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The recently demonstrated unconventional superconductivity1 in twisted bilayer graphene (tBLG)
opens the possibility for interesting applications of two-dimensional layers that involve correlated
electron states. Here we explore the possibility of modifying electronic correlations by the application
of uniaxial pressure on the weakly interacting layers, which results in increased interlayer coupling
and a modification of the magic angle value and associated density of states. Our findings are based
on first-principles calculations that accurately describe the height-dependent interlayer coupling
through the combined use of Density Functional Theory and Maximally localized Wannier functions.
We obtain the relationship between twist angle and external pressure for the magic angle flat bands
of tBLG. This may provide a convenient method to tune electron correlations by controlling the
length scale of the superlattice.

I. INTRODUCTION

Recent experimental results in twisted bilayer
graphene (tBLG) have shown it to be an im-
portant system for understanding unconventional
superconductivity,1 and more generally correlated
physics in two-dimensional (2D) materials.2 This discov-
ery comes after systematic development of experimental
techniques which at present allow for twist angle control
in stacked 2D heterostructures with a remarkable
precision of 0.1◦.3–6 In bilayer graphene, a relative twist
between the layers by a “magic” angle produces just
the right amount of band hybridization to form flat
bands near the Fermi level.7–15 The flat bands have
the majority of their electron density located at the
AA-stacking regions of the moiré supercell. As the Fermi
velocity goes to zero, the scale of the electron kinetic
energy falls below the scale of the two-particle Coulomb
interaction, producing correlated behavior, although the
precise mechanism for these effects is still a topic of
active research (see Refs. [16–19] for a non-exhaustive
list). Understanding the nature of the flat bands induced
by the magic angle twist in tBLG is vital in studies
of correlated electrons in 2D, and could lead to the
discovery of other systems with similar behavior, gener-
ally referred to as “twistronics”.20 We present here an
ab-initio study of how the interlayer electronic coupling
in tBLG depends on external uniaxial pressure in the
direction perpendicular to the layers, and how pressure
acts as an additional tuning parameter for creating flat
bands in magic angle tBLG and its associated correlated
physics.

Manipulating superconductivity in tBLG by external
pressure would follow the historic trend of using pres-
sure to probe the nature of the superconducting Tc.

21,22

The Tc in conventional BCS superconductors usually de-
creases with pressure, but in unconventional supercon-
ductors pressure often increases Tc. This is attributed to
strong dependence of electronic correlation on external
pressure, although the exact mechanism is not well un-

FIG. 1. Isosurfaces of the localized Wannier functions in
bilayer graphene, with the colors indicating different signs.
(Left) Side view: Vertical compression of the bilayer mainly
causes the orbitals to overlap more, thus increasing interlayer
coupling while leaving in-plane couplings mostly unaffected.
(Right) Top view: The triangular shape and nodes (indicated
by the sign change) introduce angular dependence effects in
the interlayer coupling, neglected in empirical tight-binding
models for bilayer graphene based on pz orbitals.

derstood and may vary between materials. 2D materials
are particularly sensitive to pressure along the direction
perpendicular to the layers, as they are coupled through
weak van der Waals interactions. The mechanical ef-
fects of pressure on monolayer graphene have been docu-
mented through a variety of methods,23–25 and recently
electronic transport measurements were performed on a
graphene-hBN device under pressure.26

II. METHODS

In previous work we have derived ab-initio tight bind-
ing hamiltonians for a range of 2D materials, includ-
ing graphene, by using the maximally localized Wannier
orbitals27 to represent first-principles calculations based
on density functional theory (DFT).28,29 Our model for
bilayer graphene identified a strong angular dependence
of the interlayer coupling between the Wannier orbitals
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(see Fig. 1). The tight binding parameters are ob-
tained by first using a conventional DFT code (we use
VASP30) to find the electronic-ground state Kohn-Sham
wavefunctions in a standard plane-wave basis, ψi(k), and
then transforming these into a localized real-space basis,
φi(r). After the transformation, the DFT hamiltonian
can be used to compute the energy overlap matrix ele-
ments 〈φi|H|φj〉 = tij , which give the hopping param-
eters of a tight-binding model. A 4-band tight-binding
model of bilayer graphene was determined, consisting of
intralayer hopping energies and a functional form for in-
terlayer coupling. This interlayer coupling function in-
cluded angular dependence due to the triangular warp-
ing of the pz type orbitals of carbon in the simplified
graphene model. It is given as a sum of three terms,
representing the different angular momenta of the wave-
functions:

t(r) = V0(r)+V3(r)[cos(3θ12) + cos(3θ21)]

+V6(r)[cos(6θ12) + cos(6θ21)]
(1)

with the radial functions given by

V0(r) = λ0e
−ξ0(r̄)2 cos(κ0r̄)

V3(r) = λ3r̄
2e−ξ3(r̄−x3)2

V6(r) = λ6e
−ξ6(r̄−x6)2 sin(κ6r̄)

(2)

where r̄ is r/2.46Å , the in-plane radius reduced by the
in-plane lattice parameter. This form takes into account
both the in-plane radius and the relative angles between
the displacement vector and the monolayer lattices.

