We note that in contrast to Reeves et al.’s relative

energies [12], the blue phosphorene has noticeably higher energy than black phosphorene.

We discuss the origin of this discrepancy in the last part of this paper.

B. Interlayer Binding Energies

With optimized monolayer geometries in hand, we are now ready to consider the interlayer

binding in a blue phosphorene bilayer. Assuming the layers are parallel, we consider two

possible stackings: AA and AB. In Figure 2, we present the interlayer binding energy, defined

by ∆Eint = Ebi(d)−2Emono, as a function of interlayer separation d for both stackings. After

fitting the binding curves to Morse potentials (see the solid lines in Fig. 2), we can extract
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PBE LDA DMC

Lattice constant (Å) 3.279 3.201 3.226(2)

Cohesive energy (eV/atom) 3.465 4.329 3.272(2)

∆E = Eblue − Eblack (eV/atom) 0.005 0.027 0.032(3)

TABLE I: Equilibrated lattice constants and cohesive energies of blue phosphorene, along with the

energy differences between black and blue phosphorenes (∆E), which were estimated with LDA,

PBE and DMC calculations.

the following equilibrium binding energies: 40(1) meV/atom and 29(1) meV/atom for the

AA and AB stackings respectively. We find the equilibrium interlayer separations for the

AA and AB stackings to be 4.84(2) Å and 5.34(2) Å, respectively. Thus, fixed-node DMC

predicts the AA stacking to be energetically preferable to AB by about 11(2) meV/atom,

which is geometrically reflected in the significantly reduced equilibrium interlayer spacing.

We now consider how well interlayer binding versus interlayer separation is described

using different vdW functionals within the DFT framework. In Figure 3, we overlay the

interlayer binding curves for PBE+D2, TS, rVV10, vdW-DF and vdW-DF2 on top of our

calculated DMC binding curves. To the left we show the results for the AA stacking, and

to the right the ones for the AB stacking. Qualitatively, all functionals agree on the binding

behavior and relative stabilities of AA vs AB. Quantitatively, the span in binding energies

is approximately 30 meV/atom, whereas the span in interlayer distances is approximately

0.4 Å. We summarize the equilibrium binding energies and interlayer distances in Table II.

The two most accurate functionals we identify are rVV10 and vdW-DF2. rVV10 has the

closest agreement with DMC regarding the absolute binding energies for the AA and AB

phases, whereas vdW-DF2 more accurately predicts the equilibrium interlayer separation.

C. Charge Transfer

Up to now, we’ve looked at interlayer binding from a purely energetic perspective. Now

we turn our attention to how the electrons are redistributing themselves in the bilayer as

a result of electronic correlations. To accomplish this, we begin by computing the electron

charge density of the monolayer ρ0(r). Then we compute the charge density of a bilayer
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FIG. 2: (Color online) DMC interlayer binding energy ∆Eint versus interlayer separation d. In the

dissociated limit, ∆Eint(d → ∞) = 0.

FIG. 3: (Color online) Interlayer binding energy curves of (a) AA- and (b) AB-stacked bilayer blue

phosphorenes as functions of interlayer distance.

with AA stacking ρbi(r) at equilibrium. The charge transfer ∆ρ(r) is computed by looking

at the difference between the bilayer charge distribution and the sum of the charges from the

two monolayers located at the corresponding positions of its bilayer form: ∆ρ(r) = ρbi(r)−

(ρupper
0

(r) + ρlower
0

(r)). To simplify the analysis, we integrate out the x and y dependence of

∆ρ(r) by averaging the charge difference over x and y, leaving ∆ρ(z).
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Method
AA stacking AB stacking

Eb (eV/atom) deq (Å) Eb (eV/atom) deq (Å)

PBE+D2 0.024 4.61 0.014 5.33

TS 0.054 4.58 0.044 5.06

rVV10 0.041 4.70 0.031 5.21

vdW-DF 0.032 5.06 0.026 5.46

vdW-DF2 0.032 4.93 0.025 5.33

DMC 0.040(1) 4.84(2) 0.029(1) 5.34(2)

TABLE II: DMC and DFT equilibrium interlayer binding energies (Eb) and distances (deq) in AA-

and AB-stacked bilayer blue phosphorenes.

