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Abstract

Tensioned graphene membranes are of interest both for fundamental physics and

for applications ranging from water filtration to nanomechanical resonators. It is gen-

erally assumed that these membranes have a stretching modulus of about 340 N/m and

a negative, temperature-independent thermal expansion coefficient due to transverse

phonon modes. In this paper, we study the Young’s modulus and thermal expansion of

graphene as functions of temperature using laser interferometry to detect the static dis-

placement of the membrane in a cryostat. Surprisingly, we find the modulus decreases

strongly with increasing temperature, which leads to a positive temperature-dependent

thermal expansion coefficient. We show that the thermally-rippled membrane theory is

not consistent with our data, while the effects of surface contaminants typically present
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on these membranes may explain the observed behavior. Our experiments undermine

long-standing assumptions about tensioned 2D membranes, but are consistent with

puzzling behaviors observed in previous experiments on graphene resonators.
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elasticity

Graphene is the ultimate limit of a 2D material, and it has been the subject of intense

study since its isolation on a silicon substrate in 20041 and as a free-standing membrane

in 2007.2 It became known as the world’s thinnest and strongest material, following an

experiment that used an atomic force microscope (AFM) to stretch a suspended graphene

sheet.3 This experiment yielded the most commonly referenced value for the Young’s mod-

ulus, 340 N/m, which is in agreement with atomistic theory. However, several preceding

and subsequent experiments have given values ranging from 55-380 N/m for both exfoliated

and chemical vapor deposited (CVD) graphene.4–9 (For recent reviews, see Refs. 6 and 7)

Understanding the mechanical properties of graphene, such as the Young’s modulus, is im-

portant not only for studying fundamental membrane physics, but also because graphene

is a promising material for nano-electromechanical systems (NEMS).2 Advantages include

high electrical conductivity, low mass, and high mechanical strength.10 Several potential ap-

plications of graphene resonators have been demonstrated, such as mass and force sensing,11

optomechanics,13 and tunable radio frequency (RF) electronics.14 Analysis of such experi-

ments typically assumes a modulus of 340 N/m (despite the disagreement in the literature)

and a negative thermal expansion coefficient (TEC). However, a number of unusual behav-

iors have been observed, most notably that the tension in a graphene membrane typically

increases with decreasing temperature.11,15 This is in direct contrast to expectations based

on a negative TEC and clamped boundary conditions. Theory and numerical simulations

have predicted a negative TEC in both un-tensioned and tensioned membranes, making
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the argument that transverse thermal phonon modes cause the membrane to contract.16 A

number of experiments have given indirect support to this claim,11,15,17,18 but no definitive

experiments have yet been performed.

In this paper, we develop an optical technique for directly measuring the Young’s mod-

ulus and the thermal expansion coefficient of a tensioned graphene membrane. This is done

by applying an electrostatic force to the membrane and measuring its displacement. We use

this technique to obtain force-distance curves over a wide range of temperatures, and find

that the data is well fit by a model with linear and cubic terms (F = c1z + c3z
3). These

measured parameters can be used to infer the tension and the added strain in the membrane.

By interpreting the coefficient of the cubic term in the context of standard elastic theory19,20

we get a measure of the 2D Young’s modulus in the low strain regime. We find that the

modulus is softer than expected at room temperature, but stiffens significantly as temper-

ature decreases, approaching the theoretical value of 340 N/m. Recent work by Nicholl et

al. has found similar results.21 Furthermore, we find that the thermal expansion coefficient

is positive and has a strong dependence on temperature and tension, which contradicts the

established literature. Using a simple model, we show that this result follows directly from

the temperature dependence of the Young’s modulus. Finally, we propose that the softened

modulus, its temperature dependence, and thus the effectively positive TEC can all be ex-

plained by the interaction between the graphene and surface contaminants. Our conclusions

are relevant for graphene that has come into contact with any organic polymers during device

fabrication, such as PMMA or photoresist, and may not apply to dry-transferred graphene

that has had no additional processing.