To extend the model to compressed tBLG, we per-
formed additional DFT calculations30 to derive the re-
lationship between external uniaxial pressure and inter-
layer distance in the bilayer as well as the pressure-
dependent parameterization of the tight-binding hamil-
tonian. Compression of the bilayer is given throughout
the work in terms of ε = 1 − (d/d0) where d is the local
interlayer distance and d0 is the distance at zero external
pressure (d0 = 3.35 Å from our calculations). Although
in a free-floating bilayer system the lattice parameters
are likely to change under compression, most experimen-
tal studies create these devices by encapsulating them in
insulating substrates, usually hBN. This encapsulation
technique may change the in-plane lattice parameter as
well, and so for simplicity we have ignored these effects.
To compare the compression parameter ε to an experi-
mental pressure of an encapsulated system, we have also
calculated the external pressure of a bulk system consist-
ing of three 2D layers: AB bilayer graphene separated
by a single layer of hBN. We approximate the lattice-
paramter of hBN as equal to that of graphene, 2.46 Å,
meaning the system consists of only six atoms, 2 from
each layer. Energies are computed in the VASP DFT
software package with the van der Waals DFT method

i (yi) c
(0)
i c

(1)
i c

(2)
i

1 (λ0) 0.310 -1.882 7.741

2 (ξ0) 1.750 -1.618 1.848

3 (κ0) 1.990 1.007 2.427

4 (λ3) -0.068 0.399 -1.739

5 (ξ3) 3.286 -0.914 12.011

6 (x3) 0.500 0.322 0.908

7 (λ6) -0.008 0.046 -0.183

8 (ξ6) 2.272 -0.721 -4.414

9 (x6) 1.217 0.027 -0.658

10 (κ6) 1.562 -0.371 -0.134

TABLE I. Fitted compression dependence for the 10 param-
eters of the interlayer coupling model. All parameters are
given in units of eV and take the form given in Eq. 4.

SCAN+rVV10 of Peng et al.,31 a k-mesh of 21× 21× 1,
and an energy cutoff of 500 eV. We simulate pressure
by changing the height of the periodic cell and allow the
graphene atoms to fully relax, but fix the locations of the
hBN atoms. No significant restructuring of the graphene
bilayer due to compression was observed. The pressure
from the DFT calculations is well fit by the functional
form

P = A
(
e−Bε − 1

)
(3)

with A = 5.73 GPa and B = 9.54, displayed in Fig. 2.

We find that vertical compression of the bilayer has
negligible effect on the in-plane tight-binding parame-
ters, but significantly strengthens interlayer coupling.
The pressure dependence of the 10 parameters of the
interlayer coupling function29 are well described by a
quadratic fit

yi(ε) = c
(0)
i + c

(1)
i ε+ c

(2)
i ε2 (4)

where yi, i = 1, . . . , 10 represents one of the 10 param-
eters of the model. The fitted values for each of the 10
parameters is given in Table I.

The three λn parameters (n = 0, 3, 6) have the
strongest dependence on ε, while every other parameter
is only weakly dependent. This makes sense, as the λn’s
set the overall strength of the electronic coupling between
the layers and should increase quickly as the layers are
forced closer together. The other parameters encode an-
gular and radial-centering information of the interlayer
coupling, and are thus less affected by compression. The
robust compression dependence of the parameters λn is
shown in the inset of Fig. 2, where n = 0, 3, 6 corre-
sponds to the three lowest channels of orbital angular
momentum.
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FIG. 2. Calculated vertical external pressure as a function
of interlayer distance between graphene layers (black crosses)
with the the fit given in the text (red line). Inset: Com-
pression dependence of the primary scaling parameters λn of
the interlayer coupling formula normalized by their values at
ε = 0. Values for n = 0, 3, 6 are shown with crosses, circles,
and triangles respectively. The quadratic fit for λ0 is given
by the dashed line.

