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Under pressure, a quasi-2D electron gas can collapse toward the true 2D limit. In this limit,
the exact exchange-correlation energy per electron has a known finite limit, but general-purpose
semilocal approximate density functionals, like the local density approximation (LDA) and Perdew-
Burke-Ernzerhof generalized gradient approximation (PBE GGA), are known to diverge to minus
infinity. Here we consider a model density for a non-interacting electron gas confined to a thickness
L by infinite-barrier walls, with a fixed 2D density 1/(π(r2D

s
)2), and r2D

s
= 4 Bohr. We estimate

that LDA, PBE, and the strongly constrained and appropriately normed (SCAN) meta-GGA are
accurate for the exchange-correlation energy over a wide quasi-2D range, 1.5 < L/r2D

s
< 3.85, but

not for smaller L. Of these functionals, only SCAN tends to a finite limit when L tends to 0. Since
the non-interacting kinetic energy, treated exactly in Kohn-Sham theory, dominates in this limit
within a deformable jellium model, all of the general-purpose functionals can estimate the pressure
required to achieve any thickness (with SCAN and LDA better than PBE). This pressure vanishes
around L/r2D

s
= 3.85, where the 3D electron density is roughly that of the valence electrons in

metallic potassium, and reaches about 20 GPa at L/r2D
s

= 1.5 and 400 GPa at L/r2D
s

= 0.6.

I. INTRODUCTION

Ground state Kohn-Sham density functional theory
(KS-DFT)1 is a widely used method to find accurate ap-
proximate properties of many-electron systems at reason-
able computation cost. The ground state energy in DFT
is the sum of non-interacting kinetic, electrostatic, and
exchange-correlation energy terms.
All three are exact in principle, however in practice the

exchange-correlation energy Exc must be approximated.
Exc is often decomposed into exchange Ex (Pauli exclu-
sion) and correlation Ec (driven by Coulomb repulsion)
terms. Most of the chemical bonding energy is due to
exchange-correlation energy2, therefore reliable approx-
imations of Exc are needed to reach chemical accuracy.
These approximations have a hierarchy, sometimes re-
ferred to as the Jacob’s Ladder of density functional
approximations3.
In order of increasing accuracy, they are the local den-

sity approximation (LDA)1,4 (e.g. Ref. 5), generalized
gradient approximation (GGA, e.g. Ref. 6), meta-GGA
(e.g. Ref. 7), and fully-nonlocal hyper-GGA3. The LDA
exchange-correlation energy density is constructed from
the local electron density alone, while the GGA adds the
gradient of the density, the meta-GGA adds the non-
interacting orbital kinetic energy density, and the hyper-
GGA adds the one-matrix (as in the exact Ex)

2. The
first three rungs of this ladder of approximations are the
computationally-efficient semilocal functionals, and other
functionals are typically fully nonlocal.
More recently, Sun, Ruzsinszky, and Perdew7 designed

a meta-GGA to satisfy all 17 known exact constraints
that a meta-GGA can. The strongly-constrained and ap-
propriately normed (SCAN) functional has been shown
to be accurate for diverse systems: ice8, high-Tc cuprate
superconductors9, metallic surfaces10, water8,11, solids12,

structural phase transitions13, and more.
The present work considers only the general-purpose

non-empirical functionals LDA1,5, PBE6 (GGA), and
SCAN7 (meta-GGA) functionals, all of which benefit
from error cancellation in their approximations to Exc.
Error cancellation is best understood in terms of the
exchange-correlation hole, the region of density depletion
around an electron14,15. The exchange-correlation hole is
deeper and shorter-ranged than the exchange hole, and
thus less fully nonlocal16. While the exact exchange-
correlation hole is typically non-spherical, Gunnarsson
and Lundqvist17 argued that an approximate Exc only
depends upon the spherical average of the exchange-
correlation hole.
Our last diversion before discussing the system in ques-

tion is nonuniform scaling in one coordinate. For c a
constant, a non-uniformly scaled density has the form

nx
c (x, y, z) = c n(cx, y, z). (1)

