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Abstract

The conventional first-principles theory for the thermal and thermodynamic properties of insu-

lators is based on the perturbative treatment of the anharmonicity of crystal bonds. While this

theory has been a successful predictive tool for strongly-bonded solids such as diamond and sili-

con, here we show that it fails dramatically for strongly anharmonic (weakly-bonded) materials,

and that the conventional quasi-particle picture breaks down at relatively low temperatures. To

address this failure, we present a unified first-principles theory of the thermodynamic and ther-

mal properties of insulators that captures multiple thermal properties within the same framework

across the full range of anharmonicity from strongly-bonded to weakly-bonded insulators. This

theory features a new phonon renormalization approach derived from many-body physics that cre-

ates well-defined quasi-particles even at relatively high temperatures, and it accurately captures

the effects of strongly anharmonic bonds on phonons and thermal transport. Using a prototypical

strongly anharmonic material - sodium chloride (NaCl) as an example, we demonstrate that our

new first-principles framework simultaneously captures the apparently contradictory experimental

observations of large thermal expansion and low thermal conductivity of NaCl on the one hand, and

anomalously weak temperature dependence of phonon modes on the other, while the conventional

theory fails in all three cases. We demonstrate that four-phonon scattering due to higher-order

anharmonicity significantly lowers the thermal conductivity of NaCl and is required for a proper

comparison to experiment. Furthermore, we show that our renormalization framework, along with

four-phonon scattering, also successfully predicts the measured phonon frequencies and thermal

properties of a weakly anharmonic material - diamond, indicating universal applicability for ther-

mal properties of insulators. Our work gives new insights into the physics of heat flow in solids,

and presents a computationally efficient and rigorous framework that captures the thermal and

thermodynamic properties of both weakly and strongly-bonded insulators simultaneously.

∗ broido@bc.edu
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I. INTRODUCTION

Phonons, which are collective vibrations of a crystal lattice, are the primary energy car-

riers in semiconductors and insulators. The anharmonicity of inter-atomic bonds in these

solids plays a fundamental role in several phonon-driven phenomena such as structural

phase transitions, thermal expansion and resistance to heat flow. Understanding phonon

thermodynamics and thermal transport in materials with strongly anharmonic bonds has

been a topic of intense research interest among the solid-state physics, materials science,

chemistry and geology communities due to the ubiquitous presence of such materials and

their technological importance. For example, materials that are strongly anharmonic even

at room temperature, like heavy-metal chalcogenides and complex metallic hydrides, make

excellent thermal insulators, thermoelectric modules [1] and energy storage devices [2], and

anharmonic materials like alkaline-earth oxides in the earth’s core and mantle operate at

high pressure and temperature [3], and drive the geological changes occurring underneath

the earth’s surface.

While it has been possible to experimentally measure macroscale collective phonon prop-

erties such as thermal expansion and thermal conductivity of insulators for more than a

century, the recent advances in experimental techniques such as inelastic neutron scattering

(INS) [4, 5] and transient grating spectroscopy [6] have now enabled accurate measurements

of microscopic phonon-specific properties such as phonon dispersions and mean free paths.

Theoretical treatment of phonon properties, both for predicting new thermal phenomena

and for understanding novel observations of the aforementioned experiments, has evolved

from simple models [7, 8] to more sophisticated first-principles quantum mechanical treat-

ments of phonons and thermal properties in solids over the past few decades [9–15]. These

conventional first-principles methodologies, which are built on the lowest-order perturbative

treatment of the bond anharmonicity and on the Peierls-Boltzmann equation (PBE) treat-

ment of quasi-particle transport described below, have worked well in capturing phonon

dispersions, heat capacity, thermal expansion and thermal conductivity of weakly anhar-

monic systems.

However, in the case of strongly anharmonic materials such as alkali halides and heavy-
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metal chalcogenides, the conventional lowest-order perturbative treatment of the bond

anharmonicity can be insufficient [16–25]. Furthermore, the PBE theory of phonon trans-

port relies on the presence of well-defined quasi-particles, whose mutual collision frequencies

(Γ) must be significantly smaller than their vibrational frequencies (ω), i.e., Γ� ω [25, 26].

This condition could be violated in strongly anharmonic materials. Allen [25] estimated

that it is safe to use the conventional quasi-particle theory if the thermal conductivity (k)

is larger than kmin around 5ΘD/300 Wm−1K−1, where ΘD is the Debye temperature of the

material. While for most weakly anharmonic materials like silicon and diamond this condi-

tion is comfortably satisfied well beyond room temperature, for many strongly anharmonic

materials, the experimentally measured k is close to, or even lower than, kmin even at room

temperature, calling into question the validity of the conventional PBE treatment of phonon

transport.

In this work, we demonstrate that, in fact, the conventional theory fails dramatically in

describing the thermal properties of highly anharmonic materials. As an example crystal,

we examine sodium chloride (NaCl), which is a strongly anharmonic compound with weak

ionic bonds and is representative of a wide class of similar strongly anharmonic materi-

als. We show that the conventional first-principles theory significantly over-predicts bond

anharmonicity, and as a result gives phonon frequencies, thermal expansion and thermal

conductivity that are in poor agreement with measured data. It also becomes inapplicable

at relatively low temperature due to the complete breakdown of the quasi-particle picture.

To address these failures, we have developed a unified first-principles approach using

many-body physics to describe thermal properties of insulating crystals within the same

theoretical framework. The theory is applicable across the full range of bonding anharmonic-

ity spanning low to high temperatures, and weakly-bonded to strongly-bonded materials.

A central feature of this theory is a new ab initio phonon renormalization scheme based

on many-body perturbation theory, from which well-defined quasi-particles emerge over the

entire temperature range considered in this work. Furthermore, we show that higher-order

four-phonon interactions, beyond the conventional lowest-order three-phonon processes, are

required to simultaneously capture both the magnitudes and the temperature dependence

of the experimentally measured thermal conductivity in NaCl. The new approach demon-
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strates good agreement with experiments for phonon dispersions, thermal conductivity and

thermal expansion of NaCl simultaneously, which rigorously confirms the validity of the

quasi-particle theory for the renormalized phonons. Finally, we show that our renormaliza-

tion framework, along with four-phonon scattering, also successfully predicts the measured

phonon properties of a weakly anharmonic material - diamond, indicating universal appli-

cability for thermal properties of insulators. The first-principles approach developed here

should have wide applicability to several classes of highly anharmonic materials, where the

conventional quasi-particle theory is likely to fail.

II. PHONONS, THERMAL EXPANSION AND THERMAL CONDUCTIVITY:

CONVENTIONAL THEORY

We begin our analysis by briefly describing the conventional first-principles procedure to

calculate phonon and thermal properties of semiconductors and insulators. Here we use the

word “conventional” to describe widely used approaches in the literature, which are based on

the lowest order perturbative treatment of the bond anharmonicity, without considering any

higher-order effects, i.e. they do not include phonon renormalization or higher-order phonon-

phonon scattering. Phonons, their temperature dependence, and their mutual interaction are

described through the inter-atomic potential, Φ, which can be separated as Φ = Φ0+ΦH+ΦA,

where Φ0 is the energy of the lattice atoms in their equilibrium positions, and ΦH and ΦA

are the harmonic (second-order) and anharmonic (third-order and beyond) energies for the

displacement of atoms from their equilibrium positions, respectively. ΦA can be expressed

in a perturbative expansion in successively higher-orders of the atomic displacement: ΦA =

Φ3 +Φ4 + . . .. In a similar way, the Helmholtz free energy, from which the lattice parameters,

{ai}, are determined, can be separated as F = Φ0 + FH + FA, where FH and FA give the

harmonic and anharmonic parts, and FA = F3 + F4 + . . . is also expressed as perturbative

expansion. The procedure to calculate the harmonic (ΦH) and anharmonic (ΦA) potential

energies from first-principles, and explicit expressions for the harmonic (FH) and anharmonic

(FA) free energies are given in Appendices A and B respectively.
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Phonons

The conventional first-principles approach to calculate phonon modes is accomplished

within the harmonic approximation, where Φ = Φ0 + ΦH . Then, Φ0 alone is minimized

with respect to the lattice parameters for the crystal being examined, within the framework

of density functional theory (DFT). Second-order inter-atomic force constants (IFCs) are

calculated and used to construct the dynamical matrix, from which phonon modes are

calculated (see Appendix A). At this level, there is no thermal expansion, i.e. {∂ai/∂T} = 0,

since Φ0 does not depend on T . Furthermore, the anharmonic contribution (ΦA) to the

inter-atomic potential is ignored for the calculation of phonon frequencies and eigenvectors.

