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It is well known that theorems of Lieb-Schultz-Mattis type prohibit the existence of

a trivial symmetric gapped ground state in certain systems possessing a combination

of internal and lattice symmetries. In the continuum description of such systems

the Lieb-Schultz-Mattis theorem is manifested in the form of a quantum anomaly

afflicting the symmetry. We demonstrate this phenomenon in the context of the

deconfined critical point between a Neel state and a valence bond solid in an S = 1/2

square lattice antiferromagnet, and compare it to the case of S = 1/2 honeycomb

lattice where no anomaly is present. We also point out that new anomalies, unrelated

to the microscopic Lieb-Schultz-Mattis theorem, can emerge prohibiting the existence

of a trivial gapped state in the immediate vicinity of critical points or phases. For

instance, no translationally invariant weak perturbation of the S = 1/2 gapless spin

chain can open up a trivial gap even if the spin-rotation symmetry is explicitly

broken. The same result holds for the S = 1/2 deconfined critical point on a square

lattice.

I. INTRODUCTION

The Lieb-Schultz-Mattis (LSM) theorem[1] and its generalization to higher dimensions[2, 3] states

that an insulator with half-odd-integer spin per unit cell cannot have a trivial gapped ground state:

in 1+1D the ground state must either break the translational symmetry or be gapless, while in

higher dimensions the system may also spontaneously break the SO(3)s spin rotation symmetry

or support topological order. In recent years, this result has been generalized to a variety of cases

where one relies on lattice symmetries other than translation - e.g. rotation, reflection or glide -

in combination with SO(3)s, or replaces SO(3)s by time-reversal symmetry, to rule out a trivial

gap.[4–9] Furthermore, it was noted that the impossibility of a trivial gap is very reminiscent of

the situation occurring on the boundary of a topological insulator, or a more general symmetry
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protected topological (SPT) phase. In fact, one may view a system with S = 1/2 per unit cell as

a boundary of a crystalline SPT phase protected by a combination of translational symmetry and

SO(3)s.[10] Such a crystalline SPT can be constructed as an array of 1+1D Haldane chains - then

the boundary is an array of “dangling” spin-1/2’s. As we will see, the higher-dimensional bulk is a

useful “conceptual” tool, even in cases when it is physically absent.

For SPT phases protected just by internal symmetry the relationship between the bulk topological

invariant and the non-triviality of the surface is very-well understood - the boundary realizes the

symmetry in a non-onsite manner. If one attempts to gauge the symmetry in the boundary theory,

one runs into an inconsistency - an anomaly. This anomaly is, however, cured by the bulk of the

system. This means that every surface phase, no matter whether it is symmetry broken, gapless

or topologically ordered, must realize the same anomaly which matches the bulk - a property that

must be implemented by the low-energy continuum theory describing each surface phase. What

about the the bulk/boundary relationship for a crystalline SPT protected by a combination of

lattice and internal symmetries or equivalently, how do LSM constraints enter in the low-energy

continuum theory? Here, we discuss two examples: i) the gapless S = 1/2 spin chain in 1+1D;

ii) the deconfined quantum critical point (QCP) in 2+1D between an S = 1/2 Neel state and a

valence bond solid (VBS) on square and honeycomb lattices.[11, 12] In these examples, we focus on

the following symmetries: SO(3)s, translations and (in 2+1D) lattice rotations. We find that the

LSM-like anomaly may be determined by treating the lattice symmetries in the low-energy theory

as internal symmetries. In the case of rotations, this is done by combining the microscopic rotation

symmetry with the emergent Lorentz symmetry of the continuum field theory. In particular, we find

that for the S = 1/2 square lattice the combination of SO(3)s and translations is anomalous, and

also the combination of SO(3)s and 180 degree rotations is anomalous. This is in complete agreement

with LSM-like theorems.[5] On the other hand, on the honeycomb lattice, we find no anomalies for

the symmetries listed above. Again, this is consistent since a trivial symmetric gapped state on

the honeycomb lattice has been recently constructed.[13, 14] The treatment of lattice symmetries

as internal symmetries for the purpose of anomaly computation is consistent with Ref. 15, which

argues that the classification of crystalline SPTs with a symmetry group G comprising both lattice

and internal symmetries is identical to the classification of SPTs with a purely internal symmetry

group G (see also Ref. 16). It is also consistent with the results of Ref. 10 obtained in the context

of topologically ordered 2+1D phases with crystalline symmetries.

In addition to the anomalies mandated by LSM-like theorems, we find that new anomalies can
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emerge in the neighbourhood of critical points/phases. This occurs when the microscopic symmetry

group G does not act on the gapless degrees of freedom in the critical theory in a faithful manner: G

may act as G/H, where H is a normal subgroup. There are cases when G/H has an anomaly even

though G itself does not.1 Then no G-symmetric infinitesimal perturbation of the critical theory

can open up a trivial gap.2 Physically, there are not enough degrees of freedom in the critical

theory in order to drive the system into a trivial phase. However, if we perturb the system strongly,

states transforming non-trivially under H may eventually come down in energy and a trivial gapped

ground state may be achieved. An example of this is provided by the 1+1D S = 1/2 chain. Here the

gapless excitations sit at points k = 0 and k = π in the Brillouin zone. Therefore, the translational

symmetry Z acts as Z2 in the continuum theory. It has long been known that this Z2 symmetry

is anomalous.[18, 19] What this, however, means is that no weak perturbation can gap out the

S = 1/2 chain without breaking the translational symmetry, even if the perturbation completely

breaks spin-rotations (and time-reversal). This is consistent with what we know: for instance, if we

start with the isotropic antiferromagnetic Heisenberg chain and introduce a weak Ising asymmetry

∆H = δ
∑

i S
z
i S

z
i+1, δ > 0, this drives the system into an Ising antiferromagnet, 〈Szi 〉 ∼ (−1)i,

which spontaneously breaks the translation symmetry (the Sz spin-rotation symmetry and time-

reversal can be further broken with a small uniform Zeeman field). Other nearby gapped states,

such as the VBS also break translations. Of course, if one applies a strong enough Zeeman field, one

completely polarizes the chain consistent with the fact that there is no intrinsic LSM-like anomaly

for translational symmetry alone. This, however, requires a critical strength of the Zeeman field

and does not occur in the immediate vicinity of the gapless state.

We find that similar new anomalies emerge at the deconfined critical point in an S = 1/2 square

lattice magnet. Here, the translational symmetry Zx×Zy acts in a Zx
2 ×Z

y
2 manner on the gapless

decrees of freedom at the QCP. Furthermore, we find that this Zx
2 × Z

y
2 symmetry is anomalous.

Thus, again, no weak perturbation can drive the system into a translationally invariant gapped

phase (even if it breaks the SO(3)s symmetry). Another emergent anomaly is present for the

combination of diagonal translations TxTy and SO(3)s. While one might have naively thought that

by staggering the bond-strengths as in Fig. 1 one can immediately trivially gap out the deconfined

1 This situation was recently discussed in Ref. [17] where it was used to construct symmetric gapped surface states

of SPT phases.
2 We assume here that no “accidental” strongly first order transition to the regime outside of field theory validity

occurs upon adding the infinitesimal perturbation.
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FIG. 1: A staggering of bond strengths for an S = 1/2 square lattice. Weakly perturbing the deconfined

critical point with such a staggering cannot open a trivial gap, while preserving TxTy and SO(3)s symmetry.

critical point, this is not the case - a finite strength of such staggering is needed for a trivial

gap to open. In contrast, we find no emergent anomalies for the combination of translations,

rotations and SO(3)s for an S = 1/2 honeycomb lattice (and as already mentioned, no intrinsic

LSM anomalies). This, in principle, opens the possibility that in the CP1 field theory perturbed by

triple monopoles governing the deconfined QCP on the honeycomb lattice an intermediate trivial

symmetric phase may exist between the Neel state and the VBS state. However, current studies of

lattice models on the honeycomb lattice suggest either a continuous direct transition or a weakly

first-order transition.[20–23] Refs. 20, 23 also argue based on the anisotropy of VBS histograms that

the triple monopole operator is nearly marginal at the transition - it may be that the system sizes

probed in Refs. [20–23] were not large enough to study the true IR effects of this operator. If this

operator is slightly relevant it is possible that it eventually drives the system to a trivial gapped

state, opening up a narrow region of intermediate gapped phase near the putative QCP. Of course,

a less exciting scenario where this operator drives a first order transition or leads to coexistence of

the Neel and VBS phases is also possible. In any case, these findings motivate further numerical

study of the Neel-VBS transition on the honeycomb lattice.