Figure 1 shows schematics of the device geometries and experimental setups. A given

device consists of an electrically contacted, nearly fully clamped, circular sheet of graphene

suspended above a parallel metal electrode (i.e. the “gate”), which is used to apply a uni-

form electrostatic force. The devices are made by transferring single-layer graphene grown

by chemical vapor deposition (CVD) onto pre-fabricated substrates using standard proce-
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Figure 1: Devices and experimental setup. A focused laser beam is incident onto the sample
and the intensity of the reflected light is measured by a photodiode. (a) Schematic of a
through-hole graphene drum and the moving-mirror setup. A global gate voltage is applied
to the mirror, while the sample is grounded. This setup allows for independently varying the
distance between the graphene membrane and the back plane. (b) Schematic of a graphene
device integrated with local electrodes on a substrate. The close proximity between the
gate and graphene allow higher electrostatic forces to be applied. (c) Scanning electron
micrographs (SEM) of the devices depicted in (a) and (b). Scale bars are each 10 µm. In
the left image (a through-hole device), the large dark circle is the suspended graphene. In
the right image (an integrated device), the large dark circle is the graphene supported by
the silicon substrate, and the smaller circle in the center is the suspended graphene with
the gate electrode behind it. (d) Illustration showing how the expected reflected laser power
changes with graphene-mirror distance.
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dures.22 For this experiment, we use two different types of substrates: a 60 µm thick silicon

substrate with holes etched all the way through for making “through-hole” devices (Fig. 1a),

and a trench etched in silicon dioxide with local source, drain, and gate electrodes for making

“integrated” devices (Fig. 1b).13 One advantage of the through-hole device design is that

very large graphene drums can be suspended, which is important for resonator applications,

as the quality factor (Q) has been observed to increase linearly with radius.23

In order to select devices for our measurements, we examine the scanning electron micro-

graphs (SEM) and make sure there are no tears or excessive amounts of visible contamination.

Some level of contamination is present on most devices, and there is significant variation be-

tween fabrication runs. The two images shown in Fig. 1c are typical examples of devices

used for measurement. The lighter patches on the through-hole device (the left image) and

the darker patches on the integrated device (the right image) are bilayer graphene, which

occurs at nucleation sites during CVD growth. The bright specks are large pieces of dirt

that are scattered across every sample. Where possible, we select devices that do not have

these large pieces of dirt on the suspended region of graphene, such as in the right image

of Fig. 1c. It is important to note that the type of contamination that is relevant for our

conclusions is a thin, inhomogeneous polymer coating, which would not be visible in these

SEM images.

To clean these devices, we use standard procedures from the graphene resonator literature.

The through-hole devices are annealed in a furnace using forming gas, as described in Ref.

24. However, furnace annealing consistently destroys the suspended region of graphene

on the integrated devices, and so we current anneal them in vacuum instead. Current

annealing has been shown to remove mass11 and increase mobility.25 Excessive annealing will

cause damage to the graphene, and so we current anneal until the source-drain resistance is

minimized (usually ∼10 kΩ) and the optically-measured resonance amplitude is maximized.

The best way to quantify the efficacy of annealing is with transmission electron microscopy

(TEM),26 but unfortunately, we cannot use this technique on the integrated devices because
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the substrate is too thick. However, the results from our optical measurements will show

that current annealing is in practice not fully effective at removing residue, which agrees

with Ref. 26.

Our experimental setup is similar to previous graphene resonator experiments,2 in which

membrane motion is detected through optical interference. The devices are mounted inside a

vacuum chamber where the pressure is less than 10−6 Torr. A focused laser beam is incident

on the device and reflected light is directed to a photodiode, whose DC and AC voltages

are measured by a multimeter and network analyzer, respectively. The laser power is chosen

to be low enough such that changes in laser power do not cause sufficient heating to shift

the tension noticeably, as measured by the resonant frequency. The maximal change in

temperature in the graphene due to laser heating is given by ∆T = 2aP
πκt

, where P is the

incident laser power, and a, κ, and t are the absorption, thermal conductivity, and thickness

of a graphene sheet.13 The typical laser power used for detection is ∼100 µW, which results

in ∼1 K heating of the graphene membrane.