Henceforth, we call these phonons, the bare phonons.

Thermal expansion

In the conventional theory, thermal expansion is typically included within the framework

of the quasi-harmonic approximation (QHA) [27]. In the QHA, F is approximated as:

FQHA ({ai}, T ) ≈ Φ0 ({ai}) + FH (ω ({ai}) , T ), where ω ({ai}) are the phonon frequencies

calculated from DFT at each of the lattice parameters, {ai}. Henceforth, we call these

phonons, the quasi-harmonic (QH) phonons. The lattice parameters are now functions of

T because phonon frequencies are taken to be functions of the {ai}. Thermal expansion of

the lattice, {ai (T )}, is determined by minimizing FQHA at each temperature.

Lattice thermal conductivity

Within the conventional theory, the lattice thermal conductivity is calculated by solv-

ing the linearized Peierls-Boltzmann equation (PBE) for the non-equilibrium distribution

function (nλ) established from an assumed small temperature gradient, ∇T , across a sample:

vλ · ∇T
∂n0

λ

∂T
=
∂nλ
∂t

∣∣∣∣∣
collisions

(1)

Here, n0
λ = 1/(e~ωλ/(kBT ) − 1) is the Bose distribution function for phonon mode, λ,

with ωλ and vλ being the frequency and group velocity in that mode respectively. The in-

trinsic thermal resistance is introduced in the collision term from bare phonons interacting
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through the lowest-order term in ΦA i.e. Φ3, which causes scattering events involving three-

phonons [28, 29]. Here, the bare phonons and Φ3 are calculated at the lattice constant that

minimized Φ0, and thus thermal expansion is ignored. Temperature enters only in describ-

ing phonon populations and three-phonon scattering rates. A more consistent approach,

including thermal expansion effects, would be to solve the PBE using QH phonons and Φ3

obtained within the QHA, although this is typically not done. Writing the non-equilibrium

distribution function as nλ = n0
λ + n0

λ (n0
λ + 1) Fλ · (−∇T ) gives an equation for the vector

function Fλ [9–15, 30, 31]:

Fλ = F0
λ + τ

(3ph+iso)
λ

{∑
λ1λ2

[
W

(+)
λλ1λ2

(Fλ2 − Fλ1) +
1

2
W

(−)
λλ1λ2

(Fλ2 + Fλ1)

]
+
∑
λ1

W iso
λλ1

Fλ1

}
(2)

In this equation, 1/τ
(3ph+iso)
λ =

∑
λ1λ2

[
W

(+)
λλ1λ2

+ 1
2
W

(−)
λλ1λ2

]
+
∑

λ1
W iso
λλ1

is the three-

phonon scattering rate from mode λ, W
(±)
λλ1λ2

are scattering probabilities involving the three

phonon modes, λ, λ1 and λ2, W iso
λλ1

are the phonon-isotope scattering probabilities, and

F0
λ = ~ωλvλτ (3ph+iso)

λ /kBT
2 with kB being the Boltzmann constant. Full solution of the

PBE properly accounts for the difference between momentum-conserving Normal and resis-

tive Umklapp scattering processes [28, 29]. Retaining only the first term in the PBE (just

F0
λ) gives the relaxation time approximation (RTA), which incorrectly treats the Normal

processes as directly resistive [28, 29]. Expressions for these quantities are given in the

Appendix B. Solution of the PBE then gives the thermal conductivity tensor, kαβ, as:

kαβ =
∑
λ

CλvλαFλβ (3)

where α and β are Cartesian components and Cλ = (1/V ) kB (∂n0
λ/∂T ) is the volumetric

heat capacity per mode.

III. FAILURE OF CONVENTIONAL THEORY FOR SODIUM CHLORIDE

The conventional first principles theory described in the previous section has done re-

markably well at accurately describing phonon modes and thermal conductivities of dozens

of compounds with no adjustable parameters (see, for example, Refs. [9–15]). To test the
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ability of the conventional theory to capture the thermal properties of highly anharmonic

materials, we have applied it to sodium chloride (NaCl), a weakly-bonded ionic crystal in the

class of alkali halides with large thermal expansion and unusually low thermal conductivity,

given its relatively light atoms. We have calculated the phonon dispersions, thermal expan-

sion and lattice thermal conductivity using the conventional theory described in the previous

section. For consistency in obtaining all three quantities within the same theory framework,

we have used the QHA for all calculations, rather than (i) calculating phonons and thermal

conductivity at the bare lattice constants and (ii) using the QHA for thermal expansion only.

Furthermore, since our formulation determines anharmonic IFCs from thermally relevant

finite temperature displacements (see Appendix A), these temperature-dependent unrenor-

malized anharmonic IFCs (along with the temperature-dependent unrenormalized harmonic

IFCs from the quasi-harmonic approximation) are included in the thermal conductivity

calculations of the above-described conventional approach. The results of our calculations

using this conventional approach are shown in fig. 1.

Figure 1 (a) compares the calculated phonon dispersions to the measured INS data for

NaCl [32]. The calculated optic phonon frequencies at 80 K and 300 K lie well below the

corresponding measured values and show a softening with increasing temperature, while the

INS measurements show almost no temperature dependence. This is particularly evident

for the transverse optic (TO) phonon branch. Also, as shown in Fig. 1 (b), the NaCl lat-

tice parameters calculated in the QHA increase much faster with temperature than do the

measured values above 300 K [33–36], giving much larger thermal expansion than measured

experimentally. In contrast, the lattice thermal conductivity calculated in the QHA, limited

by lowest order three-phonon and phonon-isotope scattering, k
(QHA)
3 (dashed black curve

in Fig. 1 (c)), is in reasonably good agreement with the measured data [37–39]. Similar

calculations in the literature [40, 41] also found reasonable agreement with measured data

when including only lowest order three-phonon scattering. This is consistent with the good

agreement found between the measured thermal conductivities for many materials and first-

principles calculations that included only three-phonon scattering around and below room

temperature [10–12, 14, 15].

The failure of the conventional theory to agree with experiments on phonon dispersion,
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FIG. 1. (a) Calculated quasi-harmonic phonon dispersions compared with measured data from

Raunio et al [32] at 80 K (blue) and 300 K (red). Circled region shows transverse optic (TO) branch

near Γ. (b) Rate of thermal expansion calculated in the QHA (dashed black curve) compared with

measured data [33–36]. (c) Three-phonon and 3+4-phonon limited thermal conductivity as a

function of temperature calculated using quasi-harmonic phonons compared with measured data

from Hakansson et al. [37] (extrapolated from low pressure values), McCarthy et al. [38] and

Yukutake et al. [39].

thermal expansion and thermal conductivity of NaCl simultaneously, presents a problem.

A consistent theory of thermal properties should be able to capture all of the above quan-

tities within the same framework. The failure of the conventional theory to do so means

that the QHA is inadequate for NaCl. This suggests that the perturbative treatment of

anharmonicity about the phonons calculated in the QHA is breaking down, resulting in

stronger apparent anharmonicity than observed experimentally, manifested by excessive

phonon softening and too large thermal expansion.