We would like to point out that the situation of emergent anomalies described above should not
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be confused with the case when the microscopic symmetry G is dynamically enlarged in the critical

state to a larger group G′, i.e. when perturbations breaking G′ to G are irrelevant in the RG sense.

In such cases, the enlarged symmetry may also be anomalous. An example is provided by the 1+1D

S = 1/2 chain where the microscopic SO(3)s × Zx
2 symmetry is dynamically enlarged to SO(4).

Similarly there is evidence that the SO(3)s × [Zrot
4 o Zx

2 ] symmetry of the S = 1/2 square lattice

deconfined QCP is dynamically enlarged to an SO(5) symmetry (here Zrot
4 stands for 90 degree

rotations). The anomaly associated with this SO(5) symmetry has been determined in Ref. 24,

and may be used as a starting point to derive the intrinsic/emergent anomalies associated with the

physical symmetries studied here.[25] However, it is not necessary to assume this emergent SO(5)

either to compute the anomaly associated with the physical symmetry or to study its consequences.

In addition to the above anomaly analysis, we discuss the dynamics of the Neel-VBS transition

of an S = 1/2 rectangular lattice and S = 1 square lattice. Some time ago, it was suggested that

the Neel-VBS transition of an S = 1/2 rectangular lattice may be continuous and may possess an

emergent O(4) symmetry.[26] However, numerical simulations of Ref. 22 have found a first order

transition on a rectangular lattice, so this proposal was abandoned. Here, we would like to revisit

this proposal in view of recent theoretical[24, 27, 28] and numerical progress.[29, 30] We suggest that

this continuous transition may be accessed by starting with the S = 1/2 square lattice Neel-VBS

transition and introducing a weak rectangular anisotropy (even weaker than considered in Ref. 22).

We also suggest that the same O(4) symmetric CFT governs the Neel-VBS transition of the S = 1

square lattice.

We would like to note that some of our results have been recently independently obtained by

other groups. Ref. 31 discusses LSM like anomalies at deconfined critical points using less formal

methods. Ref. 32 discusses LSM like anomalies in a number of gapless systems, including the

1+1D S = 1/2 chain. Ref. 25 provides a field-theoretic analysis of anomalies of the CP1 model

describing deconfined critical points in 1+1D and 2+1D - we give a slightly different derivation

of these anomalies here and provide a physical interpretation. While this manuscript was being

completed Ref. 33 appeared, which also discusses the implication of anomalies of 2+1D CP1 model

for lattice antiferromagnets.

This paper is organized as follows. In section II, we discuss the anomalies of the 1+1D S =

1/2 chain: in II A we use the Abelian bosonization description of the chain, and in II B - the

CP1 description. The latter allows for a more complete formal analysis where the SO(3)s and

translational symmetries are gauged. Section III is devoted to the Neel-VBS deconfined critical
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point in 2+1D: the case of the S = 1/2 square lattice is discussed in III A, and of the S = 1/2

honeycomb lattice in III B. A physical picture of the mixed anomaly involving the lattice rotational

symmetry and SO(3)s is given in section III C: here we clarify the old arguments of Ref. [34]

regarding S = 1/2 moment in the VBS vortex core. Section III D discusses some issues involving

the breaking of continuous Lorentz (rotation) symmetry of the low-energy field theory description.

Section III D also discusses anomalies of the S = 1 deconfined critical point on the square lattice.

Section IV has a slightly different focus: it is devoted to the possibility that S = 1/2 rectangular

lattice and S = 1 square lattice Neel-VBS transitions might be continuous. Concluding remarks

are presented in section V. We also point out appendices A, B, which give a careful definition of the

CP1 model in 1+1D and 2+1D as a boundary of a higher dimensional SPT phase. Finally, appendix

C discusses VBS vortices in the context of the nearest neighbour dimer model, supplementing the

discussion in section III C.

II. S = 1/2 SPIN CHAIN IN 1+1D.

We begin with the example of the S = 1/2 antiferromagnetic chain in 1+1D. While anomalies

in this example have been studied at length before,[19, 32] our interpretation of the “emergent

anomaly” and its consequences is somewhat different from that in the literature.

A. Bosonized description

We begin with the bosonized description of the chain (we work in real-time here),

L =
1

2π
∂tθ∂xϕ−

1

4π
((∂xϕ)2 + (∂xθ)

2) (1)

The microscopic operators are expressed as S+
j ∼ A(−1)jeiθ, Sz ∼ A(−1)j sinϕ+ 1

2π
∂xϕ, V ∼ cosϕ,

where Vj ∼ (−1)j ~Sj · ~Sj+1 is the VBS order parameter. Here, we use Abelian bosonization, so only

the SO(2)z subgroup of SO(3)s symmetry, corresponding to spin rotations around the z axis, is

manifest. (Below, we will also discuss the CP1 formulation where the full SO(3)s symmetry is

manifest). The SO(2)z symmetry acts as

SO(2)z : θ → θ + α, ϕ→ ϕ (2)

The translational symmetry acts as

Tx : θ → θ + π, ϕ→ ϕ+ π (3)
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Note that the microscopic Z translation symmetry acts in a Z2 manner in the low-energy theory,

so we will sometimes refer to Tx as Zx
2 .

Let’s first discuss the manifestation of the LSM anomaly, which involves the combination of

SO(2)z and translation symmetry Tx. First, consider a closed chain with an odd number of sites.

Increasing the number of sites in the chain by one is tantamount to inserting a flux of the Tx

symmetry through the cycle of the chain. Using the action of Tx (3), a chain with an odd number

of sites corresponds to twisted boundary conditions, θ(x + L) = θ(x) + 2π(n + 1/2), ϕ(x + L) =

ϕ(x) + 2π(m + 1/2). Now, the total SO(2)z charge of the chain is Sz = 1
2π

∫ L
0
dx ∂xϕ. So we see

that the chain with an odd number of sites carries Sz which is half-odd-integer. Of course, this is

precisely the correct physics for an S = 1/2 chain. However, if the microscopic symmetry was really

SO(3)s (and its subgroup SO(2)z) then only integer values of Sz would be allowed - so our theory

is anomalous.

Another (more standard) identification of the LSM anomaly proceed via threading flux of SO(2)z

through the chain. When flux α of SO(2)z is threaded through the chain, the fields satisfy twisted

boundary conditions, θ(x+L) = θ(x)+2πn+α, ϕ(x+L) = ϕ(x)+2πm. Thus, as we insert flux 2π of

SO(2)z the winding number of θ increases by 2π, while the winding number of ϕ remains unchanged.

Now, from the action of translational symmetry (3) we can identify the physical momentum

P =
1

2

∫ L

0

dx (∂xϕ− ∂xθ) (4)

So, after threading flux 2π, the momentum P changes by π. Of course, this is the result that we

expect microscopically from the S = 1/2 chain.[1] However, if we treated SO(2)z and translation

as on-site internal symmetries, then the momentum P cannot change after flux-threading. So this

again is a signature of the intrinsic LSM anomaly.

Next, we proceed to the emergent anomaly, which is associated with the translation symmetry

and does not require spin-rotations or time-reversal. We observe that the action of translational

symmetry (3) coincides precisely with the action of Z2 symmetry on the edge of a 2+1D Z2 protected

SPT.[35–37] The edge of a Z2 protected SPT cannot be gapped out without breaking Z2. Now,

any translationally invariant weak perturbation that we add to the theory must respect Zx
2 , so such

perturbations cannot open a symmetric gap.