Exact constraints on the exchange and correlation func-
tionals under nonuniform scaling are known18. Ex and
Ec from SCAN are designed to approach finite values
under nonuniform scaling as c → ∞7. Neither LDA nor
PBE are constrained to finite values in this limit.
This brings us to the problem at hand, the quasi-two

dimensional (2D) electron gas. This is an electron gas
confined to a well that is infinite in two dimensions, and
finite in the third. The quasi-2D electron gas can be
used to model semiconductor devices19–21 and quantum
dots20. DFT was first applied to this system by Ryan19

to study the collective electron oscillations of a semicon-
ductor quasi-2D well (MOSFET).
Kim et al.

20 were the first to study the 2D limit of
the quasi-2D electron gas. They found that the LDA, a
GGA, and a meta-GGA were not able to recover a finite
value, however the average density approximation (a fully
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nonlocal functional) was able to recover a finite limit. In
LDA, GGA, and meta-GGA, the exchange energy per
electron is an average over the 3D electron density n of
−fn1/3, where f is a positive function. Unless f goes to
zero fast enough, the approximate exchange energy per
electron will diverge to minus infinity in the approach to
the true 2D limit, because the 3D density diverges. In
LDA, f is a constant. In the PBE GGA, f approaches a
constant that is bigger than the one for LDA by a factor
of 1.804. But, in the SCAN meta-GGA, f more correctly
approaches zero.
Garćıa-González21 showed similar results to Kim et al.,

and demonstrated that the weighted density approxima-
tion (another fully nonlocal functional) was also able to
recover a finite 2D limit.
The method of this work follows that of Pollack and

Perdew22, who used nonuniform scaling to study the be-
havior of density functional approximations for a quasi-
2D system. They also discussed the constraints function-
als should obey in the 2D limit.
Constantin et al.

23 extended the work of Pollack and
Perdew to include other hyper-GGAs and the random
phase approximation, and found for the considered func-
tionals that only rungs higher than meta-GGA could re-
cover a finite 2D limit. Last, Constantin24 described
modifications to the enhancement factor of a GGA or
meta-GGA to recover the exact Exc of a uniform 2D elec-
tron gas.
The challenge that the 2D limit presents to 3D semilo-

cal functionals like LDA, PBE, or SCAN is well under-
stood. For a wide quasi-2D system, the system-averaged
exact exchange-correlation hole14–17 around an electron
is not so different from the spherical hole of the 3D uni-
form electron gas, on which all 3D semilocal approxima-
tions are based. But the exact exchange-correlation hole
must remain within the electron density. As the width
of the quasi-2D system tends to zero (the true 2D limit),
the exact hole must flatten into a thin pancake shape.
Even the required spherical average17 of the exact hole
cannot be approximated by 3D semilocal functionals in
this limit.

II. MODEL

A. Solving the Kohn-Sham Equation

What follows is in atomic units, h̄ = m = e2 = 1. Let
the Kohn-Sham potential for the quasi-2D electron gas
be

vs(x, y, z) =

{

0, 0 < x < L
∞, otherwise

. (2)

This defines a well of finite transverse width L, and infi-
nite planar area. Solving the Kohn-Sham Equation

(

1

2
∇2 + vs − Ei

)

φi = 0 (3)

subject to this potential gives the orthonormal KS or-
bitals for 0 < x < L

φℓ,~k(x,y, z) =

[

2

LA

]1/2

sin(πℓx/L)×

exp[i(kyy + kzz)], ℓ = 1, 2, 3, ... (4)

where A is the area of a large square on whose sides
we impose periodic boundary conditions, and the ki are

the components of the planar Bloch wavevector ~k. This
simple model is not intended to be realistic, but only to
share fundamental features with more realistic models,
in the same way that the uniform electron gas model
represents bulk metals and the infinite barrier model25

represents metal surfaces.
In the quasi-2D, or small L, regime only the ℓ = 1 sub-

band is occupied, the other sub-bands being very high in
energy. Therefore the ground state density is

n(x) =
∑

~k,|~k|<k2D

F

|φ
1,~k(x, y, z)|

2 =
2

Lπ(r2Ds )2
sin2

(πx

L

)