Although the thermal conductivity calculations within the QHA including only three-

phonon scattering agrees with the measured data for NaCl, inclusion of higher-order phonon-

phonon scattering - that between four phonons, will necessarily reduce the calculated ther-

mal conductivity below the measured value. Since the perturbative treatment is breaking

down for NaCl due to the strong apparent anharmonicity described earlier, inclusion of

four-phonon scattering should significantly worsen the agreement of the calculated ther-

mal conductivity (k
(QHA)
3+4 ) with experiments. To test this proposition, we have included
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four-phonon scattering in the solution of the PBE (Eq. 2), which transforms into:

Fλ = F0
λ + τ

(tot)
λ

∑
λ1λ2

{[
W

(+)
λλ1λ2

(Fλ2 − Fλ1) +
1

2
W

(−)
λλ1λ2

(Fλ2 + Fλ1)

]
+
∑
λ1

W iso
λλ1

Fλ1

+
∑
λ1λ2λ3

[
1

6
Y

(1)
λλ1λ2λ3

(Fλ1 + Fλ2 + Fλ3) +
1

2
Y

(2)
λλ1λ2λ3

(Fλ2 + Fλ3 − Fλ1)

+
1

2
Y

(3)
λλ1λ2λ3

(Fλ3 − Fλ2 − Fλ1)

]}
(4)

Equation 4 is changed in two ways compared to the three-phonon PBE of Eq. 2.

First, the scattering rates now include both three-phonon and four-phonon scattering,

along with phonon-isotope scattering: 1/τ
(tot)
λ = 1/τ

(3ph+iso)
λ + 1/τ

(4ph)
λ where 1/τ

(4ph)
λ =∑

λ1λ2λ3

[
1
6
Y

(1)
λλ1λ2λ3

+ 1
2
Y

(2)
λλ1λ2λ3

+ 1
2
Y

(3)
λλ1λ2λ3

]
, with Y

(1)
λλ1λ2λ3

, Y
(2)
λλ1λ2λ3

and Y
(3)
λλ1λ2λ3

being scat-

tering probabilities for the different four-phonon processes, as described in the Appendix B.

Second, the last term in Eq. 4 is new. It conveys the distinction between Normal and

Umklapp processes for four-phonon scattering. Without it, four-phonon scattering would be

treated within the RTA, as has been done previously [42]. Computation of the four-phonon

scattering probabilities and the iterative solution of Eq. 4 are challenging tasks which require

extremely large computation time and storage memory. We have developed a number of

computational efficiencies to obtain the 3+4-phonon limited thermal conductivity by fully

solving Eq. 4, as summarized in Appendix D.

We calculated the lattice thermal conductivity of NaCl including three-phonon scatter-

ing, four-phonon scattering and phonon-isotope scattering within the QHA, k
(QHA)
3+4 . The

result is shown by the solid black curve in Fig. 1 (c). k
(QHA)
3+4 lies well below the measured

data [37–39] over the full range of temperatures (100 K - 400 K). For example, it is 20% be-

low the lowest value (extrapolated from low pressure measurements) from Ref. [37] at 100 K

and almost 60% below it at 400 K. We also calculated the 3+4-phonon and phonon-isotope

scattering limited thermal conductivity from 100 K - 600 K, using the lattice constants and

IFCs (harmonic and anharmonic) calculated at a low temperature of 80 K, to mimic the

conventional approach without including any temperature dependence for the IFCs, phonon

frequencies or lattice constants. The predicted three-phonon and 3+4-phonon limited ther-

mal conductivities under this approximation also agree poorly with experiments both in

magnitudes and temperature-dependent trends (see SI section S2 [43]).
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Thus, the apparent success of the QHA with only three-phonon interactions, in accurately

matching the measured lattice thermal conductivity of NaCl is in fact fortuitous, and the

conventional perturbative treatment of the anharmonic bonds in NaCl fails to describe the

measured phonon frequencies, the thermal expansion and the thermal conductivity.

We have traced these failures to the unusually strong anharmonicity in the ionic bonds

of NaCl, which invalidates the perturbative anharmonic expansion for the quasi-harmonic

(QH) phonons and even results in a breakdown of the quasi-particle picture beyond 400 K,

on which the PBE relies. In order for quasi-particles to be well-defined, they must interact

weakly, i.e., their vibrational frequencies (ω) must be significantly larger than the rates at

which they scatter (Γ). This condition can be expressed mathematically as, Γ� ω [25, 26].

Figure 2 shows Γ3+4/ω for the QH phonons of NaCl above 400 K, where Γ3+4 are the scatter-

ing rates including three- and four-phonon interactions. It is evident from Fig. 2 that in this

temperature range, Γ3+4 are so large that over almost the whole frequency range the condi-

tion, Γ� ω, is not satisfied for the QH phonons of NaCl. The breakdown at only 40% of the

melting temperature of NaCl is surprising and is a signature of the extreme anharmonicity,

which invalidates its perturbative treatment. Additionally, even though Γ3+4 � ω is satis-

fied in the range of 100 - 300 K, the breakdown of the quasi-particle picture at about 40% of

the melting temperature, along with the poor experimental agreement of the phonon disper-

sion and 3+4-phonon limited thermal conductivity computed using QH phonons, indicates

that the QH phonons over-predict phonon scattering in NaCl even between 100 K and 300 K.

IV. NOVEL PHONON RENORMALIZATION APPROACH

One of the approaches to overcome these problems is to renormalize the QH phonons into

new quasi-particles that interact more weakly [16–25]. Previous efforts to obtain renormal-

ized phonons have either fit effective second-order IFCs (from which phonons are calculated)

to forces calculated using DFT [17–22] or include renormalization for phonon frequencies,

admitting polarization mixing with some approximations [23, 24]. In this work, we have

developed a new approach that explicitly renormalizes the second-order IFCs using a sta-
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FIG. 2. Ratio of 3+4-phonon scattering rates to phonon frequency (Γ(3+4)/ω) calculated using

quasi-harmonic phonons at three different temperatures. Γ(3+4)/ω approaches 1 above 400 K and

even exceeds it beyond ∼ 500 K, causing the quasi-particle description of the quasi-harmonic

phonons to break down.

tistical perturbation-operator renormalization technique and many-body perturbation the-

ory. Using this procedure, a new set of renormalized second-order IFCs (Θjk (Nν, Pπ))

are created from the bare (unrenormalized) second-order (Φjk (Nν, Pπ)) and fourth-order

(Φjklm (Nν, Pπ,Qη,Rρ)) IFCs by solving the following equation:

Θjk (Nν, Pπ) = Φjk (Nν, Pπ) +
~

4N0

∑
QR

∑
ηρ

∑
lm

∑
qs

Φjklm (Nν, Pπ,Qη,Rρ)

× Wl (ν; qs)W ∗
m (ρ; qs)

Ωqs

√
MνMρ

eiq·(R(Q)−R(R)) (2nqs + 1) (5)

where, Ωqs and Wl (ν; qs) are the renormalized phonon frequencies and eigenvectors respec-

tively of the phonon mode with wave vector q and polarization s, N,P,Q and R are the

lattice sites, ν, π, ζ and ρ are the basis atom sites and N0 is the number of lattice sites

in the supercell (commensurate with the number of q points in the Brillouin zone). The

derivation of the renormalization equation (Eq. 5) and extension of the renormalization to

the anharmonic IFCs are detailed in Appendix C. Equation 5 shows that the renormalized
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second-order IFCs (Θjk (Nν, Pπ)) depend on the renormalized phonon frequencies (Ωqs,

and therefore, the Bose factors nqs) and the renormalized phonon eigenvectors (Wl (ν; qs)),

which in turn depend back on the renormalized second-order IFCs (Θjk (Nν, Pπ)). There-

fore, Eq. 5 has to be solved self-consistently to obtain Θjk (Nν, Pπ). To solve Eq. 5, the

unrenormalized phonon frequencies (ωqs) and eigenvectors (wl (ν; qs)) are used as initial

guesses and the renormalized second-order IFCs (Θjk (Nν, Pπ)) are updated at each itera-

tion step.