It is instructive to understand how the argument above breaks down when the perturbation

added is not weak. Indeed, we know that, for instance, a sufficiently large uniform Zeeman field
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can fully polarize the spin chain. A weak Zeeman field corresponds to a perturbation,

δL =
δ

2π
∂xϕ (5)

with δ ∼ Bz. This perturbation can be eliminated by redefining ϕ̃(x) = ϕ(x)− δx. Under transla-

tions by a lattice spacing a, Tx : ϕ̃(x)→ ϕ̃(x+a)+π+δa. Thus, translations no longer act on ϕ̃ in a

Z2 manner. As we keep increasing Bz, eventually we reach a point where, Tx : ϕ̃(x)→ ϕ̃(x+a)+2π,

so a perturbation

δL ∼ cos ϕ̃ (6)

becomes allowed and can open a gap - this corresponds to a fully polarized chain. Physically, the

momenta at which gapless degrees of freedom are present evolve as Bz is tuned until momentum

preserving backscattering terms are allowed. If we express (6) in terms of the original field ϕ,

δS ∼
∫
dxdt cos(ϕ+ πx/a). Clearly, close to the starting theory δ = 0, this term vanishes since the

momenta carried by the continuum field eiϕ are assumed to be small (much smaller than π).

The example considered here is quite general. Any continuum field theory where gapless degrees

of freedom sit at isolated points in momentum space will have an emergent continuum translational

symmetry (in our example, ϕ(x) → ϕ(x + ε), θ(x) → θ(x + ε)). For “kinematic” reasons outlined

above, these continuum translations are preserved by any weak perturbation. By combining these

continuum translations with microscopic translations, we get a purely internal symmetry. If the

underlying gapless excitations sit at commensurate points in momentum space, this internal sym-

metry will act as a finite group G in the field theory (Z2 in our example). G might be an anomalous

symmetry of the theory, in which case weak translation preserving perturbations cannot open a

gap.

The example with the Zeeman field also illustrates how to immediately determine whether an

anomaly is intrinsic (of LSM type) - i.e. whether it is stable to large perturbations away from a

particular critical state. Again, for this purpose it suffices to treat translations as a purely internal

symmetry, but one that acts in a Z manner. To compute the anomaly, one can further restrict

to Lorentz invariant theories (such as one describing the field ϕ̃ in the example above). For a Z

symmetry, the charge of the field can continuously change, e.g. ϕ̃→ ϕ̃+α, with α -arbitrary, which

in the example above ultimately removes the anomaly for translations.

We leave the discussion of bulk-boundary correspondence for the anomalies described above to

next section.
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B. CP1 description.

We saw in the previous section that the 1+1D S = 1/2 spin chain possesses anomalies associated

with the SO(3)s spin-rotation symmetry and translational symmetry. In this section, we discuss

an interpretation of these anomalies when the chain is viewed as a surface of a 2+1D (crystalline)

SPT phase. Here we describe the gapless phase of the chain using the CP1 model with a θ term at

θ = π,

L = |(∂µ − iaµ)zα|2 + iθ
f

2π
, θ = π (7)

Here and below we work in Euclidean time. aµ is a u(1) gauge field and f = εµν∂µaν is the

associated field strength. zα, α = 1, 2, is a complex scalar transforming in the projective S = 1/2

representation of spin-rotation group SO(3)s. The Neel order parameter is identified with ~n ∼ z†~σz,

and the VBS order parameter with V ∼ f . Under translations by one lattice spacing

Tx : z → iσyz∗, a→ −a (8)

so that both ~n and V are odd under Tx, as necessary. Note that T 2
xzα = −zα, i.e. T 2

x is a rotation

by π in the u(1) gauge group - i.e. T 2
x acts trivially on all physical observables. This means that

Tx acts as a Z2 symmetry in the field theory (7). In a recent work [25] it was shown that this Zx
2

symmetry is anomalous. Moreover, the combination of Zx
2 × SO(3)s is also anomalous.[38] In fact,

as found in [25], one can think of (7) as living on the boundary of a 2 + 1D SPT with Zx
2 × SO(3)s

symmetry and bulk action,

Sbulk = πi

∫
X3

(xws2 + x3) (9)

where X3 is the bulk three-manifold, x ∈ H1(X3, Z2) is the background gauge-field corresponding

to Zx
2 symmetry, ws2 ∈ H2(X3, Z2) is the second Stiefel-Whitney class of the background SO(3)s

bundle, and product of cohomology classes is the cup-product. We give a precise definition and a

derivation of the bulk + boundary theory corresponding to (7), (9) in appendix A. Note that our

definition/derivation differs somewhat from the discussion in [25].

We proceed to discuss the physical interpretation of the bulk action (9). The first term in this

action,

S1,bulk = πi

∫
X3

xws2 (10)

is precisely the intrinsic LSM anomaly for the combined SO(3)s and translational symmetry. The

second term,

S2,bulk = πi

∫
X3

x3 (11)
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is the emergent anomaly for the translational symmetry alone. Let us begin with the emergent

anomaly: we recognize that S2,bulk is precisely the bulk action of a Z2 protected 2+1D SPT in the

presence of a background Z2 gauge field x.[36, 39] It is also immediately clear that this anomaly is

not intrinsic if one remembers that the microscopic translation symmetry group is Z rather than Z2.

The difference between a Z gauge field and a Z2 gauge field is that for a Z gauge field x (without

vison defects) dx = 0, while for a Z2 gauge field dx = 0 (mod 2) - the condition for a Z gauge field is

more restrictive.3 Now, for a Z2 gauge field x2 = dx
2

(mod 2) (as cohomology elements). Therefore,

if we interpret x as a Z gauge-field, x2 = dx
2

= 0 (mod 2) and S2,bulk vanishes - no anomaly for

translational symmetry alone is present. On the other hand, if we take x to be a Z2 gauge field

then S2,bulk is generally non-vanishing.4 As discussed in section II A, no translationally invariant

weak perturbation of the critical chain breaks the internal Zx
2 symmetry, therefore, to analyze the

stability of the chain to weak perturbation one is allowed to couple it to a Z2 gauge field, whereby

one discovers an anomaly. To analyze stability to strong perturbations one must, however, treat x

as a Z gauge field - then no anomaly is found and a gapped phase exists.

Next, we proceed to show that S1,bulk is the LSM anomaly. Here we may think of the bulk

physically as a crystalline SPT obtained as a stack of Haldane chains - the surface is then precisely

an S = 1/2 chain. S1,bulk is the “response theory” of such a crystalline SPT. Let each Haldane

chain stretch along the y direction, and the chains be stacked along x. Let the length along x be Lx

and the length along y be Ly. For a moment, let both x and y be periodic, so that the space-time

manifold is S1
x×S1

y ×S1
τ . As noted in section II A, increasing Lx → Lx + 1 corresponds precisely to

threading flux of the Tx gauge field along the x cycle. When
∫
S1
x
x = 1 (and x vanishes along the

other cycles), S1,bulk = πi
∫
S1
y×S1

τ
ws2 - which is precisely the response of the Haldane phase. Thus,

as we increase Lx by one, the system compactified along the x direction goes from being a trivial

SO(3)s SPT to the Haldane SO(3)s SPT. But that’s precisely a property of a stack of Haldane

chains!

Another important manifestation of the LSM anomaly is obtained by thinking about the magnetic

flux of SO(3)s in the 2+1D bulk. Let us compactify the bulk on Y2×S1
τ , where we think of Y2 as a

spatial manifold. Place flux of SO(3)s through Y2 (for instance, one can take 2π flux of the SO(2)z

subgroup). The SO(3)s flux is defined only mod 2 and is measured precisely by
∫
Y2
ws2. Therefore,

3 Here and below, d denotes the coboundary operation on cochains.
4 As an example, consider X3 = RP3 and x -the generator of H1(RP3, Z2) = Z2.
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in this geometry, S1,bulk = πi
∫
S1
τ
x. This means that an SO(3)s flux carries momentum π under x

translations. But this is precisely right! Indeed, consider the bulk with a boundary. We may take

the spatial bulk manifold to be a disc, so that the spatial boundary is a circle. Imagine moving the

SO(3)s flux - e.g. 2π flux in the SO(2)z subgroup - from the trivial vacuum outside to inside the

bulk. Outside the flux carries no momentum, but inside it carries momentum π. Therefore, in the

process, there must be momentum π left on the boundary. That’s precisely right! Indeed, from the

boundary viewpoint, this process corresponds to threading SO(2)z flux 2π through the chain. We

know microscopically that this changes the momentum by π.

Note that the gauge fields x that we considered in our discussion of S1,bulk satisfied dx = 0, i.e.

the anomaly is already present when translations are treated as a Z group. Again, this is what we

expect for an intrinsic LSM anomaly.