III. RESULTS

A. Pressure dependence of the magic angle

In Fig. 3(a) we show the low energy electronic struc-
ture of tBLG at three different twist angles and compres-
sions, calculated with a supercell tight-binding model.
The magic angle can be thought of as a resonance of
the bilayer hybridization, where the twist angle acts as
a “knob” tuning the electronic structure.20 As the com-
pression increases and the layers come closer to one an-
other the effective interlayer coupling strength increases,
causing stronger electronic hybridization between them.
In particular, while the zero-pressure magic angle occurs
at approximately 1.1◦, under 10% compression (9.2 GPa)
the magic angle is approximately 2.0◦. Our calculations
did not show significant reconstruction of the graphene
bilayer under pressure even up to 30 GPa, but there may
be a phase transition of the encapsulating hBN substrate
around 9 GPa.26

A heuristic argument for tracking the magic angle as
a function of compression or twist angle can be con-
structed from the perspective of coupled states in mo-
mentum space, as shown in Fig. 3(b). Without interlayer
coupling, the low-energy band structure of a bilayer re-
sembles two Dirac cones separated in momentum space
by Kθ ≈ Gθ, where G is the characteristic length of the
reciprocal-cell lattice vectors of the monolayer. For sim-
plicity, we avoid the complexities of scattering in momen-
tum space that the twist angle introduces, and focus on
the Bloch states which are exactly halfway between theK
and K ′ points of the supercell (the M point). Before hy-
bridization, each layer contributes two Bloch states with
energies ±(Kθ/2)~vF , where vF is the Fermi velocity of a
graphene monolayer. We expect eigenvalues near 0 when
the interlayer coupling terms are equal in magnitude to
the Bloch state energies. A derivation including nearest-

neighbor momentum scattering can give a more precise
relationship for these terms,9 but for our argument this is
not necessary as we will only be interested in the relative
scaling of inter and intralayer energies. We then assume
this interlayer coupling strength t has at most quadratic
dependence on compression,

t(ε) = t2ε
2 − t1ε+ t0 ∝ ~vF

Kθ

2
. (5)

Taking into account that Kθ ∝ θ and that there is a
magic angle at zero compression (ε = 0) of approximately
θ0 = 1.12◦, we can make the substitution ~vF (Kθ/2) →
θ(t0/θ0) to obtain:

t2ε
2 − t1ε+ t0(1− θ/θ0) = 0 (6)

which gives the critical value, θc(ε), of the magic angle
as a function of compression ε:

θc(ε) = θ0

[
(t2/t0)ε2 − (t1/t0)ε+ 1

]
. (7)

From this expression, we deduce that for experi-
mentally accessible pressures any angle in the range
[1.1◦, 3.0◦] can serve as the magic twist angle that leads
to correlated behavior, by adjusting the pressure.

To confirm this claim, we use an ab-initio k·p model, as
described in a previous work,32 to sample the electronic
bandstructure of tBLG under compression and with a
twist angle in the estimated range. This approach is an
exact Bloch basis expansion of a tight binding hamilto-
nian. It differs from empirical k · p models9 in the accu-
racy of the interlayer coupling matrices (often named Ti).
These simplified models assume the coefficients of Ti are
momentum independent, whereas the ab-initio approach
introduces Ti dependence on the overall momentum of
the relevant Bloch states. A complete Fourier transform
of the spatially dependent interlayer coupling, sampled
on a fine mesh, is used to calculate band structure with-
out the commensurate angle restriction. The method is
primarily limited by the sampling of the interlayer cou-
pling form, especially near the magic angle. This is con-
trolled by ensuring the bands near the Fermi level are
converged within a few meV of conventional supercell re-
sults at a few selected commensurate angles. We assume
the twisted bilayer has its origin of rotation though a
pair of stacked orbitals at AA stacking (D3 symmetry),
but the results here would not change if one considers
the axis of rotation through the lattices’ hexagon center
instead (D6 symmetry).

To quantify the “flatness” of the band-structure we
compute the bandwidth of the two bands closest to the
Fermi level at the Γ point (Brillouin zone center). As
seen in Fig. 3(a), the bandwidth of the low-energy states
at this point is on the order of a few meV, which gives a
reliable indication of how flat the bands are. In Fig. 3(c)
we show the bandwidth at the Γ point, referred to here as
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FIG. 3. (a) Band structures for twisted bilayer graphene under compression ε from the ab initio tight-binding model. The
flat-band regime is achieved at 5% compression for a twist angle of 1.47◦, and at 10% compression for a twist angle of 2.00◦.
(b) The two coupled Dirac cones, shifted in momentum space due to the twist, and with interlayer coupling strength λ0, are
shown schematically. (c) Critical values of the compression parameter ε as a function of twist angle calculed by an ab-initio
k · p model. The bandwidth of the eight bands closest to the Fermi level at the Γ point, ∆EΓ, is shown in color with white
representing the small bandwidth of the flat bands. The dashed red line gives the expected value of the compression to cause
flat bands (see text for details).