,

(5)
where r2Ds is the 2D Seitz radius. The number of electrons
per unit area is

∫ L

0

dx n(x) =
1

π(r2Ds )2
= n2D

s . (6)

B. Assumptions

Following the lead of Pollack and Perdew22, we can
observe the effect of collapse under nonuniform scaling.
The scaled density is

nx
c (x) =

2

(L/c)π(r2Ds )2
sin2

(

πx

L/c

)

, (7)

where c ≥ 1. As we shrink the transverse well width L
by increasing the scale factor c, and keep the number of
electrons fixed, the density of electrons within the well
increases. Precisely,

lim
c→∞

nx
c (x) = lim

L→0
n(x) = n2D

s δ(x), (8)

where δ(x) is the Dirac delta.
From Görling and Levy18, as amended by Pollack and

Perdew22, we expect the exchange and correlation ener-
gies per electron to scale as

lim
L→0

Ex/N > −∞

lim
L→0

Ec/N > −∞. (9)

LDA and PBE do not satisfy the first constraint. PBE
satisfies the second constraint, while LDA does not.
SCAN was designed to constrain Ex/N and Ec/N to fi-
nite values under nonuniform scaling. Thus, we expect
ESCAN

xc /N to approach a finite value as L → 0.
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The quasi-2D range of thicknesses L is

√

3/2πr2Ds = Lmax > L > 0. (10)

Lmax is found by demanding22

E(ℓ = 1, |~k| = k2DF ) < E(ℓ = 2, |~k| = 0), (11)

i.e., the highest occupied orbital in the ℓ = 1 sub-band
must have energy less than the least energetic ℓ = 2 state.
For L = 0, the system becomes the true 2D electron gas.
To estimate the pressure, we further assume that the

quasi-2D electron gas is a deformable jellium26–28 in
which the positive background charge distribution au-
tomatically deforms to cancel the electron charge distri-
bution, making the electrostatic energy identically zero.

C. Functionals, and Parameterizations of Exact

Exchange and Correlation Energies

We have used the LDA1,5, PBE6, and SCAN7 func-
tionals to approximate the exchange-correlation energy
per electron Exc/N as a function of L/r2Ds .
An analytic expression for ELDA

x /N can be found for
this system. The analytic expression was used to esti-
mate the accuracy of the computations; this process is
described in Appendix (B). This expression shows the
L−1/3 divergence of the LDA exchange energy per elec-
tron as L tends to zero.
A Padé approximant from Betbeder-Matibet et al.

29

closely fits the known exact exchange energy per electron
of a quasi-2D electron gas in the model of Eq. 2 over the
whole range of L. We have employed this parametriza-
tion as our “exact” reference. The exact correlation en-
ergy per electron is known only for L = 030. To pa-
rameterize Eexact

c /N , we assumed SCAN is an accurate
approximation to Exc(L = Lmax)/N , and that Eexact

c /N
depends weakly on L/r2Ds . For a, b > 0, the best Padé
approximant based upon known information is

Eparam
c /N = − a

1 + bL/r2Ds
, (12)

subject to the constraints

Eexact
xc ( L = 0)/N = Eparam

x (L = 0)/N

+ Eparam
c (L = 0)/N (13)

ESCAN
xc ( L = Lmax)/N = Eparam

x (L = Lmax)/N

+ Eparam
c (L = Lmax)/N. (14)

Therefore a = 0.0566 and b = 0.351. As we will show
in the next section, our simple parametrization for the
exchange-correlation energy per electron is close to LDA,
PBE, and SCAN over a wide range 0.4Lmax < L < Lmax,
and it is also exact at L = 0. We will therefore take this
parametrization to be an “exact” reference for all quasi-
2D L.
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FIG. 1. (Color online) Exchange energy per electron for the
model of Eq. 2 with r2D

s
= 4. Betbeder-Matibet et al.29

provided the parametrization of Eexact

x
/N .