A critical advantage of this approach is that since we renormalize the second-order IFCs

directly, the renormalization seamlessly extends to the phonon frequencies, eigenvectors

and group velocities. Furthermore, we can connect the changes to the phonon dispersions

due to renormalization explicitly to one-phonon propagators, unlike some of the fitting

approaches (see SI section S4 [43] for the relation between our renormalization procedure

and the one-phonon propagator picture frequently used in many-body theory [24, 44–47]).

Our approach is also able to capture the effects of zero-point motion, LO-TO splitting and

finite temperature effects on the IFCs, which are particularly important for a polar, highly

anharmonic material with relatively light atoms, like NaCl.

To apply the renormalization technique for NaCl, we first determine the unrenormalized

IFCs on a two-dimensional grid of lattice parameters and temperatures, as described ear-

lier. At each point on this grid, we perform the renormalization of the second, third and

fourth-order IFCs. Next, we identify the lattice parameter that minimizes the anharmonic

free energy including contributions out to fourth-order (F = Φ0 + FH + F3 + F4, where

FH , F3 and F4 are defined in Appendix B) computed using the renormalized IFCs at each

temperature, which also gives the thermal expansion directly. Inclusion of F3 and F4 is

particularly important at elevated temperatures to accurately capture the thermal expan-

sion, as shown in the SI section S1 [43]. Finally, we compute the phonon dispersion, three-

and four-phonon scattering rates, and thermal conductivity using the renormalized IFCs by

solving the 3+4-phonon PBE (Eq. 4) as for the QHA calculation.
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V. PHONONS, THERMAL EXPANSION AND THERMAL CONDUCTIVITY:

RENORMALIZATION APPROACH

The computed phonon dispersions obtained using the renormalization method show ex-

cellent overall agreement with the INS measurements [32] at both 80 K (Fig. 3 (a)) and 300

K (Fig. 3 (b)). In particular, the renormalized dispersions accurately capture the relative

temperature independence of the optic phonons, consistent with the measured data [32]. In

contrast, the QH phonon dispersions show significant softening between 80 K and 300 K.
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FIG. 3. Renormalized phonon dispersions at the fourth-order anharmonic free energy minimum

lattice constants (solid curves), and phonon dispersions at the quasi-harmonic lattice constants

(dashed curves) compared with measured data from Raunio et al [32] at (a) 80 K and (b) 300 K.

As shown in Fig. 4 (a), the experimental rate of thermal expansion [33–36] is also well

captured by the renormalized anharmonic lattice parameters (solid black curve). In contrast,

the lattice parameters calculated in the QHA (dashed curve) significantly over-predict the

rate of thermal expansion. We note that the absolute values of the lattice parameters deter-

mined by the minimization of the QH and the renormalized anharmonic free energies were

0.9% and 0.5% larger than the room temperature experimental value of 5.645 ± 0.005 [33].

This is typical of under-bonding obtained from generalized gradient approximation-based
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PBEsol exchange correlation functionals used for our DFT calculations. In order to compare

the rate of thermal expansion with the measured data, we rigidly shifted both calculated

curves in Fig. 4 (a) to match the experimental measurement only at 300 K. Interestingly,

although both thermal expansion curves are similar in the range of 100 K to 300 K, the

respective phonon dispersions (Fig. 3) show significantly different temperature-dependent

behaviors.

We have confirmed that the renormalized phonons of NaCl satisfy the necessary condi-

tion to describe phonon transport using the PBE: Γ3+4 � ω. Figure 4 (b) shows that Γ3+4

is much less than ω for the renormalized phonons even at a high temperature of 600 K,

thereby enabling the Boltzmann treatment for phonon transport and thermal conductivity

calculations over the entire temperature range considered in this work. Comparing to Fig. 2

for the QH phonons, a significant reduction in Γ3+4 is achieved through the renormalization

process that gives well-defined quasi-particles.

Using the renormalized phonons and corresponding third- and fourth-order IFCs, we

have calculated phonon-phonon scattering rates and lattice thermal conductivity. Figure 4

(c) shows that the three-phonon limited thermal conductivity calculated using renormalized

phonons, kren
3 (red dashed curve), is consistently larger than the measured data. The renor-

malized phonons have higher frequencies and interact more weakly than do the QH phonons.

Including both three- and four-phonon scattering, kren
3+4 (solid red curve) gives much better

agreement with both the magnitudes and temperature dependence of the three different

sets of experimental data [37–39]. This highlights that even with phonon renormalization,

higher-order anharmonicity is required to capture the thermal conductivity of this strongly

anharmonic material. We note that the slightly lower kren
3+4 compared to the data is in part

a consequence of the slightly larger lattice constant in our calculations compared to the

measured value. For example, at 300 K, performing the calculations of kren
3+4 at the measured

lattice constant increases the calculated value by 7%, thereby improving the agreement with

the measurements.
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FIG. 4. (a) Rate of thermal expansion calculated in the QHA (dashed black curve) and by the

phonon renormalization approach (solid black curve) compared with measured data [33–36]. (b)

Ratio of 3+4 phonon scattering rates to phonon frequency (Γ(3+4)/ω) calculated using renor-

malized phonons at three different temperatures. The weakened scattering rates after phonon

renormalization give a significant reduction to Γ(3+4)/ω and produce well-defined quasi-particles.

(c) Three-phonon and 3+4-phonon limited thermal conductivity as a function of temperature cal-

culated using the renormalization approach (solid red curve) compared with measured data from

Hakansson et al. [37], McCarthy et al. [38] and Yukutake et al. [39]. The corresponding curves

(black) for the quasi-harmonic phonons are included for comparison.

VI. CANCELLATION OF ERRORS

For comparison, Fig. 4 (c) also includes the calculated kQHA
3 and kQHA

3+4 from Fig. 1 (c).

Note that by coincidence, kQHA
3 is seen to overlap almost exactly with kren

3+4. On the other

hand, the QH phonon dispersions (Fig. 3) and the rates of thermal expansion (Fig. 4 (a)) are

significantly different between the two calculations. The main reason for the agreement be-

tween kQHA
3 and kren

3+4 is a fortuitous cancellation of errors produced by strongly temperature

dependent softening of the QH phonons and the neglect of four-phonon scattering processes

in the QH calculation. Figure 5 show the temperature dependence of (a) QH and (b) renor-

malized phonons from 100 K to 600 K. The QH phonon modes soften significantly as the

temperature is increased. Most importantly, the TO phonon branch softens by more than 1

THz between 100 K and 600 K, resulting in a substantial increase in the number of three-

phonon scattering processes involving TO phonons as the temperature is increased, which

gives stronger three-phonon scattering rates, and therefore mimics the measured stronger
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temperature-dependent thermal conductivity trend at higher temperatures [37]. On the

other hand, the renormalized phonon dispersions show a weaker temperature dependence,

which results in weaker three-phonon scattering rates compared to the QHA calculations

from 100 K-600 K. Experimental measurements are only recovered by including four-phonon

scattering in the renormalized phonon calculations.

(a) (b)

100 200 300 400 500 600
Temperature (K)

0

1

2

3

4

5

6

7

8

P
h
o
n
o
n
 f
re

q
u
e
n
c
y
 (

T
H

z
)

TO at

LO at (0.1,0.1,0.1)

LO at (0.2,0.2,0.2)

LO at (0.3,0.3,0.3)

Renormalized

Quasi-harmonic

Raunio et al. (1969)

Cowley et al. (1983)

Cowley et al. (1976)

(c)

FIG. 5. Evolution of (a) quasi-harmonic and (b) renormalized phonon dispersions between 100

K and 600 K. (c) Temperature dependent phonon frequencies of the TO mode at Γ and the LO

modes at 2π/a (0.1, 0.1, 0.1), 2π/a (0.2, 0.2, 0.2) and 2π/a (0.3, 0.3, 0.3) points in the Brillouin zone

compared with INS [32, 48] and infra-red emission measurements [49]. The quasi-harmonic phonons

show significant temperature driven softening while the renormalized phonon dispersions exhibit

weak temperature dependence, consistent with the measured data [32, 48, 49].