III. DECONFINED CRITICALITY IN 2+1D

In this section we discuss the Neel to VBS transition in 2+1D on square and honeycomb lattices.

The underlying field theory believed to control this transition is the 2+1D CP1 model,

L = |(∂µ − iaµ)zα|2 (12)

where we use the same notation as in 1+1D, see section II B. As written, the action (12) contains

no monopole operators. Depending on the lattice and the value of spin S one is considering, the

action (12) admits various perturbations (particularly monopole operators) that we will discuss

below. The continuum theory (12) has three internal global symmetries: i) SO(3)s rotations under

which zα transforms in the spinor representation. ii) U(1)Φ flux symmetry under which the 2π flux

monopole of a that we denote by an operator V transforms as

U(1)Φ : V → eiαV (13)

We denote the operator implementing a U(1)Φ rotation by an angle α as UΦ
α . iii) A unitary “charge

conjugation” symmetry:

C : z → iσyz∗, a→ −a, V → V † (14)

Note that C2 = 1 on gauge-invariant degrees of freedom, i.e. C acts as a Z2 symmetry. Combining

C with U(1)Φ we get a group O(2)Φ, therefore, the full internal symmetry group of (12) is O(2)Φ×

SO(3)s. As we will discuss in the case of each lattice, the microscopic symmetries are implemented
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in the continuum theory as a subgroup of this symmetry group (in the case of rotations, combined

with continuum rotations).

Before we specialize to particular physical symmetries, it is useful to compute the anomaly

associated with the full continuum symmetry O(2)Φ × SO(3)s. This was done in Ref. 25 (we give

a slightly different derivation in appendix B). It was found that (12) is the boundary of a 3+1D

O(2)Φ × SO(3)s protected SPT with the following bulk response:

Sbulk = πi

∫
X4

w2[ξΦ] ∪ (w2[ξs] + w2
1[ξΦ]) (15)

Here, X4 is the bulk four-manifold, ξs is the SO(3)s bundle, ξΦ is the O(2)Φ bundle, and as before

w1,2 denote the first and second Stiefel-Whitney classes. In particular, w1[ξΦ] ∈ H1(X4, Z2) is just

the Z2 gauge field corresponding to the charge-conjugation symmetry.

While this is not important for the anomaly analysis, let us say a few words about the order

of transition in the continuum “non-compact” theory (12). Numerical simulations suggest that

it is either continuous or very weakly first order. Further, if the latter situation is the case, the

weakly first order behavior is quasi-universal - the same critical exponents (and small drifts of these

exponents with system size) are seen in microscopically different models. Ref. 40 proposed that this

quasi-universal behavior may be controlled by a nearby non-unitary critical point (or equivalently

a unitary critical point appears if the parameters such as spatial dimension/number of flavors are

varied slightly). Our discussion below can also be adapted to the quasi-universal first order scenario:

in this case, when we talk of relevancy or irrelevancy of a certain operator in (12), we define it with

respect to this non-unitary critical point/nearby unitary critical point.

We now specialize to the particular lattices.

A. S = 1/2 square lattice

The lattice symmetries we focus on are translations Tx, Ty and Z4 rotations about a site. These

act in the following way. The Z4 rotation Rπ/2 is just a π/2 rotation in the U(1)Φ group UΦ
π/2

(together with a π/2 emergent continuum rotation), i.e.

Rπ/2 : V (x)→ iV (R−1
π/2x) (16)

The translations act Tx = C, Ty = UΦ
π C, i.e. (apart from action on z, a),

Tx : V → V †, Ty : V → −V † (17)
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FIG. 2: Four domains of S = 1/2 square lattice VBS order with V = 1, i,−1,−i in a Zrot4 vortex configu-

ration. Domain walls are marked in dashed orange. Top left and bottom: a Zrot4 symmetric vortex traps

half-odd-integer spin. Top right: a vortex which does not preserve the Zrot4 symmetry need not trap a spin

(see also appendix C).
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From these transformations we can identify V = Vx+iVy with the VBS order parameter (see Fig. 2).

Further, we see that Tx, Ty and Zrot
4 act in the field theory as a D4 subgroup of O(2)Φ, and the

anomaly can be obtained by replacing the O(2)Φ bundle ξΦ in (15) by the D4 bundle. Let us focus

on two subgroups of this D4.

1). Imagine restricting the lattice symmetry to Z4 rotations. Then we are interested in the Z4

subgroup of U(1)Φ, so there are no C gauge fields and w1[ξΦ] = 0. Further, for a U(1)Φ gauge field,

w2[ξΦ] = F
2π

(mod 2), where F ∈ H2(X,Z) is the Chern class of the U(1)Φ bundle. In our case, if

we denote the Z4 gauge field by γ ∈ H1(X4, Z4), F
2π

= dγ
4
∈ Z. The anomaly (15) then becomes

Sbulk = πi

∫
X4

dγ

4
∪ ws2 (18)

This is a mixed anomaly involving Z4 rotations and SO(3)s symmetry. It is generally non-vanishing.

Indeed, even if we restrict to only 180 degree rotations, i.e. take γ = 2γ̃ with γ̃ ∈ H1(X4, Z2), the

action (18) is still non-trivial,

Sbulk = πi

∫
X4

dγ̃

2
∪ ws2 = πi

∫
X4

γ̃2ws2 (19)

The presence of the anomalies (18), (19) is in exact accord with an LSM like theorem stating that

a trivial gap is impossible in a system with spin S = 1/2 located at a 180 degree rotation center.[5]

Thus, these anomalies are intrinsic anomalies.

2). Imagine restricting the lattice symmetry to translations Tx, Ty. In the field theory, these act

as a Zx
2 ×Z

y
2 subgroup of the O(2)Φ group, corresponding to O(2) transformations diag(1,−1) and

diag(−1, 1). Denoting the Zx
2 and Zy

2 gauge fields as x and y, we have ξΦ = ξx ⊕ ξy - i.e. ξΦ is a

direct sum of line bundles ξx and ξy. Using the Whitney formula, w1[ξΦ] = w1[ξx] +w1[ξy] = x+ y,

w2[ξΦ] = w1[ξx]w1[ξy] = xy. So the anomaly reduces to

Sbulk = πi

∫
X4

(
xyws2 + x3y + xy3

)
(20)

The first term xyws2 corresponds to the mixed LSM anomaly for the SO(3)s symmetry and trans-

lations. The last two terms comprise an emergent anomaly for the translation symmetry.

Let’s first discuss the LSM anomaly. Again, we can think of the S = 1/2 square lattice as a

boundary of a stack of Haldane chains. We let the chains run along the z direction and be stacked

in a square lattice along x and y. Let the x, y and z directions be periodic. Increasing Ly by

1 corresponds to threading Ty flux along the y cycle. Then, with such a y flux, the bulk action

becomes Sbulk = πi
∫
S1
x×S1

z×S1
τ
xws2. This is exactly the action (10) that we concluded corresponds
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to a 1d array of Haldane chains. This is the correct physics: fixing Ly to be large by finite, we can

view our bulk as a 2+1D phase protected by Tx and SO(3)s. At each x “site” there is a Haldane

phase if Ly is odd and an SO(3)s trivial phase if Ly is even.5 Again, we note that the action

Sbulk = πi
∫
X4
xyws2 is non-trivial even if x and y are Z gauge-fields rather than Z2 gauge fields, as

befits an intrinsic LSM anomaly.

We next discuss the emergent anomaly Sbulk = πi
∫
X4

(x3y + xy3). Again, if x and y are Z gauge

fields, then x2 = y2 = 0 (mod 2) so Sbulk vanishes. However, if x and y are Z2 gauge-fields then

Sbulk is non-trivial - in fact, it is precisely the response of a Z2×Z2 protected SPT in 3+1D.6 Since

translations act in a Z2 manner in the continuum field theory, we conclude that the Z2×Z2 anomaly

is relevant to the vicinity of the deconfined critical point. In particular, no weak translationally

invariant perturbation can open a trivial gap (even if it breaks the spin-rotation symmetry).