III. EXCHANGE-CORRELATION AND

KINETIC ENERGY IN THE MODEL

As SCAN was designed to satisfy all known 17 exact
constraints on a meta-GGA, we expect that the exchange
and correlation energies of SCAN approach a finite value
under nonuniform scaling. One can find the finite val-
ues analytically by making approximations to the ingre-
dients of SCAN. This is demonstrated in Appendix (A)
for ESCAN

x /N ; for ESCAN
c /N , one would follow the same

procedure.
The results of the calculations of Ex/N , Ec/N and

Exc/N = Ex/N + Ec/N are plotted in Figs. 1, 2, and 3
respectively. As demonstrated in previous works20,22,23,
the exchange energy of LDA and of PBE diverges in the
2D limit. The correlation energy of LDA diverges, and
the correlation energy of PBE tends to zero in the 2D
limit, as shown previously20,22,23.
It is not apparent that ESCAN

xc /N approaches a finite
value, due to the horizontal scale of Fig. 3. To test this
assumption, we fixed L/r2Ds = 10−10 and r2Ds = 4, and
varied the number of integration mesh points. We ob-
served that the numeric integration converges to a value
of ESCAN

x /N = −1.655 Hartree in the 2D limit. The ap-
proximation in Appendix (A) finds ESCAN

x /N = −1.671
Hartree. Compare this to the value expected from
quantum Monte Carlo (QMC) calculations30, E2D

x /N =
−0.1501 Hartree. Thus SCAN obeys the correct nonuni-
form scaling limits for a functional, Eq. 9, and is about
an order of magnitude in error for Ex/N . Constantin24

showed that a GGA or meta-GGA would recover the cor-
rect 2D limit of the exchange energy per electron for the
model of Eq. 2 if its exchange enhancement factor over
LDA exchange approached 0.521s−1/2 in this limit, in
which the reduced or dimensionless density gradient s
diverges. In this limit, the SCAN enhancement factor
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FIG. 2. (Color online) Correlation energy per electron for
the model of Eq. 2 with r2D

s
= 4. The parametrization of

Eexact

c
/N is given by our Eq. 12.

tends to 5.81s−1/2, about an order of magnitude bigger.
If the Constantin limit proves to be reasonably universal,
it can be incorporated into a revised SCAN.

ESCAN
c /N tends to zero in the 2D limit, as expected

by Eq. 9. This is unrealistic, but preferable to the loga-
rithmic divergence of LDA.

Over most of the quasi-2D regime, for exchange alone
(Fig. 1) and for correlation alone (Fig. 2), LDA is more
accurate than PBE, and PBE is more accurate than
SCAN. This surprising result reflects the challenge to
density functional theory that this regime presents, al-
though the story changes when exchange and correlation
are added together.

As expected for all semilocal functionals15–17, Exc/N
in Fig. 3 shows a strong error cancellation between ex-
change and correlation, making all three functionals ac-
curate over the wide quasi-2D range 1.5 < L/r2Ds < 3.85.
PBE now seems to perform the worst of the three, diverg-
ing faster than LDA or SCAN as L/r2Ds → 0. We remind
the reader that, while it appears LDA and SCAN both
diverge, ESCAN

xc /N ≈ −1.655 Hartree in the 2D limit.