In Figure 4, we compare the charge redistribution ∆ρ(z) predicted by several different

functionals against RMC. While RMC and the various density functionals roughly agree on

the scale of charge redistribution, there are subtle quantitative and qualitative disagreements

between all the functionals and RMC. RMC predicts a sharp charge accumulation on the

interior surfaces of the bilayer and an accumulation of charge on the external surfaces, which

is compensated by strong charge depletion both in the interior of the bilayer and within each

monolayer. This charge redistribution in the bilayer can be understood by the interlayer

electron-electron correlation that tends to push lone pair electrons in the interior toward

the inner surface of their affiliated layer and subsequently induces the migration of charge

within the monolayers to the exterior. The only vdW functional that even comes close

to reproducing this picture is vdW-DF2, which does so only qualitatively and only in the

interior region between the monolayers. In contrast to the RMC results, all functionals

including vdW-DF2 predict weak charge depletion on the exterior of the bilayer. Within the

monolayers themselves, all functionals predict weak charge accumulation and depletion as

one goes from the exterior to the interior of the bilayer. We also estimated the change of the

total charge in each region, by integrating the charge density differences of Figure 4 over the

interior, the exterior, and the monolayer regions. While RMC showed a net charge transfer

from the monolayer to the exterior with little change in the total charge of the interior

region, all DFT results showed no significant charge transfer between different regions. This
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FIG. 4: (Color online) Charge density differences computed by vdW-corrected DFT as well as by

the RMC pure estimator for an AA-stacked bilayer blue phosphorene at the equilibrium interlayer

distance. The RMC computations were done with the 2× 2× 1 supercell. A horizontal dashed line

represents each relative coordinate of the phosphorus plane where the adjacent lines stand for a

single-layer blue phosphorene. The vertical dotted line represent the one for the zero density. The

RMC data were symmetrized with respect to z = 0 to reduce statistical noises that are represented

by thin orange lines.

suggests that changes in electronic properties of a bilayer blue phosphorene compared to

those of its monolayer form, such as band gap reduction [6, 29], could be underestimated in

DFT calculations.

In order to understand the effects of charge redistributions on the electronic properties

of a bilayer blue phosphorene, we performed non-self-consistent PBE calculations based on

both PBE+D2 and vdW-DF2 charge densities [35]. While the binding energy scale due to

charge redistribution was found to be much smaller than the vdW energy scale, the PBE

band gaps computed with these two charge densities differed from each other by 0.29 eV.

This suggests that smalll errors in the treatment of the interlayer vdW interaction could

lead to qualitatively different charge redistributions and so noticeably different electronic
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FIG. 5: (a) ρ(z) for the bilayer computed with VMC, the DMC mixed-estimate, and two extrapo-

lated estimators, along with RMC pure estimate (b) ∆ρ(z) computed using DMC, two extrapolated

estimates, and RMC. All QMC data in (b) were symmetrized with respect to z = 0 to reduce sta-

tistical noises that are represented by thin lines.

structures of a bilayer blue phosphorene. Therefore one can say that an accurate description

of both interlayer binding energy and charge redistribution is essential for comprehensive

understanding of the vdW interaction of blue phosphorus.

D. Computational Pitfalls

In this section, we pause to discuss some potential pitfalls that we discovered during this

work that necessarily must be accounted for in future QMC-based calculations on layered

phosphorus allotropes. The first point is the importance of using QMC optimized geometries,

and the second is the potentially substantial quantitative inaccuracy of mixed estimators for

charge density distributions relative to pure estimates.

We note that our current estimates for the relative stability of blue phosphorene disagree

with the QMC work of Reeves et al. [12]. We predicted in section III that a blue phospho-

rene is 32(3) meV/atom higher in energy than a black phosphorene, whereas Reeves et al.

predicted that black and blue phosphorenes were degenerate within their DMC error bars.