Motion of the graphene is driven capacitively by applying a gate voltage. In the past,

changes in the reflectance had been used to detect small displacements of high-frequency

resonant devices,2 but here we show that it can also be used to accurately measure static

deflections. Similar measurements have also been done using optical profilometry21,27 and

scanning electron microscopy.28

The optical system is modeled as follows. Interference between the incident laser light

and the light reflected off of the gate electrode behind the graphene creates a standing wave

in the optical intensity. The graphene can be approximated as an infinitely thin absorbing

interface.13 This assumption is valid because the membrane thickness (0.34 nm) is much

smaller than the wavelength of incident light (λ = 633 nm), and because the optical ab-

sorption a of graphene is 2.3%, while its reflectance is only 0.013%.29 The optical intensity

as a function of distance away from the reflecting back plane is I(z) = 4I0 sin2(2πz/λ),

where I0 is the intensity of the incident light. Hence, the overall reflectance is given by
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Figure 2: Data from a 21 µm radius through-hole graphene device in the moving-mirror setup.
(a) Normalized intensity of the reflected light as a function of mirror position, obtained by
measuring the DC voltage from the photodiode. The gap distance when zero voltage is
applied to the mirror piezo is about 10 µm. (b) Total reflectance measured during a gate
voltage sweep (blue triangles), and the same data converted to displacement versus gate
voltage (green circles), using the change in reflectance during a piezo scan (not presented
here) as a calibration. (c) Force-distance curve calculated from the gate voltage, assuming
a parallel plate capacitor force. A linear fit to the data gives an initial tension σ0 = 0.035
N/m.
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R(z) = 1 − 4a sin2(2πz/λ), which has a periodicity of λ/2. Note that the presence of a

1-2 nm layer of PMMA contamination on the surface would have a negligible effect on the

interference profile because it is small compared to the wavelength of the laser.

The reflectance change with graphene position can be measured directly using the through-

hole devices, which are mounted in a custom-built setup with the graphene parallel to a

dielectric mirror attached to a piezo stepper (Fig. 1a).24 By applying a voltage to the piezo,

the distance between the graphene and the back plane can be varied. Figure 2a shows the

measured reflectance as a function of mirror position. The data follows a sinusoidal pattern

with a periodicity of ∼300 nm and an amplitude of ∼9%, in agreement with the equation

above.

As Fig. 2a shows, there is a unique mapping from reflectance to displacement, as long

as we know the maximum and minimum reflectance and which period the graphene is in.

For the data in Fig. 2b, the distance between the graphene and the mirror is fixed, but

the gate voltage is varied. Using the maximum and minimum reflectance obtained from a

prior mirror piezo scan (not presented here), the reflectance (blue triangles) is converted into

displacement (green circles). Note that the overall change in reflectance is about 50% larger

than in Fig. 2a, which is most likely due to the presence of bilayer patches under the laser

spot. Bilayer graphene has twice the absorption of single layer graphene, and judging by the

SEM image in Fig. 1c, these patches are quite numerous on this device.

Assuming a parallel plate capacitor force F = 1
2
∂C
∂z
V 2
g , where C is the capacitance and

Vg is the gate voltage, the data in Fig. 2b can be plotted as force versus displacement (Fig.