The unusually weak temperature dependence of phonon modes in NaCl has also been

observed in INS [32, 48] and infra-red emission measurements [49] for selected longitudinal

optic (LO) and TO modes. As shown in Fig. 5 (c), the calculated renormalized phonons

are in very good agreement with the measured weakly temperature-dependent TO mode

frequencies at the Γ point and with the measured LO mode frequencies along the [111]

direction from 100 K to 600 K, while the QH phonons show large softening and agree poorly

with the experimental measurements [32, 48, 49].

To test the robustness of our results for NaCl, we have also performed the phonon

renormalization and calculations of thermal expansion and kren
3+4 for NaCl using a different

pseudopotential with the exchange correlation under the local density approximation (LDA).
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We find similarly good agreement between the magnitudes and temperature dependence of

the renormalized phonons with the corresponding measured values. The calculated thermal

expansion rate compares slightly worse to the measured data, while kren
3+4 is in slightly better

agreement with the data. We note however that the optimized LDA lattice constant is 5.5%

lower than the measured value. (see SI section S5 [43] for the results of the LDA calculations).

VII. TEST FOR UNIVERSALITY: THE CASE OF DIAMOND

To test the universal applicability of our new first-principles approach, we performed the

phonon renormalization, 3+4-phonon scattering and thermal conductivity calculations for

diamond, a weakly anharmonic compound. We compared the calculated phonon dispersions

(Fig. 6 (a)), thermal expansion (Fig. 6 (b)) and thermal conductivity (Fig. 6 (c)) with

measured data and we find that:

1. The calculated bare and renormalized phonons are almost identical and give a very

good match to the measured data [52–55].

2. The rate of thermal expansion calculated using QH and renormalized phonons are

nearly identical for diamond and match well with the measurements [51]. The absolute

value of the lattice constant at room temperature from our calculations is 3.5684 Å,

which is within 0.1% of the experimental value [56]. The solid curve in Fig. 6 (b) was

rigidly shifted to match the experimental value only at 300 K, similar to NaCl.

3. The calculated thermal conductivities accurately reproduce the measured data over a

wide temperature range, as found previously [11, 42].

4. The differences between kQHA
3 , kQHA

3+4 , kren
3 and kren

3+4 are small until well above room

temperature (Fig. 6 (d)).

Since the number of four-phonon scattering channels in diamond is much larger than that for

three-phonon scattering, the obtained null result is a strong confirmation that the phonon

renormalization approach and inclusion of higher-order anharmonicity is being captured ac-

curately (see SI section S6 [43] for phonon dispersion and thermal conductivity calculations

for diamond beyond 600 K). Thus our renormalization framework, along with four-phonon
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FIG. 6. (a) Quasi-harmonic (dashed curves) and renormalized phonon (solid curves) dispersions of

diamond at 300 K compared with experiments from Warren et al. [50]. (b) Rate of thermal expan-

sion as a function of temperature for diamond compared with measured data [51]. Both QH and

renormalized phonons produce nearly identical thermal expansion rate. (c) Three-phonon (dashed

curves) and 3+4-phonon (solid curves) limited thermal conductivity of diamond calculated using

renormalized phonons and fourth-order free energy minimized lattice constant compared with ex-

periments. The green curves are calculations for synthetic isotopically purified diamond with 0.07%

C13 and the black curves are for naturally occurring diamond (1.1% C13). The experiments are

from Olson et al. [52](green empty triangles: synthetic isotopically purified diamond with 0.07%

C13, orange filled triangles: naturally occurring diamond with 1.1% C13), Onn et al. [53](green

empty circles: synthetic isotopically purified diamond with < 0.05% C13, green filled circles: nat-

urally occurring diamond with 1.1% C13), Wei et al. [54](blue filled squares: naturally occurring

diamond with 1.1% C13) and Berman et al [55](red filled inverted triangles: naturally occurring di-

amond with 1.1% C13). (d) Three-phonon (dashed curves) and 3+4-phonon (solid curves) limited

thermal conductivity of diamond with quasi-harmonic (black) and renormalized (red) phonons.

scattering, is predictive for both weakly anharmonic (like diamond) and strongly anharmonic
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(like NaCl) materials, indicating universal applicability for thermal properties of insulators.

VIII. CONCLUSIONS

In conclusion, we show that the conventional first-principles theoretical approach to cal-

culate the thermodynamic and thermal transport properties for strongly anharmonic in-

sulators fails because the perturbative treatment of anharmonicity using unrenormalized

phonon modes is invalid. In such materials, the quasi-particle picture breaks down due to

strong interactions between the unrenormalized phonons. In contrast, our newly developed

first-principles approach accurately describes multiple thermal properties of both weakly

anharmonic and strongly anharmonic insulators within the same theoretical framework. It

features the following critical advantages:

1. Phonon renormalization: The novel phonon renormalization technique presented here,

based on many-body perturbation theory, creates new well-defined quasi-particles and

accurately describes the phonon and thermal transport properties of these materials.

2. Four-phonon scattering : For highly anharmonic materials or materials at high enough

temperature, inclusion of higher-order phonon-phonon scattering in conjunction with

phonon renormalization can be essential to accurately describe the phonon transport.

3. Anharmonic Helmholtz free energy : Use of the quasi-harmonic approximation for the

Helmholtz free energy is inadequate for highly anharmonic materials. Inclusion of

anharmonicity out to fourth-order shows improved agreement with measured thermal

properties, particularly at high temperatures.

4. Temperature-dependent inter-atomic force constants: Temperature-dependent IFCs,

calculated using thermally relevant displacements of atoms in our approach, closely

represent the potential energy manifold (Φ (T )) spanned by the atoms of the lattice

at elevated temperatures (T ). Furthermore, the effects of zero-point motion and polar

LO-TO splitting effects on the displacement of atoms (and therefore, on the IFCs) is

properly accounted for, in our approach. For highly anharmonic polar materials with

light atoms, these effects become important even around room temperature.
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Using the example of NaCl, a prototypical strongly anharmonic material with weak

(ionic) bonds, we demonstrate that our new first-principles approach successfully recovers

the experimentally observed thermal expansion, thermal conductivity and weak tempera-

ture dependence of phonon modes in NaCl simultaneously, which cannot be achieved using

the conventional theory. We demonstrate that four-phonon scattering due to higher-order

anharmonicity significantly affects both the magnitude and temperature dependence of the

thermal conductivity of NaCl. Its inclusion is required to properly connect to the measured

data. Furthermore, by computing the phonon and thermal properties of a weakly anhar-

monic material, diamond, we demonstrate that our first-principles framework is predictive

for both weakly-bonded and strongly-bonded materials without any ad-hoc adjustments to

the formulation, indicating universal applicability for thermal properties of insulators.

We expect the first-principles approach developed here to have wide applicability to

several classes of highly anharmonic materials such as alkali halides, alkali and rare-earth

hydrides and oxides, lead, bismuth and antimony chalcogenides, transition metal compounds

and materials at high temperatures, in which the conventional theory of phonon properties

and thermal transport has failed to serve as a predictive tool [4, 16–22, 24, 25, 57, 58].

Appendix A: Inter-atomic force constants from first-principles

To calculate the phonon and thermal properties described in the main text, we begin

by expanding the potential energy as a sum of the equilibrium, harmonic and anharmonic

contributions, given by:

Φ = Φ0 +
1

2!