∆EΓ, as a function of twist angle and compression. The
most prominent feature (white line) corresponds to the
first magic angle value. The lines at smaller angles corre-
spond to higher-order magic angles. The relationship de-
rived from our heuristic argument agrees extremely well
with numerical results if we use the values of the leading
scaling parameter of the interlayer coupling, λ0, and re-
duce the linear and quadratic terms by 8%. Additional
parameters for the interlayer coupling beyond λ0 are re-
quired to describe the pressure effects accurately, such
as the angular distribution and range of the coupling.
Their inclusion in the model would affect the interlayer
coupling in k · p theory, leading to this small correction.
The corrected values are t[0,1,2] = [0.310, 1.731, 7.122] eV.

B. Relaxation Effects

As a final ingredient to enhance the reliability of the
theoretical model, we use the distance dependent inter-
layer coupling to examine the effects of atomic relaxation
in tBLG systems at 0 pressure. The uncompressed bi-
layer exhibits significant relaxation at a twist angle of ap-
proximately 1◦.6,13,33–35 This causes important changes
to the low-energy bandstructure,36 and in the k · p for-
malism can be understood as breaking the symmetry be-

tween the AA and AB interlayer coupling coefficients as
the AA (AB) regions are greatly reduced (increased) in
size.18 Just as compression enhances electronic coupling
between the layers, it also enhances atomistic coupling.
At large compression, significant relaxation is likely to
occur at larger angles, including those that lead to flat
bands under external pressure.

In Fig. 4 we present our ab-initio tight-binding band-
structure results for tBLG with and without relaxation.
The relaxation is taken into account by using a con-
tinuum model that uses only DFT values from gener-
alized stacking fault calculations37 adapted for twisted
systems.38 This model relaxes both the in-plane and the
out-of-plane positions of the atoms and updates the in-
terlayer coupling accordingly, but currently cannot in-
clude pressure. Under external pressure, the relaxation
model will need to include local changes to both the elas-
tic energy of the individual graphene layers, and the sen-
sitive height dependence of the interlayer stacking en-
ergy. Since we have found that relaxation does not sig-
nificantly alter the value of the magic angle in the zero
pressure case, the expected magic angles calculated above
are unlikely to be greatly changed by pressure-dependent
relaxation effects.

Although the magic angle is roughly the same when
relaxation is considered, the structure of the flat bands
and the size of the single-particle gaps change with the re-
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FIG. 4. Band structures of uncompressed twisted bilayer
graphene with and without relaxation of the atoms. The
black lines are bands for the unrelaxed system and the red
lines for the relaxed system. The single particle gaps in the
relaxed system are highlighted in pink.

laxation correction. This also indicates that experimen-
tal study of correlation effects can depend sensitively on
the sample’s environment and substrate effects. We find
that relaxation increases the dispersion of the low energy
bands and increases the gaps on both sides to roughly 50
meV near the magic angle, which is in good agreement
with experiment.2,3 At larger angles the relaxation is less
extreme, and the gap size decreases with increasing an-
gle. Near 2◦ the gaps are almost completely gone as the
unrelaxed and relaxed bilayer geometry become similar.
Quantifying the degree of relaxation in experimental de-
vices will be an important ingredient for understanding
the low energy electronic structure, and thus the super-
conductivity phenomenon, in graphene.

IV. CONCLUSION

We have studied the behavior of flat bands induced
by magic angle twist in bilayer graphene as a function
of external pressure. The height dependent coupling al-
lows for accurate band structure calculation for relaxed
systems, showing that relaxation can play an important
role in interpreting the low energy states of twisted bi-
layer graphene. We demonstrated how the pressure may
be used to produce correlated behavior, identified by the
presence of flat bands at twist angles that increase with
increasing pressure. Although the correlation mechanism
remains uncertain, the larger twist angles lead to a moiré
cell of smaller size, which is likely beneficial to the cou-
pling strength and may enhance correlated electron be-
havior, including the superconducting Tc. In the absence
of clear understanding of the superconducting state it is
impossible to provide quantitative predictions for these
effects. Inverting the argument, we propose that sys-
tematic experimental study of correlated behavior as a
function of pressure could shed light on the nature of
unconventional superconductivity in tBLG and related
systems.
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