Another emergent anomaly is present for the combination of diagonal translations TxTy and

SO(3)s. In the continuum theory TxTy acts in the same way as 180 degree rotations, so, we indeed,

expect such a mixed anomaly. If only the Z2 symmetry corresponding to TxTy is gauged, we have

x = y. Then

Sbulk = πi

∫
X4

x2ws2 (21)

which is again generally non-trivial for x - a Z2 gauge field, but vanishes for x - a Z gauge field.

From a lattice perspective, we know that if we stagger the exchange strength as shown in Fig. 1,

for sufficiently strong staggering we will drive the system into a trivial gapped phase. However, the

anomaly analysis above indicates that it does not occur for weak staggering.

B. S = 1/2 honeycomb lattice

We now discuss the case of the honeycomb lattice. The transition we consider is from a Neel

phase to a Kekule-VBS phase (see Fig. 3). The symmetries we will be interested in are: 60 degree

rotations about a plaquette center Rπ/3 and translations T1, T2 along the lattice vectors. These act

5 We could have chosen a more general manifold S1
x × Y3 with odd x flux along S1

x to recover (9). The choice of a

three-torus for Y3 is made for ease of visualization and physical interpretation.
6 Recall that Zx2 × Z

y
2 protected SPT phases in 3+1D are classified by H4(Z2 × Z2) = Z

(1)
2 × Z(2)

2 . The generator

Z
(1)
2 has the response, S = πi

∫
X4
x3y, and the generator Z

(2)
2 , S = πi

∫
X4
xy3. Our action is the sum of the two

generators. Focus on one of the generators, S = πi
∫
X4
x3y. Consider X4 = S1 × Y3. Placing flux of y through S1

gives S = πi
∫
Y3
x3 - the partition function of 2+1D Zx2 SPT on Y3. Thus, threading flux of Zy2 through S1 toggles

between a trivial and non-trivial 2+1D Zx2 SPT. This is precisely the property of a Zx2 ×Z
y
2 SPT in 3+1D.[41, 42]



16

FIG. 3: Three domains of S = 1/2 honeycomb lattice VBS order with V = 1, e2πi/3, e4πi/3 in a Zrot3 vortex

configuration. Domain walls are marked in dashed orange. A Zrot3 symmetric vortex may or may not trap

S = 1/2 depending on the details of the domain walls.

as T1 = UΦ
2π/3, T2 = UΦ

−2π/3, Rπ/3 = C, i.e.

T1 : V → e2πi/3V, T2 : V → e−2πi/3V

Rπ/3 : V (x)→ V †(R−1
π/3(x)) (22)
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Thus, the monopole V is identified with a Kekule-like VBS order parameter (see Fig. 3). Further,

the lattice symmetries above act in the continuum theory as a D3 subgroup of O(2)Φ. As discussed

in appendix B 1, for a D3 bundle w2[ξΦ] = 0, so Sbulk = 0. Hence, in this case there are neither

emergent nor intrinsic anomalies. The absence of an intrinsic anomaly is in agreement with the

existence of a trivial gapped state on the honeycomb lattice.[13, 14] Let us now discuss possible

consequences of the absence of emergent anomalies. The symmetries of the honeycomb lattice (in

particular, the symmetries discussed above), permit a triple monopole perturbation,

δL ∼ V 3 + (V †)3 (23)

It is expected that this is the most relevant perturbation to the critical theory (12) describing the

Neel to VBS transition on the honeycomb lattice (besides the perturbation |zα|2 that tunes between

the two phases). If this perturbation is irrelevant, the transition is described by the “non-compact”

theory (12) with an emergent O(2)Φ symmetry, whose anomaly prohibits a trivial gap. On the other

hand, if the perturbation is relevant then the symmetry of the low-energy theory is really only D3.

Since this symmetry is not anomalous, it is possible that a region of trivial gapped symmetric phase

opens up between the Neel and VBS phases on the honeycomb lattice.7

Numerically, the Neel-VBS transition on the honeycomb lattice appears continuous or very

weakly first order.[20–23] Further, on finite but large systems the same critical exponents are ob-

served as on the square lattice. This suggests that the same “non-compact” theory (12) governs the

transition on the honeycomb lattice as on the square lattice. However, while on the square lattice

nearly U(1) symmetric histograms of the VBS order parameter are seen, which has been interpreted

as evidence for the irrelevancy of the quadruple monopole operator V 4, on the honeycomb lattice a

clear Z3 anisotropy of the histogram is observed. Thus, it may be the case that the V 3 operator is

close to marginality. If it is slightly relevant, it may be that system sizes where its effects start to

play a role have not been reached in Refs. [20–23]. In this light, it would be interesting to numeri-

cally study the Neel-VBS transition for the S = 1/2 honeycomb lattice in more detail. As already

pointed out in Ref. [23], it would be particularly interesting to look for new microscopic models

realizing this transition with the hope that some of them have larger values of V 3 perturbation than

those studied previously.

7 Strictly speaking, we also need to demonstrate that when the reflection/time-reversal symmetries are added to

symmetries considered above, no emergent anomalies are present. We leave this to future work.
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C. Vortices and domain walls

In this section, we give a more physical picture of the mixed anomaly between lattice rotational

symmetry and SO(3)s clarifying the previous discussion in Ref. 34.

It has long been appreciated that the essential feature of the Neel-VBS transition on the square

lattice is that VBS vortices carry spin S = 1/2.[34] At the field-theory level, this is seen as follows.[24]

Imagine first that no monopoles of a are present in the action, so that the Zrot
4 symmetry is

dynamically enlarged to U(1)V BS = U(1)Φ. To nucleate a vortex of U(1)V BS one couples the

system to a background U(1)Φ gauge-field A,

L = |(∂µ − iaµ)zα|2 +
i

2π
A ∧ da (24)

and considers a configuration with flux 2π of A. In order for this configuration to carry no a charge

(i.e. be gauge-invariant), we must additionally nucleate a zα particle, so the vortex carries S = 1/2.

This matches the bulk anomaly (15). Indeed, if we compactify the bulk theory (15) on S2 × Y2

with flux 2π of U(1)Φ through S2 then (15) reduces to S = πi
∫
Y2
ws2 - the partition function of a

Haldane chain. Considering Y2 to be open, we see that a monopole of U(1)Φ is just like an end of

a Haldane chain - i.e. it carries S = 1/2. When a monopole of U(1)Φ sits in the 3+1D bulk, there

is flux 2π of A eminating through the 2+1D surface, so a VBS vortex is present on the surface and

carries spin 1/2.

Now, what happens when the U(1)Φ symmetry is broken to Zrot
4 ? If we work in the VBS phase,

a VBS vortex will break up into a junction of four domain walls of Zrot
4 , see Fig. 2. This vortex still

traps S = 1/2 as is clear from Fig. 2 top, left. This is in agreement with the anomaly surviving

when U(1)Φ → Zrot
4 . A crucial point is that one must consider a vortex, which is invariant under

Zrot
4 (for an alternative viewpoint appropriate for the nearest neighbour dimer model, see appendix

C). For instance, the configuration in Fig. 2 top, right has the same four domains as in Fig. 2 top,

left. However, it is not Zrot
4 symmetric - one of the domain walls differs from the other three. We

can think of this configuration as obtained from Fig. 2 top, left by dressing one of the domain walls

with a Haldane chain. The Haldane chain contributes an extra S = 1/2 to the vortex, so that the

total spin is an integer. If we, instead, dress all four domain walls with Haldane chains, so that

the configuration is again Zrot
4 symmetric, Fig. 2 bottom, we again have a half-odd-integer spin

trapped in the vortex core.

What about the S = 1/2 honeycomb lattice? Here, the rotational symmetry of interest is Zrot
3 ,
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corresponding to 2π/3 rotations about a site.8 In the present case there exist Zrot
3 symmetric Zrot

3

vortices with both half-odd-integer and integer spin - see Fig. 3. Schematically, one goes from the

S = 1/2 vortex to an integer spin vortex by dressing each of the Z3 domain walls with a Haldane

chain. Indeed, in Fig. 3 bottom, there are two S = 0 states that the four “dangling” S = 1/2’s can

be locked into. These two states carry Zrot
3 quantum numbers of e±2πi/3. This is not a projective

representation of Zrot
3 (in fact, there are no projective representations of Z3) - it may be screened

by local degrees of freedom to give a completely trivial vortex. This is consistent with the absence

of an anomaly on a honeycomb lattice.