While there are many ways for subtle errors to creep into a DMC calculation, such
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as choice of pseudopotential, single-particle orbitals, ground-state structure, and choice of

finite-size corrections, a direct comparison of our work to theirs allows us to comment on

the sizes of the ground-state structure errors and finite size corrections. Using the DMC

blue phosphorene equation of state in Figure 1 and the black phosphorene equation of state

from Shulenburger et al., we find that using the PBE lattice constants instead of the DMC

optimized lattice constants underestimates the DMC cohesive energies of blue and black

phosphorenes by 10 meV/atom and 15 meV/atom, respectively. Thus, these errors lower

the relative energy difference between blue and black phosphorenes by about 5 meV/atom.

Moreover, Reeves et al. found that the error incurred using LDA based KZK [36] finite

size corrections was approximately 7 meV/atom relative to the 1/N -based extrapolation.

The sizes of these errors are large when compared against the relevant energy scales in this

problem. To put this in perspective, half of all tested functionals give binding energies for AA

and AB stacking of blue phosphorene within 10 meV/atom of DMC. While a total resolution

of this discrepancy is probably not possible without a direct comparison of pseudopotentials,

single-particle orbitals, time-step extrapolations, etc., we find it unlikely that the claim that

blue and black phosphorenes are isoenergetic within DMC will hold up when the sources of

error discussed in this section are removed.

Secondly, we discuss the potential pitfalls of using DMC mixed or extrapolated density

estimates in layered phosphorus. In Figure 5, we plot the charge density distributions of

a bilayer blue phosphorene averaged over x and y coordinates, ρ(z), which were calculated

using VMC, DMC mixed, and two extrapolated estimators, along with RMC pure estimator.

We find that they are all nearly indistinguishable from each other, implying that there is

no major breakdown or disagreement in the charge density between the different levels of

theory. However, in blue phosphorus and other layered allotropes, the relevant physics is

described by ∆ρ(z), which is roughly 1,000 times smaller in magnitude than ρ(z). On this

scale, we find that the trial function bias in DMC mixed density estimate is quantitatively

significant. The RMC charge transfer maxima in Figure 5 are roughly 0.0005 e/Å−3, whereas

the charge transfer scale for DMC mixed estimates is roughly 0.002 e/Å−3, about a factor

of 4 off of the correct answer. For the extrapolated estimates, while the charge transfer

scale is much closer to that of RMC than the original mixed estimates, there are noticeable

qualitative differences relative to both RMC and the mixed estimates; RMC and DMC

mixed estimates predict charge depletions at the center of the bilayer along with charge
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accumulations on the interior and exterior surfaces, whereas the extrapolated estimates show

charge depletion on the exterior and net charge accumulation in the interior without charge

depletion at its center. This strongly suggests that forward-walking or RMC is a requirement

for resolving the charge redistribution scales in layered phosphorus allotropes while providing

its qualitatively correct picture, unless trial wave functions are of high quality.

IV. CONCLUSION

From an analysis of DMC bilayer binding curves with two different stackings and from

RMC estimates of the charge redistribution, we have found that currently-available vdW

functionals do not provide a correct description of the interlayer binding of blue phospho-

rene, both in energy and in charge redistribution, within the DFT framework. There is some

subtle but non-negligible charge redistribution occurring over very small length scales. The

importance of both vdW interaction and charge redistribution makes the current genera-

tion of vdW functionals largely incapable of simultaneously describing multiple properties

accurately. For instance, the most accurate interlayer binding energies are given by rVV10,

whereas the most accurate interlayer binding distances are given by vdW-DF2. When it

comes to charge redistribution, no vdW-corrected functional considered in this study is

qualitatively accurate in all of space, although vdW-DF2 does a reasonable job describing

charge redistribution within the interior of the bilayer.

Due to the observed presence of strong charge localization and redistribution in the

bilayer, one potential area for improvement in DFT based calculations for layered phosphorus

allotropes might be in using new classes of non-local vdW hybrid functionals [37]. It is

known that self-interaction error in DFT is likely to favor smoother, more delocalized charge

distributions, which would tend to discourage charge transfer from one region to another

in the formation of a bilayer. We think that mitigating this source of error, in addition to

properly describing non-local vdW interactions, is likely to allow DFT to provide a more

equitable and accurate description of multiple properties simultaneously and over larger

regions of space.
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