2c). For a clamped circular membrane under uniform load, the force-distance curve has a

linear term that is related to the initial tension σ0,
30 and a cubic term that is related to the

2D Young’s modulus E:20

F = 4πσ0z + π
E

g3
z3

R2
(1)

where g = 0.72 − 0.17ν − 0.15ν2 = 0.69 and ν = 0.15 is the Poisson ratio for graphene.31

The data in Fig. 2c is linear because the force is not large enough to resolve the cubic term.
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A linear fit gives an initial tension of σ0 = 0.035 N/m, which is in agreement with previous

resonance-based measurements of suspended graphene.11 Optomechanical forces could factor

into Eq. 1, but we estimate these to be small: photothermal effects would change the tension

by at most 0.002 N/m, and the force from radiation pressure would be at most 2× 10−16N

(See Eqs. 4.9 and 4.18 in Ref. 12).

In order to access the cubic term of Eq. 1, and thereby measure the Young’s modulus,

much larger forces must be applied. This is not possible with the through-hole devices, as the

minimum graphene-mirror distance is limited to ∼10 µm. However, larger forces are possible

with the integrated device design (Fig. 1b), where the graphene-gate distance is ∼1.4 µm.

One of the critical assumptions that goes into Eq. 1 is that the displacement of the membrane

is small enough, relative to the gap distance, such that the parallel plate capacitor force does

not change significantly with displacement. In this experiment, the maximum displacement

is ∼300 nm, and so this assumption is valid for the through-hole devices, but it is arguably

the case for the integrated devices. However, to the best of our knowledge, there is no

approximation that will produce an analytic force-distance curve in the large displacement

regime (See Sections 2.1.3 and 2.3 from Ref. 12 for additional discussion). For this work, we

assume that Eq. 1 is a valid starting point; however, we suggest that future theoretical work

should be done to investigate the potential effect that large displacements can have on the

force-distance curve and modulus measurement.

Measurements of these devices were performed in a flow cryostat equipped with an optical

window, where a continuous flow of liquid nitrogen and a temperature controller were used

to vary the temperature. Note that the distance calibration requires pulling the graphene

by at least λ/4 ≈ 160 nm, which can only be done with the right combination of membrane

diameter, tension, gap distance, and gate voltage. Figure 3a shows force-distance curves

taken at two different temperatures. The data is well fit by Eq. 1, with the cubic dependence

at high gate voltage (giving a large displacement) very clear on a log-log scale (Fig. 3a Inset).

The Young’s modulus at room temperature is 51 N/m and increases to 200 N/m at 78 K,
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Figure 3: Data from two electrically integrated graphene devices in the cryostat. Device 1
has a 6.2 µm radius, Device 2 has a 5.2 µm radius, and the distance between the graphene and
the gate is 1.4 µm for both devices. (a) Force-distance curves for Device 1 at two different
temperatures, obtained by converting the change in reflectance to a displacement. The solid
lines are fits of Eq. 1 to the data. The 2D Young’s modulus from each fit is 51 N/m at 297
K and 200 N/m at 78 K. Inset: The same data plotted on a log-log scale, illustrating that
the force-distance curve is strongly cubic at high gate voltage. (b,c) The Young’s modulus
(b) and initial tension (c) as a function of temperature for two different cool-down runs on
each of these devices, inferred from force-distance curves like those shown in (a).
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as indicated by the increase in the cubic term.

The temperature dependence of the modulus is plotted in Fig. 3b for two different cool-

down runs on two different devices. Even though there is significant spread in the data, the

modulus clearly increases with decreasing temperature. Figure 3c shows the initial tension

inferred from the linear term in Eq. 1. In general, we find that the initial tension is often time-

dependent, with sudden jumps triggered by changes in temperature or gate voltage. Both

devices show an increasing initial tension with decreasing temperature, although for Device

1 the initial tension becomes large enough to be measured only at the lowest temperatures.

The smaller changes in the modulus and initial tension when the temperature is cycled

could be from adsorption and desorption of molecules on the surface, static ripples shifting,

or delamination from the side walls. This can dramatically shift the initial tension in the

membrane, but leaves the modulus relatively unaffected.