D. S = 1 square lattice and breaking of continuous rotation symmetry

So far, when discussing the anomalies we’ve treated the translational symmetry and rotational

symmetry as internal symmetries of the theory. More formally, the low energy theory (12) has a

full emergent Poincare symmetry and we’ve combined elements of this Poincare symmetry with

microscopic lattice symmetries to obtain purely internal symmetries. The anomalies associated

with these internal symmetries allow us to place constraints on the dynamics when the Poincare

symmetry is present. But what if it is broken? By comparing our anomaly computations so far

with the microscopic LSM theorem, we guess that the anomaly found for the internal symmetry at

the Lorentz invariant point is, in fact, the correct anomaly.

For instance, consider the case of S = 1/2 square lattice. One allowed perturbation in this case

is the quadruple monopole operator,

δL ∼ V 4 + (V †)4 (25)

Throughout our discussion above, when we wrote V q - we understood this to be a Lorentz scalar,

which creates a flux 2πq. Such perturbations do not break the Lorentz symmetry, although they do

break U(1)Φ → Z4. However, there also exist operators which carry quantum numbers under both

the Lorentz symmetry and U(1)Φ; let us denote these by V q
` , where q is still the U(1)Φ charge and

` is the angular momentum, such that under continuum spatial rotations SO(2)L,

SO(2)L : V q
` (x)→ ei`αV q

` (R−1
α x) (26)

8 This is a composition of R2
π/3 - 2π/3 rotation about a plaquette center and a translation by one lattice spacing T1.
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(here, the subscript L stands for Lorentz). Consider for instance the perturbation

δL ∼ V q=1
`=−1 + V q=−1

`=1 (27)

While this perturbation breaks U(1)Φ and SO(2)L individually, it preserves their combination - i.e.

the microscopic lattice rotation. The microscopic LSM theorem for Zrot
4 ×SO(3)s symmetry[5] tells

us that such a perturbation (even if relevant) cannot open a trivial gap. Note that the perturbation

(27) breaks the lattice translational symmetry. A perturbation consistent with all the symmetries

of the square lattice is

δL ∼ V q=2
`=2 + V q=2

`=−2 + V q=−2
`=2 + V q=−2

`=−2 (28)

Again, LSM theorem guarantees that this perturbation cannot open a trivial gap. In fact, this

perturbation is very likely irrelevant: unitarity implies that the scaling dimension of an operator

with angular momentum ` 6= 0 satisfies ∆` ≥ l + D − 2, where D is the space-time dimension[43],

so in our case, ∆`=2 ≥ 3.9 It is unlikely that an operator other than the energy-momentum tensor

exactly saturates the unitarity bound (if it does, it gives rise to a conserved ` = 2 current). The

numerically observed emergent U(1)V BS symmetry of the deconfined critical point[29, 44] is also

consistent with the irrelevancy of (28).

With the above remarks in mind, we proceed to the case of S = 1 Neel-VBS transition on the

square lattice (see Fig. 4). Here the symmetries are implemented in the following way: Tx = C,

Ty = C, Rπ/2 = UΦ
π , i.e.

Tx : V → V †, Ty : V → V †

Rπ/2 : V (x)→ −V (R−1
π/2x) (29)

Note that when combined with the spacial rotation in the Lorentz group the 90 degree rotation

symmetry acts in a Z2 manner. So when treated as internal symmetries, Tx, Ty, Rπ/2 act as a Z2×Z2

subgroup of O(2)Φ. Since Tx and Ty act in the same way, let’s focus on just one of them, say Tx.

Denote the Z2 gauge field corresponding to Tx as x, and the Z2 gauge field corresponding to Rπ/2

as α. The O(2)Φ bundle ξΦ is then a direct sum of two Z2 bundles: α and x + α, so w1[ξΦ] = x,

w2[ξΦ] = α(x+ α). The bulk action (15) then is

Sbulk = πi

∫
X4

(
(αx+ α2)ws2 + αx3

)
(30)

9 We thank Adam Nahum for pointing out this fact.
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FIG. 4: S = 1 square lattice VBS configurations. Red lines correspond to S = 1 spins locked into Haldane

chains. Left: Re(V ) > 0, Im(V ) = 0. Right: Re(V ) = 0, Im(V ) > 0. Note that Re(V ) and Im(V ) are not

related by any symmetry.

which is generally non-vanishing for arbitrary Z2 gauge fields x, α. This anomaly implies that as

long as we allow only Lorentz invariant (more specifically rotationally invariant) perturbations to

the action (12) no trivial gap is possible. However, we know from an explicit construction that a

trivial gapped state does exist for an S = 1 square lattice.[14] So there must be no intrinsic anomaly

present. To see this, we note that the microscopic symmetry group generated by Tx, Ty and Rπ/2

is actually (Zx ×Zy)oZrot
4 . As shown in appendix B 1, for an O(2)Φ bundle corresponding to this

group, w2[ξΦ] = 0, so Sbulk = 0 in accord with microscopics.

This leaves the question: if we allow for weak Lorentz breaking perturbations to the CP1 model

consistent with S = 1 square lattice symmetry, can a trivial gap be opened?10 For instance, we can

envision a perturbation:

δL ∼ V q=1
`=2 + V q=1

`=−2 + V q=−1
`=2 + V q=−1

`=−2 (31)

which preserves both translation and rotation symmetry. Again, unitarity implies that the scaling

10 This question is quite formal since in a microscopic lattice model there is no way to control the strength of Lorentz

breaking perturbations.
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dimension of this operator is greater or equal to 3, so it is likely irrelevant. Suppose we did not

know this fact, or wish to consider the combined effect of this perturbation and other relevant

perturbations. It turns out that just from anomaly considerations, we can argue that (31) cannot

open a trivial gap. Indeed, Tx and Rπ/2 act in the continuum theory as a Zx
2 × Zrot

4 symmetry.

Note that since the action no longer possesses Lorentz symmetry, rotations must be treated as a Z4

group rather than Z2 group. On the other hand, for weak perturbations, we may still continue to

treat Tx as a Z2 symmetry. Then α2ws2 = dα
2
ws2 = 0 (mod 2), since dα = 0 (mod 4). However, the

other two terms in (30) are generally non-trivial:

Sbulk → πi

∫
X4

(
αxws2 + αx3

)
(32)

so a trivial gap cannot be opened.

IV. S = 1/2 RECTANGULAR LATTICE AND S = 1 SQUARE LATTICE: DYNAMICS

The present section has a slightly different emphasis from the rest of the paper. Here, we discuss

a possibility that the Neel-VBS transition of S = 1/2 rectangular lattice and S = 1 square lattice

can be continuous and described by a CFT with an emergent O(4) symmetry. The same CFT has

been proposed to describe the S = 1/2 easy-plane Neel-VBS transition on a square lattice (see

Ref. 24 and references therein).

Let us begin with the case of S = 1/2 rectangular lattice. To obtain the critical theory, we may

start with the square lattice and weakly break the 90 degree rotation symmetry to the 180 degree

rotation symmetry. One perturbation to (12) this induces is

δL = −λ2(V 2 + (V †)2) (33)

Numerical simulations indicate that this operator is relevant.[29] However, this does not necessarily

imply that it drives the transition first order. Recall that numerics suggests that the theory (12)

possesses an emergent SO(5) symmetry, with the Neel and VBS order parameters forming an

SO(5) vector ~X = (nx, ny, nz, V x, V y). We can also form a traceless symmetric SO(5) tensor, Xab,

a, b = 1 . . . 5, which is schematically Xab = XaXb − δab
5
~X2. The operator V 2 is identified with

V 2 ∼ X44 − X55 + 2iX45. On the other hand, the operator |z|2 which drives the phase transition

on the square lattice is, |z|2 ∼ X44 +X55. So, on a rectangular lattice the SO(5) invariant CFT is

perturbed by

δL = −λ1(X44 +X55)− λ2(X44 −X55) (34)
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Crucially, the perturbations λ1 and λ2 are part of the same SO(5) multiplet![29] Now, without loss

of generality, assume λ2 > 0. If we tune the system to the point λ1 = −λ2, we have

δL = 2λ2X55 (35)

i.e. the system possesses an emergent SO(4) symmetry at this point. In fact, this is the same

perturbation of the SO(5) invariant CFT that describes the easy-plane S = 1/2 deconfined critical

point on the square lattice. In the CP1 language the easy-plane deformation is simply an anisotropy,

δL ∼ λ3

[
(|z1|2 − |z2|2)2 − 1

3
|z|4
]

(36)

with λ3 > 0. In the SO(5) language this translates to,

δL = −λ1(X44 +X55) + λ3X33 (37)

The transition point is now λ1 = 0, which has exactly the same form as (35) (up to an SO(5)

rotation exchanging X3 and X5).