∑
NP

∑
νπ

∑
ij

Φij (Nν, Pπ)Ui (Nν)Uj (Pπ)︸ ︷︷ ︸
ΦH

+
1

3!

∑
NPQ

∑
νπζ

∑
ijk

Φijk (Nν, Pπ,Qζ)Ui (Nν)Uj (Pπ)Uk (Qζ)︸ ︷︷ ︸
Φ3

(A1)

+
1

4!

∑
NPQR

∑
νπζρ

∑
ijkl

Φijkl (Nν, Pπ,Qζ,Rρ)Ui (Nν)Uj (Pπ)Uk (Qζ)Ul (Rρ)︸ ︷︷ ︸
Φ4

+ . . .
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Here, Φij (Nν, Pπ), Φijk (Nν, Pπ,Qζ) and Φijkl (Nν, Pπ,Qζ,Rρ) are the second, third and

fourth-order inter-atomic force constants (IFCs) respectively, Φ0 is the energy of the sys-

tem in equilibrium, N,P,Q,R, . . . are the lattice sites, ν, π, η, ρ, . . . are the labels for the

basis atoms and i, j, k, l, . . . are the Cartesian indices. For this work, we truncate the

Taylor series (Eq. A1) at Φ4. In the conventional theory, the phonon frequencies and

eigenvectors are obtained by diagonalizing the Fourier transform of second-order IFCs

(Φij (Nν, Pπ)) after scaling for the appropriate basis atom masses [59], and the three-

phonon scattering probabilities are obtained using Fermi’s Golden Rule (FGR) using the

third-order IFCs (Φijk (Nν, Pπ,Qζ)). For this work, we also calculate fourth-order IFCs

(Φijkl (Nν, Pπ,Qζ,Rρ)) to calculate four-phonon scattering probabilities from FGR.

The second-order IFCs are obtained from density functional perturbation theory (DFPT)

using the Quantum ESPRESSO package [60]. The GBRV Ultrasoft pseudopotentials with

PBEsol exchange correlation functional [61] were used for all calculations in this work,

unless otherwise specified. For NaCl, a kinetic energy cutoff of 45 Ry for wave-functions,

a kinetic energy cutoff of 200 Ry for charge density and potential, and a 4X4X4 Γ-shifted

electronic k-grid were found to provide total energy convergence of < 3 × 10−4 Ry and

total stress convergence of < 0.3 kbar per unit cell. For the DFPT calculations, a 7X7X7

Γ-centered q-grid provided converged phonon frequencies and eigenvectors. Similarly for

diamond, a kinetic energy cutoff of 85 Ry for the wave-functions, a kinetic energy cutoff

of 340 Ry for charge density and potential, and a 5X5X5 Γ-shifted electronic k-grid were

found to provide total energy convergence of < 2× 10−5 Ry and total stress convergence of

< 0.5 kbar per unit cell. For the DFPT calculations to obtain unrenormalized second-order

IFCs and harmonic phonon properties, a 5X5X5 Γ-centered q-grid for diamond provided

converged bare phonon frequencies and eigenvectors.

To calculate the anharmonic (third and fourth-order) IFCs, we adopt a thermal stochastic

snapshot technique based on the method described in Ref. [62]. In this technique, a 5X5X5

supercell is thermally populated with displacements according to the canonical ensemble.

The temperature-dependent displacement of an atom at the N th lattice site and the basis
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site ν of the supercell is given by,

Uj (Nν) =
1√
Mν

∑
qs

√
~ (2nqs + 1)

ωqs

cos
(
2πζ(1,qs)

)√
− log

(
1− ζ(2,qs)

)
wj (qs, ν) eiq·R(N)

(A2)

where Mν is the mass of the atom, nqs is the Bose-Einstein distribution function, ζ(1,qs)

and ζ(2,qs) are random variables providing mode-dependent “random kicks” to the total dis-

placement of the atom (Nν). The two random numbers are constrained by: ζ(1,qs) = ζ(1,−qs)

and ζ(2,qs) = ζ(2,−qs), so that the displacements Uj (Nν) in Eq. A2 are guaranteed to be real

numbers. The displacements in Eq. A2 maintain the supercell at an average temperature

T corresponding to the Bose factors nqs under the canonical ensemble. Eq. A2 includes full

quantum statistics including the zero-point motion (ZPM) of the atoms. Furthermore, in

this work, we explicitly include the effects of LO-TO splitting on the displacements of atoms

described in Eq. A2, which is important for highly polar materials like NaCl. The forces on

atoms (Fj (Nν) = −∂Φ/∂Uj (Nν)) due to the displacements Uj (Nν) were computed using

density functional theory (DFT) and the Hellman-Feynman theorem using the Quantum

ESPRESSO package. For these force-displacement calculations, the kinetic energy cutoffs

remained the same as before, but a Γ-point and 1X1X1 Γ-shifted electronic k-grid calcula-

tions provided convergences of < 10−5 Ry/au and < 5× 10−5 Ry/au for the forces in NaCl

and diamond supercells respectively.

We fit the force-displacement dataset to Eq. A1 (after truncating to Φ4) to extract the

third and fourth-order IFCs. In practice, while fitting the IFCs, we subtract the total

second-order contribution to forces (short-range evaluated using the DFPT second-order

IFCs and the long-range as described in Ref. [63]) and only fit the anharmonic IFCs to the

remaining forces. By enforcing point group symmetries and translational invariance condi-

tions on the third and fourth-order IFCs, we identify and fit the force-displacement dataset

to an irreducible set of anharmonic IFCs using a least-squares technique. All the reducible

IFCs in Eq. A1 are replaced by linear combinations of the irreducible IFCs as determined by

the point-group symmetry and translational invariance conditions. We perform the fitting

procedure on a collection of thermal snapshots simultaneously and check for convergence

of the IFCs with respect to the number of snapshots at each temperature. For NaCl, we

required 75 snapshots at 100 K and 200 snapshots at 600 K to achieve a convergence of
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< 0.01 eV/Å3 and < 0.01 eV/Å4 for the third and fourth-order IFCs respectively. For the

same levels of convergence, we required 50 snapshots at 100 K and 100 snapshots at 750

K for diamond. The number of unknown irreducible IFCs to fit is always much smaller

than the number of available force-displacement equations, thereby avoiding any over-fitting

errors. For all of the calculations on NaCl, we employed second-order IFCs up to the eighth

nearest neighbor, third-order IFCs up to the fifth nearest neighbor and fourth-order IFCs up

to the third nearest neighbor, while for diamond, we employed second-order IFCs up to the

tenth nearest neighbor, third-order IFCs up to the sixth nearest neighbor and fourth-order

IFCs up to the third nearest neighbor. We did not observe any significant change in the

specific heat, thermal conductivity and free energy while including one more shell of nearest

neighbors for either second, third or fourth-order IFCs.