The thermal expansion coefficient of graphene at a fixed tension can be inferred by

reframing the force-distance data in terms of stress and strain. For a tensioned circular drum

under a uniform external force, the total tension and induced strain can be approximated

by σ ≈ F
4πz

and ε ≈ 2z2

3R2 , respectively.21 Hence, we have three measured quantities that

describe the system (stress, strain, and temperature), and two material properties that we

are interested in (Young’s modulus and thermal expansion coefficient). Figure 4a shows the

stress-strain curves for the first cool-down run of Device 2, which are well-approximated

by linear fits. The slopes of these lines are equal to the Young’s modulus, which clearly

increases with decreasing temperature. Finding the intersection between the linear fits and

a constant stress yields the strain versus temperature curves in Figure 4b, which have been

smoothed using a square window. For clarity, the data corresponding to σ = 0.2 N/m has

been plotted in Fig. 4a,b as a dashed line, and the intersection with the stress-strain curves

as black squares. The slopes of the linear fits to the strain-temperature curves give the

thermal expansion coefficient as a function of stress, which is plotted in Figure 4c. From this

data, it is clear that increasing the temperature causes elongation of the graphene, which
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is in contrast to prevailing expectations from membrane theory.32 Furthermore, the thermal

expansion coefficient increases linearly with tension, which is also surprising.

The same out-of-plane phonon modes that are predicted to cause the TEC to be negative

are also expected to soften the in-plane stretching modulus with increasing temperature.

This has been observed in lipid membrane experiments33 and molecular dynamics (MD)

simulations of graphene.34 While our data does show a softening modulus with increasing

temperature, it softens by a factor of ∼4-8 from 78 K to 297 K, while Ref. 34 predicts a

factor of ∼1.4 over the same range. Hence, the magnitude of this effect is too large to be

caused by thermal fluctuations alone. Similar to thermal ripples, static ripples would also

soften the modulus, but they would not cause it to change with temperature.35

The incompatibility of the thermal membrane theory with our data suggests another,

more dominant effect at play in graphene membranes, which causes the modulus to soften

near room temperature and leads to a positive thermal expansion coefficient. In an attempt

to understand this effect, we first note that a positive TEC follows directly from a softening

modulus. The total strain of a tensioned membrane can be written as a combination of

thermal and tensile contributions: ε(σ, T ) = ε(0, T ) + σ
E(T )

, where ε(0, T ) is the initial strain

caused by a change in temperature, σ is the tension induced by external forces, such as a

gate voltage, and E(T ) is the modulus. Hence, the thermal expansion coefficient at a fixed

tension is given by:

α =
∂ε(σ, T )

∂T

∣∣∣∣
σ

=
∂ε(0, T )

∂T
− σ

E(T )2
∂E(T )

∂T
(2)

The first term above is the usual thermal expansion coefficient for untensioned graphene,

while the second term accounts for nonzero tension and a temperature-dependent modulus.

According to our experiment, ∂E/∂T is negative and large enough to dominate the bare

thermal expansion. We measure a stress-dependent TEC of ∼ 30 × 10−6K−1, which has

opposite sign and is larger in magnitude than the theoretical TEC of graphene (∼ −4 ×

10−6K−1).16 Furthermore, the TEC of the silicon substrate is less than ∼ 2× 10−6K−1,36 in

the temperature range studied, which is also small compared to what we measure. Hence,
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Figure 4: (a) Select stress-strain curves for Device 2, Run 1, derived from the force-distance
data, with linear fits. The slopes of these lines show that the Young’s modulus increases with
decreasing temperature. (b) The same force-distance data plotted as induced strain versus
temperature at fixed tensions, with linear fits. The data is smoothed using a 5-point square
window, to pull out the trend. Note that these curves are correlated because they are taken
at equally spaced intervals in stress and the modulus is essentially constant with respect to
strain. The small deviations from the linear fit are due to variations in the measured modulus
at different temperatures (Note the spread in Fig. 3b). The dashed line and black squares
in (a) map onto those in (b). (c) The thermal expansion coefficient as a function of stress,
from the slopes of the linear fits in (b). The dashed line is a linear fit to the data, pinned
at the origin. (d) Schematic showing two possible interactions that a graphene sheet could
have with surface contamination, which would give rise to an effective Young’s modulus that
is softer than that of bare graphene and a positive thermal expansion coefficient.
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a temperature-dependent modulus leads to a positive thermal expansion coefficient. Note