Previously, it was thought that the easy-plane transition is first-order. However, recent

simulations[30] suggest that when the easy-plane anisotropy λ3 is small, the transition is actually

continuous and described by an O(4) invariant CFT where the O(4) vector is ~Y = (nx, ny, V x, V y).11

The transition on the rectangular lattice is then described by the same O(4) invariant CFT with

the O(4) vector ~Z = (nx, ny, nz, V x). (As already noted, this possibility was first raised some time

ago in Ref. 26). If we form the SO(4) traceless symmetric tensor, Zab, then the perturbation driving

the Neel-VBS transition on the rectangular lattice is

δL ∼ Z44 (38)

which breaks the emergent O(4) symmetry to SO(3)s×Zrot
2 ×Zx

2 . This should be compared to the

perturbation driving the easy-plane square lattice transition

δL ∼ Y33 + Y44 (39)

The perturbations driving the transitions in the two cases are different (albeit in the same multiplet),

so the phases are also different (e.g. the Neel phase in the easy-plane case has only one Goldstone,

11 The numerical evidence for the emergent SO(4) symmetry comes from the fact that the critical exponents of the

easy-plane Neel-VBS transition match with those of a different model with an explicit SO(4) symmetry. The latter

model realizes a transition between a trivial insulator and a bosonic integer quantum Hall state.[30]
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while it has two Goldstones in the SO(3)s case). As for other perturbations on the rectangular

lattice besides (38), we have e.g. the component of a four-index traceless symmetric tensor Z4444.

This should be compared to a perturbation of the easy-plane theory
∑2

a=1

∑4
b=3 Yaabb, which is in the

same multiplet. This perturbation must be irrelevant for the easy-plane transition to be continuous

and to possess and SO(4) symmetry (as numerics suggest).

So far, we’ve only discussed Lorentz invariant perturbations on the rectangular lattice. There are

also symmetry allowed Lorentz breaking perturbations. The most simple of these is |Dxz|2−|Dyz|2,

which however, can be eliminated by a coordinate rescaling. We assume that other Lorentz breaking

perturbations are irrelevant.

For the case of S = 1 magnet on a square lattice the double monopole perturbation (33) is again

allowed, so we again conjecture a transition described by the same O(4) invariant CFT. Note that

a set of Lorentz breaking perturbations distinct from those of a rectangular lattice are allowed here,

e.g. Eq. (31). We again assume that these perturbations are irrelevant.

V. FUTURE DIRECTIONS

In this paper, we have focused on the anomalies of lattice systems associated with the combination

of spin-rotation symmetry and lattice translations/rotations. It will be interesting to extend this

analysis to include time-reversal and reflection symmetries. In particular, it will be interesting to

see if there are any emergent anomalies associated with these symmetries in the vicinity of the

deconfined QCP on the honeycomb lattice (we expect that there is no intrinsic anomaly, since a

trivial symmetric gapped state on the honeycomb lattice exists). If no emergent anomaly is found

then an intermediate trivial phase whose appearance is driven by the V 3 operator might, indeed,

be possible.

The entire anomaly analysis carried out in this paper has been performed by tuning the critical

theory to a Lorentz invariant point and treating lattice symmetries as internal symmetries. While

our results agree with LSM-like theorems, this procedure is still very much a conjecture. A stronger

argument in favor of this conjecture (perhaps, utilizing the technology of Ref. 15) is left to future

work.

Finally, in this work we have not considered LSM-like theorems relying on (usually fractional)

U(1)-number filling per unit cell. Additional subtleties arise in the formal treatment of this situation,

so we leave it to future investigation.
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Appendix A: CP1 model in 1 + 1D

In this appendix we deduce the bulk action (9), which matches the anomalies of the 1+1D CP1

model at θ = π,

L = |(∂µ − iaµ)zα|2 + iθ
f

2π
, θ = π (A1)

Let us begin by considering just the Zx
2 symmetry and ignore SO(3)s. Let us attempt to gauge

the global Zx
2 symmetry of (A1). Then the scalar z sees a combination of transition functions in

the u(1)g gauge group and in the Zx
2 group. Since, T 2

x = ugπ, overall z sees transition functions in

pin(2)−.

Now, the immediate difficulty that one is faced with when trying to gauge Zx
2 symmetry is how

to define the θ term in (A1). Indeed, locally f → −f under Zx
2 , so as written, the θ term is not

well-defined. Instead, when Zx
2 is gauged, we will define the theory in the following way. We think

of the theory as living on the surface of a 2+1D SPT for the Zx
2 symmetry. We call the bulk three

manifold X3 and the surface M = ∂X3. There is a Zx
2 gauge field x ∈ H1(X3, Z2) living in the

bulk and on the surface. On the surface, x together with the u(1)g gauge field a form a pin(2)−

gauge field (note, a lives only on the boundary M , not in the bulk X3). Let’s call the pin(2)− gauge

bundle ξg. We find a three manifold Y3 such that ∂Y3 = M and ξg extends to Y3 as a pin(2)− bundle

(therefore, x also extends to Y3). We define the action of our theory as

Sbulk+bound = Sbound[M ] + πi

∫
X3∪Ȳ3

x3 (A2)

with

Sbound[M ] =

∫
M

d2x
√
g (∂µ + iaµ)z†(∂µ − iaµ)z (A3)

Note, Y3 is not the “physical” bulk manifold X3 but rather an auxiliary manifold used to define the

action. Further observe that the “boundary” action (A3) is purely real and contains no topological

terms. All the topological terms have been shifted to the second term on the RHS of (A2). While

it is not immediately obvious, we will shortly show that when the Zx
2 gauge field on the physical

space X3 is absent, (A2) reduces to our original theory (A1).



26

In order for (A2) to be a well-defined action on a “physical” bulk X3 with a boundary M , we

have to make sure that it is independent of the manifold Y3 and the particular extension of the

boundary pin(2)− bundle to Y3 that we have chosen. To see this, it suffices to show that for a

pin(2)− gauge field on a closed manifold Y3,
∫
Y3
x3 = 0 (mod 2). Indeed, if we project our pin(2)−

bundle ξg to an O(2) bundle ξ̃g, x = w1[ξ̃g]. Further, an O(2) bundle has a lift to pin(2)− if and

only if w2[ξ̃g] + w2
1[ξ̃g] = 0.[45] Thus, w2[ξ̃g] = x2 = dx

2
. Furthermore, w3 = w1w2 + dw2

2
. For an

O(2) bundle, w3 = 0, so w1w2 = dw2

2
= 0, i.e. x3 = 0 and

∫
Y3
x3 = 0 for Y3 - closed (note, x3 = 0

and prior relations hold only in the sense of Z2 cocycles, so it is important for Y3 to be closed! In

particular, we cannot just drop the Y3 part of (A7) - in fact, the resulting expression will not be

gauge invariant).

We note that while (A2) does not depend on Y3, it clearly depends on the gauge field x on

the “physical” three dimensional manifold X3. Crucially, the boundary pin(2)− bundle need not

extend to the “physical” bulk X3, so in general
∫
X∪Ȳ x

3 6= 0. Indeed, when X3 has no boundary,

(A2) reduces to (9), which is the topological response of a Z2 protected SPT. This tells us that the

surface theory has a Zx
2 anomaly.