The non-interacting orbital kinetic energy density,
needed for meta-GGAs, is

τ =
∑

~k,|~k|<k2D

F

|∇φ
1,~k|

2 =
|∇n|2
8n

+
n

2(r2Ds )2
(15)

where the first term on the right-hand side is the von
Weizsäcker kinetic energy density and the second term is
the true 2D kinetic energy density. As L → 0, the first
term dominates. As L → 3.85r2Ds , the integrated values
per electron of the first and second terms become, in
units of 1/(r2Ds )2, 0.333 and 0.5, respectively. Their sum
becomes 0.833, not so different from the Thomas-Fermi
kinetic energy 0.702 (both in units of 1/(r2Ds )2).
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FIG. 3. (Color online) Exchange-correlation energy per elec-
tron for the model of Eq. 2 with r2D

s
= 4. The exact result

has been parametrized as a guide to the eye. We see good
error cancellation, especially for LDA and SCAN. The inset
shows a closer view for 0 < L/r2D

s
< 0.25.

IV. PRESSURE AND PHYSICAL

INTERPRETATION OF THE MODEL

In the deformable jellium model26–28, which is consis-
tent at the Hartree level with Eq. 2, the total energy of
the electron gas inside the well is

E = Ts + Exc, (16)

where Ts = A
∫ L

0
dx τ is the non-interacting kinetic en-

ergy per electron, and τ is given by Eq. 15. The ratio
(Ts + Exc)/Ts is the ratio of total to non-interacting ki-
netic energy. As the ratio increases, the pressure of the
electron gas increases and vice versa. The ratios for the
parametrized exact and SCAN values are plotted in Fig.
4. Since the non-interacting kinetic energy is treated ex-
actly in all Kohn-Sham calculations, we can expect small
relative errors in the total energy per electron from LDA,
PBE and SCAN.
The thermodynamic pressure is

P = −
(

∂E

∂V

)

N

= − 1

A

∂

∂L
(Ts + Exc)n2D

s
(17)

calculated here under the constraint of constant n2D
s or

r2Ds . The highest pressure that can be achieved in exper-
iment is 400 GPa from a diamond anvil31. The pressures
from the parametrization and SCAN are plotted in Fig.
5. We see that 400 GPa is reached at L/r2Ds ≈ 0.6.
The thermodynamic pressure provides a practically-

achievable lower bound to the well width. What is the
pressure at the upper bound to the well width of Eq.
10? Pollack and Perdew22 derived the 3D bulk Seitz
radius r3Ds by equating the multipole moments of the
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electron density with the moments of the positive back-
ground density. We use Eq. 24 of Pollack and Perdew22

r3Ds (L) = (3/4)1/3(1− 6/π2)1/6(L(r2Ds )2)1/3 (18)

to find r3Ds (L = Lmax) = 4.87, nearly the same as for un-
compressed metallic potassium. Thus the physical ana-
log of our system is roughly a monolayer of potassium at
equilibrium under zero or positive pressure.
A more realistic self-consistent pseudopotential calcu-

lation (but with the pressure still applied by infinite bar-
riers) would of course produce quantitatively different re-

sults, except in the limit where L tends to zero. In this
limit, the 3D electron density n tends to infinity, and the
electrons behave increasingly as if they were free of all
potentials other than the infinite barriers.

V. SUMMARY AND CONCLUSIONS

We have shown that the SCAN meta-GGA is able to
recover a finite Ex/N in the 2D limit of a quasi-2D elec-
tron gas. The SCAN value ofEx/N is one order of magni-
tude greater than the true 2D value, as found by QMC30.
We did not need to use a fully-nonlocal functional to re-
cover a finite limit.
We suspect that much of the error in the approximated

exchange-correlation energy per electron at small L/r2Ds
is due to spurious self interaction. All semilocal func-
tionals allow for electrons to interact with themselves32.
For delocalized systems and systems of finite extent, self-
interaction error is often negligible compared to the error
in approximating Exc. We expect that as a semi-infinite
3D system is collapsed into an infinite 2D system, and
all Kohn-Sham orbitals become localized as Dirac delta
functions, self-interaction errors will no longer be negli-
gible.
As Kim et al.