Appendix B: Expressions for free energy and phonon scattering probabilities

The expression for the Helmholtz free energy up to fourth-order is given by [64],

F4 = Φ0 +
∑
qs

[
1

2
~ωqs + kBT log

[
1− e−~ωqs/kBT

]]
︸ ︷︷ ︸

FH

+
1

2

∑
qsq′s′

Φqs,−qs,q′s′,−q′s′

(
nqs +

1

2

)(
nq′s′ +

1

2

)
︸ ︷︷ ︸

F4

F3︷ ︸︸ ︷
− 1

2~
∑
qq′q′

∑
ss′s′′

(
|Φqsq′s′q′′s′′|2

[
nqsnq′s′ + nqs + 1

3

(ωqs + ωq′s′ + ωq′′s′′)p
+

(2nqsnq′′s′′ − nqsnq′s′ + nq′′s′′)

(ωqs + ωq′s′ − ωq′′s′′)p

]

+ 2Φqs,−qs,q′′s′′Φq′s′,−q′s′,−q′′s′′

(
nqsnq′s′ + nqs + 1

4

)
(ωq′′s′′)p

)
(B1)
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where Φλλ1λ2 ≡ Φqsq′s′q′′s′′ and Φλλ1λ2λ3 ≡ Φqsq′s′q′′s′′q′′′s′′′ are the third-order and fourth-

order matrix elements given by:

Φλλ1λ2 = Φqs,q1s1,q2s2

= (~/2)3/2
(

1/N
1/2
0

)
[ωqsωq1s1ωq2s2 ]

−1/2

×
∑
NP

∑
µνπ

∑
αβγ

Φαβγ (0µ,Nν, Pπ) (MµMνMπ)−1/2

× eiq1·R(N)eiq2·R(P )

× wα (qs, µ)wβ (q1s1, ν)wγ (q2s2, π) (B2)

and,

Φλλ1λ2λ3 = Φqs,q1s1,q2s2,q3s3

= (~/2)2 (1/N0) [ωqsωq1s1ωq2s2ωq3s3 ]
−1/2

×
∑
NPQ

∑
µνπρ

∑
αβγη

Φαβγη (0µ,Nν, Pπ,Qρ) (MµMνMπMρ)
−1/2

× eiq1·R(N)eiq2·R(P )eiq3·R(Q)

× wα (qs, µ)wβ (q1s1, ν)wγ (q2s2, π)wη (q3s3, ρ) (B3)

Here, ωqs is the frequency of a phonon mode with wavevector q and polarization s, wα (qs, µ)

is the αth component of the eigenvector of a phonon mode (qs) and for an atom at a basis

site µ, and N0 is the number of q-points in the Brillouin zone.

The three-phonon scattering probabilities are given by,

W
(+)
λλ1λ2

=
2π

~2

∣∣Φλλ1(−λ2)

∣∣2 (n0
λ1
− n0

λ2

)
δ (ωλ + ωλ1 − ωλ2)

W
(−)
λλ1λ2

=
2π

~2

∣∣Φλ(−λ1)(−λ2)

∣∣2 (1 + n0
λ1

+ n0
λ2

)
δ (ωλ − ωλ1 − ωλ2) (B4)

and the four-phonon scattering probabilities are given by,

Y
(1)
λλ1λ2λ3

=
2π

~2

∣∣Φλ(−λ1)(−λ2)(−λ3)

∣∣2 n0
λ1
n0
λ2
n0
λ3

n0
λ

δ (ωλ − ωλ1 − ωλ2 − ωλ3)

Y
(2)
λλ1λ2λ3

=
2π

~2

∣∣Φλλ1(−λ2)(−λ3)

∣∣2 (1 + n0
λ1

)
n0
λ2
n0
λ3

n0
λ

δ (ωλ + ωλ1 − ωλ2 − ωλ3)

Y
(3)
λλ1λ2λ3

=
2π

~2

∣∣Φλλ1λ2(−λ3)

∣∣2 (1 + n0
λ1

) (
1 + n0

λ2

)
n0
λ3

n0
λ

δ (ωλ + ωλ1 + ωλ2 − ωλ3) (B5)
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where Φλλ1λ2 and Φλλ1λ2λ3 are the three- and four-phonon matrix elements given by Eq. B2

and Eq. B3 respectively, and −λ represents a phonon mode ((−q) s) when λ represents a

phonon mode (qs). The phonon-isotope scattering probability is given by [65],

W iso
λλ1

=
ω2
λ

4N0

∑
b

g2 (b) |w (b, λ) ·w∗ (b, λ1)|2 δ (ωλ − ωλ1) (B6)

where, g2 (b) =
(
1/M̄2

b

)∑
a fab

(
Mab − M̄b

)2
is a mass variance parameter with fab and Mab

being the concentration and mass of the ath isotope of the bth atom respectively and M̄b

is the average mass of the bth atom. For all calculations on NaCl in this work, we used

a natural isotopic mix of 75.76% of 35Cl and 24.24% of 37Cl for chlorine, while sodium is

isotopically pure. For naturally occurring diamond, we used an isotopic mix of 98.93% of

12C and 1.07% of 13C. Quasimomentum conservation (q + q1 + q2 = G for Φλλ1λ2 and

q + q1 + q2 + q3 = G for Φλλ1λ2λ3 , where G is a reciprocal lattice vector) is implied in

the equations for the matrix elements (Eqs. B2 and B3). Energy conservation is treated

computationally using the analytical tetrahedron scheme described in Ref. [66].

Appendix C: Renormalization of bare IFCs

The phonon renormalization in this work is achieved by renormalizing the bare second-

order IFCs (determined from DFPT) using the anharmonic IFCs from Eq. A1. Renormaliza-

tion of the phonon frequencies following the statistical perturbation operator-renormalization

technique has been described in [64]. We extend this technique to derive self-consistent

expressions for the renormalized second-order IFCs in terms of the practically computable

quantities: renormalized phonon frequencies Ωqs and the renormalized eigenvectorsWj (µ; qs).

For a system Hamiltonian H = KE + Φ, where KE is the kinetic energy and Φ is the

potential energy, we define an effective harmonic potential Θ as:

H = (KE + Θ)︸ ︷︷ ︸
HH

+ (Φ−Θ) (C1)

where HH is the purely harmonic effective Hamiltonian and (Φ−Θ) is a correction term.

Following Ref. [64], we can define renormalized creation and annihilation operators (A† (qs)

and A† (qs) respectively) which satisfy the commutation relations:[
H, A† (qs)

]
= ~ΩqsA

† (qs) +R† (qs) (C2)
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where R† (qs) =
[
Φ−Θ, A† (qs)

]
is a small remainder and ~Ωqs are the renormalized

phonon frequencies corresponding to the effective harmonic potential Θ.

For any effective harmonic potential (Θ) and the corresponding phonon energies (~Ωqs),

the remaining effective anharmonic potential (Φ−Θ) causes an anharmonic correction to

the phonon energy, given by δ (~Ωqs). The goal of the renormalization procedure is to make

the correction, δ (~Ωqs), as small as possible, so that the new quasi-particles, Ωqs, weakly

interact. To accomplish this, Ref. [64] constructs the renormalized effective second-order

IFCs (Θjk (Nν, Pπ)) so that the contribution to δ (~Ωqs) coming from the lowest order

correction in (Φ−Θ) vanishes. The expression for Θjk (Nν, Pπ) obtained in Ref. [64] is

given by,

Θjk (Nν, Pπ) =

〈
∂2Φ

∂Uj (Nν) ∂Uk (Pπ)

〉
= Φjk (Nν, Pπ) +

1

2

∑
QR

∑
ηρ

∑
lm

Φjklm (Nν, Pπ,Qη,Rρ) 〈Ul (Qη)Um (Rρ)〉

(C3)

where 〈·〉 denotes the grand canonical thermal average. The third order term which would

appear in Eq. C3 contains a factor 〈Um (Rρ)〉, which vanishes since 〈Um (Rρ)〉 = 0.