that in the standard theory for thermally fluctuating membranes, the first term dominates

and the thermal expansion coefficient is negative.32

One obvious candidate for the source of this temperature-dependent modulus is poly-

meric contamination on the graphene membrane. Careful studies by transmission electron

microscopy (TEM) and Raman spectroscopy have shown that 1-2 nm of PMMA is adsorbed

on contact with graphene, which cannot be removed entirely by annealing.26 Such contami-

nation appears in resonance measurements as additional mass.11,15 Because of its low bending

stiffness and strong van der Waals bonding, graphene will adhere to any surface contami-

nants, creating effectively rippled graphene. Extension can then occur when the graphene

either stretches the contaminant or delaminates from it, as illustrated in Fig. 4d. We thus

expect the effective modulus of the system to be between that of ideal graphene and the

modulus of the residue. The 3D Young’s modulus of PMMA is 2-3 GPa at room tempera-

ture,37 and if there is at worst a 1-2 nm film on the graphene surface, then the 2D modulus

of the contaminant film would be 2-6 N/m. Our measured moduli lie between these values

and the ideal graphene modulus of 340 N/m. Delamination may also contribute, but is likely

not the dominant effect. If we assume that the adhesion energy between graphene and the

contaminants is comparable to that of graphene and other surfaces, then delaminating from

contaminant particles would require a force of ∼ 0.45 N/m,38 larger than the tensions applied

here. Furthermore, the modulus of organic materials, such as PMMA, grows significantly

stiffer with decreasing temperature,37,39,40 in agreement with the observed behavior. Future

experiments that can control the amount of contamination (e.g. through annealing and/or

evaporation), and simultaneously measure the modulus and mass, using static and resonant

measurements, can determine whether this conjecture is correct.

Our results have interesting implications for previous graphene resonator experiments.

These experiments use the resonant frequency to measure the tension indirectly. Experi-

ments from several different groups, including ours, have all seen the frequency increase with
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decreasing temperature,11,15,41 Chen et al. (2009) asserted that this is due to the contraction

of suspended gold electrodes, which counteracts the expansion of graphene.11 The results of

the measurements reported here, on devices with no suspended metal, point to an alterna-

tive explanation: that the temperature dependence of the modulus causes the effective TEC

of a tensioned graphene membrane to be positive, and that this temperature dependence

arises from surface contaminants. This explanation is also applicable to Chen et al. (2009),

whose temperature measurements were performed on a device with 6.4 times the mass of

bare graphene, indicating the presence of contamination. Hence, we have conclusively shown

that the TEC of graphene is positive under typical experimental conditions, resolving one

of the long-standing mysteries in the graphene resonator community.

Note that the situation changes above room temperature. Other experiments have mea-

sured the TEC of graphene using SEM17 and Raman spectroscopy18 at elevated tempera-

tures, and found a negative value. In separate experiments, we have observed that the fre-

quency of graphene resonators increases with increasing temperature, with the turnaround

point being somewhere near room temperature.42 This is consistent with the known glass

temperature of typical polymer residues (300 - 400 K);39 above this temperature, the polymer

flows and the TEC becomes that of bare graphene.