20, Garćıa-González21, and Constantin
et al.

23 have shown that fully non-local functionals can
recover the exact value of Ex/N , and as those functionals
suffer from little to no self-interaction error, we suspect
that a self-interaction correction to SCAN will increase
the accuracy of ESCAN

x /N .
The exact 3D exchange-correlation energy should pass

over smoothly to the exact 2D exchange-correlation en-
ergy as L tends to zero. The presence of a component of
interacting kinetic energy in the correlation energy, aris-
ing from electron acceleration due to mutual Coulomb
repulsion, would not impede this smooth transition,
since it would become increasingly confined to a two-
dimensional kinetic energy in this limit. Although the
general-purpose nonempirical density functionals LDA,
PBE, and SCAN cannot predict the exchange-correlation
energy of a true 2D electron gas, they can still in a Kohn-
Sham calculation predict the total energy and pressure
with a small relative error, even under extreme compres-
sion. Our simple model for the quasi-2D electron gas
corresponds roughly to a monolayer of potassium under
zero or positive pressure, although this physical analogy
will break down at pressures so high that even the core
electrons of the potassium are compressed.
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Appendix A: Evaluation of SCAN Exchange Energy

per Electron in the True 2D Limit

The 2D limit of the electron density can be found using
nonuniform scaling

lim
L/r2D

s
→0

n(x) = n2D
s δ(x). (A1)

SCAN has two primary ingredients, s and α; we begin
with the reduced density gradient s

s =
|∇n|

2(3π2)1/3n4/3
=

[

πr2Ds√
6L

]2/3 ∣

∣sin
(

πx
L

)

cos
(

πx
L

)∣

∣

sin8/3
(

πx
L

) .

(A2)

In the 2D limit, s(x 6= L/2) → ∞, and s(x = L/2) → 0,
however the contribution from the single point x = L/2
will vanish under integration. We approximate

lim
L/r2D

s
→0

s → ∞. (A3)

The orbital kinetic energy density τ is given by Eq. 15
and α reduces to

α =
τ − τW

τunif
=

5

3(3π2)2/3(r2Ds )2
n−2/3. (A4)

By virtue of Eq. A1, in the 2D limit,

lim
L/r2D

s
→0

α = 0. (A5)

We omit the work necessary to find the exchange en-
ergy functional integrand, and present our result for the
2D limit

lim
L/r2D

s
→0

ESCAN
x [n]

N
≈ − 3

4π

(3π2)1/3

n2D
s

h0
xa1(2(3π

2)1/3)1/2
[

2

π(r2Ds )2L

]2 [
L2(r2Ds )2

4

]1/2 ∫ L

0

dx
sin4(πx/L)

| sin(πx/L) cos(πx/L)|1/2 .
(A6)

The symmetry of the integrand permits analytic integra-
tion (see e.g. Arfken33 Eq. 10.59). From Sun, Ruzsin-
szky, and Perdew7, h0

x = 1.174 and a1 = 4.9479, and in
our work r2Ds = 4 Bohr, thus

lim
L/r2D

s
→0

ESCAN
x [n]

N
≈ −1.671 Hartree. (A7)

Appendix B: Estimation of Error in Numeric

Integration at any Thickness

An analytic expression for ELDA
x /N at any L is1

ELDA
x [n]

N
= − 3

4π
(3π2)1/3

A

N

∫ L

0

dx n(x)4/3, (B1)

and for the quasi-2D electron gas density, this can be
reduced33 to

ELDA
x [n]

N
= −0.566392

r2Ds
· (L/r2Ds )−1/3. (B2)

We define the percent error as

|Eanalytic
x − Enumeric

x |/Eanalytic
x · 100%. (B3)

For all values of L/r2Ds , the percent error of our numerical
LDA calculation is approximately 1.32× 10−6%. This is
a lower bound on the error for the other functionals, as
the PBE and SCAN integrands can vary more rapidly as
functions of x than the LDA integrand does.
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