Using the normal mode expansion for the displacement field (Uj (Nν)) in terms of the

renormalized phonon frequencies Ωqs, the renormalized eigenvectors Wj (µ; qs) and the nor-

mal mode coordinate (α (qs)), given by,

Uj (Nν) =
1√
N0Mν

∑
qs

α (qs) eiq·R(N)Wj (ν; qs) (C4)

the thermal correlation average 〈Ul (Qη)Um (Rρ)〉 is transformed into:

〈Ul (Qη)Um (Rρ)〉 =
∑
qq′ss′

Wl (ν; qs)Wm (ρ; q′s′)

N0

√
MνMρ

eiq·R(Q)+iq′·R(R) 〈α (qs)α (q′s′)〉 (C5)

The normal mode coordinates (α (qs)) can be written as:

α (qs) =

√
~

2Ωqs

[
A (qs) + A† (−qs)

]
(C6)
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Substituting Eq. C6 in Eq. C5, we get:

〈Ul (Qη)Um (Rρ)〉 =
~

2N0

∑
qq′ss′

Wl (ν; qs)Wm (ρ; q′s′)√
MνMρ

√
ΩqsΩq′s′

eiq·R(Q)+iq′·R(R)

×
〈(
A (qs) + A† (−qs)

) (
A (q′s′) + A† (−q′s′)

)〉
(C7)

Now, it has been shown in Refs. [64, 67] that any arbitrary operator χ satisfies the following

relation for the thermal correlation averages with the renormalized creation operator A (qs):

〈χA (qs)〉 =
〈[A (qs) , χ]〉
e~Ωqs/kBT − 1

(C8)

Using the creation and annihilation operator commutation relations, we get:

〈
A† (q′s′)A (qs)

〉
=

δqq′δss′

e~Ωqs/kBT − 1
= nqsδqq′δss′〈

A (qs)A† (qs)
〉

=
〈
A† (qs)A (qs)

〉
+ 1 (C9)

〈A (qs)A (qs)〉 =
〈
A† (qs)A† (qs)

〉
=
〈
A (qs)A† (q′s′)

〉
=
〈
A† (qs)A (q′s′)

〉
= 0

Substituting Eqs. C9 into Eq. C7,

〈Ul (Qη)Um (Rρ)〉 =
~

2N0

∑
qs

Wl (ν; qs)W ∗
m (ρ; qs)

Ωqs

√
MνMρ

eiq·(R(Q)−R(R))

×
(
2
〈
A† (qs)A (qs)

〉
+ 1
)

=
~

2N0

∑
qs

Wl (ν; qs)W ∗
m (ρ; qs)

Ωqs

√
MνMρ

eiq·(R(Q)−R(R)) (2nqs + 1) (C10)

Substituting Eq. C10 into Eq. C3,

Θjk (Nν, Pπ) = Φjk (Nν, Pπ) +
~

4N0

∑
QR

∑
ηρ

∑
lm

∑
qs

Φjklm (Nν, Pπ,Qη,Rρ)

× Wl (ν; qs)W ∗
m (ρ; qs)

Ωqs

√
MνMρ

eiq·(R(Q)−R(R)) (2nqs + 1) (C11)

Equation C11 shows that the renormalized second-order IFCs (Θjk (Nν, Pπ)) depend on the

renormalized phonon frequencies (Ωqs, and therefore, the Bose factors nqs) and the renor-

malized phonon eigenvectors (Wl (ν; qs)), which in turn depend back on the renormalized

second-order IFCs (Θjk (Nν, Pπ)). Therefore, Eq. C11 has to be solved self-consistently to

obtain Θjk (Nν, Pπ).
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To solve Eq. C11 self-consistently, the bare phonon frequencies (ωqs) and bare eigen-

vectors (wl (ν; qs)) are used as initial guesses and the renormalized second-order IFCs

(Θjk (Nν, Pπ)) are updated at each iteration step. Throughout the self-consistent iteration

process, the bare second-order (Φjk (Nν, Pπ)) and fourth-order (Φjklm (Nν, Pπ,Qη,Rρ))

IFCs remain unchanged, for a given supercell force-displacement dataset. Creating new

sets of thermal snapshots using renormalized IFCs and going through the entire cycle of (i)

obtaining new sets of forces (ii) obtaining new sets of renormalized IFCs and (iii) calculating

new kren
3+4, produced small changes in phonon dispersions, and < 2.5% change at 300 K and

≈ 5% change at 600 K in kren
3+4 (see SI section S7 [43] for details). Therefore, no additional

DFT snapshot simulations are required other than the initial set of snapshots that provided

the converged bare third-order and fourth-order IFCs, making this self-consistent solution

technique computationally inexpensive. A critical advantage of this approach is that, since

the second-order IFCs are renormalized, the renormalization seamlessly extends to the

phonon frequencies, eigenvectors and group velocities without any ad-hoc adjustments to

the formulation.

To obtain the renormalized third-order and fourth-order IFCs, we refit the same force-

displacement dataset used earlier to a renormalized quartic potential energy model of the

form:

Φ = Φ0 +
1

2!

∑
NP

∑
νπ

∑
ij

Θij (Nν, Pπ)Ui (Nν)Uj (Pπ)

+
1

3!

∑
NPQ

∑
νπζ

∑
ijk

Ψijk (Nν, Pπ,Qζ)Ui (Nν)Uj (Pπ)Uk (Qζ) (C12)

+
1

4!

∑
NPQR

∑
νπζρ

∑
ijkl

Ψijkl (Nν, Pπ,Qζ,Rρ)Ui (Nν)Uj (Pπ)Uk (Qζ)Ul (Rρ)

Fi (Nν) = − ∂Φ

∂Ui (Nν)
(C13)

Here, Θij (Nν, Pπ) are the renormalized second-order IFCs determined from Eq. C11 and

Ψijk (Nν, Pπ,Qζ) and Ψijkl (Nν, Pπ,Qζ,Qρ) are the renormalized third-order and fourth-

order IFCs respectively. This final step of refitting the anharmonic IFCs is essential to

ensure that the original set of force-displacement equations from DFT are still satisfied by

the renormalized IFCs.
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Appendix D: Computational efficiencies to mitigate cost

We have developed several computational efficiencies to mitigate the cost of obtaining

the anharmonic IFCs and solving the 3+4-phonon PBE, without compromising accuracy.

Notably,

1. To obtain the third and fourth-order IFCs, we have developed a thermal snapshot tech-

nique which requires only 100-200 DFT supercell calculations for each temperature.

In contrast to this approach, the conventional supercell displacement technique [42]

requires several hundreds to a few thousand DFT supercell calculations, making it

prohibitively expensive for studying higher-order effects in thermodynamic and ther-

mal transport properties. Moreover, the conventional supercell displacement technique

cannot capture the effects of zero-point motion, polar effects/LO-TO splitting or the

temperature dependence of the higher order IFCs, while our approach captures all of

these effects at no additional cost.

2. The PBE for three and four-phonon scattering (Eq. 4) is solved on a grid of q-points

in the Brillouin zone. The main challenge in the solution is the computation and stor-

age of the four-phonon matrix elements (Φλλ1λ2λ3). For example, even on a modest

173 q-grid, with six phonon polarizations in NaCl, 175 million three-phonon matrix

elements (Φλλ1λ2) in the irreducible Brillouin zone for λ are calculated, while 5.2 tril-

lion four-phonon matrix elements (Φλλ1λ2λ3) in the irreducible λ grid are calculated, a

factor of thirty-thousand larger. Furthermore, as shown in section S3 of the SI [43],

both three-phonon and four-phonon scattering rates have a large contribution from

Normal processes for NaCl. Since the RTA incorrectly treats Normal scattering pro-

cesses as resistive, the solution of the PBE in the RTA will underestimate the thermal

conductivity of NaCl. To avoid this problem, we solve the full 3+4-phonon PBE it-

eratively. Therefore, the four-phonon matrix elements used in Eq. 4 must not only

be computed, but also stored in files for the subsequent iterations. Fortunately, since

the tetrahedron scheme provides higher accuracy for the energy conservation than the

commonly used adaptive Gaussian smearing scheme (see eg. Ref. [13]) or the non-

adaptive Lorentzian scheme in Ref. [42], we obtain convergence at a much coarser

phonon q grid density. For example, the 3+4-phonon limited thermal conductivity for
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NaCl at 300 K obtained by solving Eq. 4 were different by only 1.6% between 173 and

213 phonon q-grid. Therefore, all the thermal conductivity results presented in this

work were computed on a 173 q-grid. We also reduce the computational and storage

costs significantly by first computing the four-phonon scattering phase space involving

the energy conserving δ-functions for each λλ1λ2λ3 combination, and then computing

and storing the matrix elements only for those processes which have a large enough

phase space to contribute to Eq. 4.
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