Finally, we examine the softened modulus of graphene in the context of previous AFM

nano-indentation experiments.3,5 These experiments apply a point load to the graphene and

measure a modulus of 340 N/m. However, this disagrees with our optical measurements of the

modulus, in which we apply a uniform load. To resolve this discrepancy, we have developed

a novel technique for using an AFM in tapping mode to measure the force-distance curve

of a graphene membrane under uniform load, and compare it to a point load measurement

on the same device. Figure 5a shows a 3D plot of AFM height data from an integrated

device experiencing a uniform electrostatic force from an applied gate voltage. In Fig. 5b,

line scans are taken across the center of a device with a 2.3 µm radius as the gate voltage

is stepped from 0 V to 70 V (the scanning direction is perpendicular to the trench). The
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shape is roughly parabolic, as expected for a tensioned membrane under uniform load.19,43

Taking a vertical cut through the center of the data in Fig. 5b gives the force-distance curve

plotted in Fig. 5c. Fitting Eq. 1 to the data gives σ0 = 0.063 N/m and E = 32 N/m, which

is in reasonable agreement with our optical measurements.

Vg

a) b)

c) d)

Figure 5: AFM measurements on graphene devices. (a) 3D reconstruction of AFM height
image data for a typical graphene device experiencing a uniform force from an applied gate
voltage. (b) Line cuts across the center of a 2.3 µm radius device showing how the profile
changes as the gate voltage is varied. The AFM tip was grounded for these measurements. (c)
Force-distance curve from a vertical line cut at ∼2 µm (center of the membrane), calculated
assuming the force from a parallel plate capacitor model. The black line is a fit of Eq. 1 to
the data. (d) Force-distance curve obtained by pushing with the AFM tip in the center of
the same device. The black line is a fit of Eq. 3 to the data.

For comparison, we also performed nano-indentation measurements on the same device, in

which the AFM tip itself is used to apply a point force while the tip deflection is measured.44
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The deflection sensitivity is found by pressing the tip into a hard surface (the nearby silicon

substrate), and the spring constant is determined by fitting a Lorentzian to the power spectral

density of the thermal motion of the tip. The tip used for this measurement has a spring

constant of ∼70 N/m. The resulting force-distance curve is plotted in Fig. 5d, and it is

also well fit by linear and cubic terms. The theoretical force-distance curve for a tensioned

membrane under point load is given by:20,30,45

F =
2π

logR/r
σ0z +

E

f 3

z3

R2
(3)

where f = 1.05 − 0.15ν − 0.16ν2 = 1.02 and r is the radius of the AFM tip. Assuming a

typical AFM tip radius of ∼20 nm, a fit to the data gives σ0 = 0.093 N/m and E = 220 N/m.

This fit includes the asymmetric part of the curve at negative displacement (not plotted here)

when the tip is retracted, in order to accurately determine the zero displacement point.

The two different load cases give similar values for the initial tension, but very different

values for the Young’s modulus. We do not have a conclusive explanation for this discrepancy,

but one key difference between the two load cases is the distribution of the strain across the

membrane. Under uniform load, the strain is uniformly distributed, but under point load,

the strain is highly localized near the AFM tip. It is possible that such high strain causes

the graphene to be fully stretched and exhibit a modulus closer to that of flat graphene

(340 N/m). Future work, both theoretical and experimental, is needed to prove or disprove

this conjecture. In any case, the fact that different load conditions produce a different value

for the effective modulus has broader implications for graphene resonator and mass-sensing

experiments that assume the modulus is equal to the theoretical value for flat graphene (340

N/m) inferred from point load experiments, even though the force is uniformly applied.11

In summary, we have used an optical technique for detecting the static displacement of a

graphene membrane to measure force-distance curves at various temperatures. We find that

the Young’s modulus at room temperature is significantly softer than at low temperature.

17



This causes the thermal expansion coefficient to be positive for a tensioned membrane, which

is contrary to expectations from the literature. We tentatively attribute this behavior to the

effects of polymer residue on the graphene surface. Interestingly, we find that force-distance

curves measured by AFM produce different results for point and uniform loads on the same

membrane, which suggests that the commonly used modulus of 340 N/m is not appropriate

for the analysis of graphene under electrostatic force.11
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