It remains to show that (A2) coincides with (A1) when the Zx
2 symmetry on X3 is not gauged,

i.e. when x = 0 on X3. The boundary M of X3 is an oriented surface with a u(1) gauge field

a. When the flux m =
∫
M

f
2π
∈ Z is not zero, we cannot extend a from M to some Y3 as a u(1)

gauge field. However, as we will now show, we can extend a from M to Y3 as a pin(2)− gauge

field. First, it suffices to consider the case when M is a two-sphere S2 with flux 2π. Indeed, M is

always bordant to m such spheres. So specializing to M - a two-sphere S2 with flux 2π, we must

show that
∫
X3∪Ȳ3 x

3 = 1, so that the topological part of the action is given by πi, in accord with

(A1). We take Y3 to be RP3 \ D3, where D3 is a 3-dimensional ball. It is convenient to think of

RP3 as a three-dimensional ball of radius R with antipodal points on the boundary identified. We

obtain Y3 by cutting out a ball of radius 1 centred at the origin from this realization of RP3 (we

take R > 1). The boundary M of Y3 is a sphere S2 of radius 1. We place flux 2π on this sphere. In

polar coordinates, we choose

aϕ(r, θ, ϕ) =
1

2
(1− cos θ), aθ = 0, ar = 0. (A4)

Now, we must glue the fields at r = R. Clearly, we need to use the Zx
2 symmetry to do so. We

impose at r = R,

z(x) = eiα(x)iσyz∗(ι(x)), a(x) = −(ι∗a)(x) + dα(x) (A5)
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where ι : θ → π− θ, ϕ→ ϕ+ π is the antipodal map and eiα(x) is a u(1) gauge rotation. Choosing

eiα(x) = eiϕ does the job, leading to a consistent gluing condition. Thus, we have succeeded in

extending the pin(2)− bundle to Y3. The corresponding Zx
2 gauge field x on Y3 integrates to 1 along

any loop connecting the antipodal points of the sphere r = R. It remains to evaluate the topological

action
∫
X3∪Ȳ3 x

3. Since x = 0 on X3 we might as well replace X3 by a ball of radius 1 so that X3∪Y3

is RP3. Clearly, x is just the generator of H1(RP3, Z2) so
∫
X3∪Ȳ3 x

3 = 1. QED.

So far, we have only attempted to gauge the Zx
2 symmetry. Now, we will in addition gauge the

SO(3)s symmetry. Again, we think of the system as living on the boundary of a 3D SPT with

both Zx
2 and SO(3)s symmetry. So there is now both a Zx

2 bundle and an SO(3)s bundle on the

“physical” bulk manifold X3. On the boundary M , zα sees a combination of transition functions

from pin(2)− and SU(2)s. In fact, the transition functions for zα live in (pin(2)− × SU(2)s) /Z2.

Thus, the pin(2)− transition functions and the SU(2)s transition functions may not individually

satisfy the cocycle condition, but the combination does. If we project our pin(2)− bundle ξg to an

O(2)g bundle ξ̃g, and SU(2)s to an SO(3)s bundle ξs then the resulting bundles satisfy

w2[ξ̃g] + w2
1[ξ̃g] = w2[ξs] (A6)

Indeed, the left and right-hand-sides are precisely the obstructions to lifting ξ̃g and ξs to pin(2)−

and SU(2)s, respectively. Now, we extend the (pin(2)− × SU(2)s) /Z2 bundle from the surface M

to some Y3 - the condition (A6) continues to be satisfied on Y3. This also automatically extends the

Zx
2 gauge field x = w1[ξ̃g] to Y3. Now, we want to check if (A2) is still independent of the extension

to Y3. It suffices to compute
∫
Y3
x3 for Y3 closed. We have, x3 = x(w2[ξ̃g]+w2[ξs]) = dw2[ξ̃g ]

2
+xw2[ξs],

so
∫
Y3
x3 =

∫
Y3
xw2[ξs], which generally does not vanish. However, there is an easy fix: we modify

the action to be

Sbulk+bound = Sbound[M ] + πi

∫
X3∪Ȳ3

(x3 + xw2[ξs]) (A7)

which now does not depend on the extension to Y3 chosen. For X3 closed, we recover (9). The first

term is a pure Zx
2 anomaly, while the second term is a mixed Zx

2 , SO(3)s anomaly.

Appendix B: CP1 model in 2 + 1D

In this appendix, we deduce the bulk action (15), which matches the anomalies of 2+1D CP1

model,

L = |Dazα|2 +
i

2π
A ∧ da (B1)
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with a - the dynamical gauge field and A - a gauge field coupling to the flux current 1
2π
db. The

symmetries of the CP1 model we consider are O(2)Φ = U(1)Φ o C and SO(3)s (see section III).

We denote the associated bundles by ξΦ and ξs. Now, SO(3)s and C act on the spinons z in a

projective manner (the U(1)Φ group does not act on the spinons). Indeed, C2 : z → −z. So, C

combines with the gauge group u(1)g to a group pin(2)−. The overall transition functions seen

by z live in (SU(2)s × pin(2)−)/Z2. The transition functions of SU(2)s generally will satisfy the

cocycle condition only up to a factor of −1, and so will the transition functions of pin(2)−. Let

us project pin(2)− down to an O(2) group that we call O(2)g, and let the associated bundle be

labeled by ξ̃g. Then the obstruction to lifting O(2)g to pin(2)− must be exactly equal to w2(ξs).

But the obstruction to lifting an O(n) bundle to a pin(n)− bundle is w2 +w2
1.[45] So, we must have

w2(ξ̃g) +w2
1(ξ̃g) = w2(ξs). We now extend the full O(2)Φ × (SU(2)s × pin(2)−)/Z2 bundle from our

original 3-manifold M to a 4-manifold Y4, such that ∂Y4 = M and define,

i

2π

∫
M

A ∧ da ≡ 2πi

∫
Y4

dA

2π
∧ da

2π
(B2)

dA is the field strength of the O(2)Φ bundle and da - the field strength of the pin(2)− bundle.

Equivalently 2da is the field strength of the O(2)g bundle. We want to see if (B2) is independent of

the extension to Y4, i.e. we want to find what values it takes for Y4 closed. Since w1(ξΦ) = w1(ξ̃g),

we may combine the O(2)Φ and O(2)g bundles into an SO(4) bundle ξΦ ⊕ ξ̃g. We claim, for closed

Y4,

2πi

∫
Y4

dA

2π
∧ da

2π
= πiw4(ξΦ ⊕ ξ̃g, Y4) (B3)

Indeed, let’s project SO(4) to SO(4)/Z2 = SO(3)L × SO(3)R. SO(2) rotations by angles α, β in

O(2)Φ, O(2)g become rotations by α− β and α+ β around (say) the z axis in SO(3)L and SO(3)R

respectively. The reflection diag(1,−1) performed simultaneously in O(2)Φ and O(2)g becomes a

simultaneous π rotation around y axis in SO(3)L and SO(3)R. Therefore, the SO(3)L and SO(3)R

connections are (locally) AL = (A− 2a)


0 −i 0

i 0 0

0 0 0

 and AR = (A+ 2a)


0 −i 0

i 0 0

0 0 0

. Now, for an

SO(4) bundle,

w4 =
1

4
(p1[SO(3)L]− p1[SO(3)R]) (mod 2) (B4)

(see Ref. [24], Eq. (141)). Here, p1 is the Pontryagin number of an SO(n) bundle, which has an

integral formula:

p1[SO(n)] =
1

2 · (2π)2

∫
Y4

trSO(n)F ∧ F (B5)
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So,

w4[ξΦ⊕ξ̃g, Y4] =
1

4(2π)2

∫
Y4

((dA− 2da) ∧ (dA− 2da)− (dA+ 2da) ∧ (dA+ 2da)) = − 2

(2π)2

∫
Y4

dA∧da

which proves (B3). Next, let us use the Whitney sum formula,

w4[ξΦ ⊕ ξg] = w2[ξΦ] ∪ w2[ξ̃g] (B6)

- all the other terms vanish, since ξΦ and ξ̃g are O(2) bundles. Recalling w2(ξ̃g) + w2
1(ξ̃g) = w2(ξs)

and w1(ξ̃g) = w1(ξΦ), we have

w4[ξΦ ⊕ ξ̃g] = w2[ξΦ] ∪ (w2[ξs] + w2
1[ξΦ]) (B7)

Notice that any dependence on the gauge bundle ξ̃g has disappeared - the above expression only

depends on the background gauge bundles of the global symmetries O(2)Φ and SO(3)s. This means

that although (B3) is dependent on the extension to Y4, this dependence can be cancelled by thinking

of the theory as living on the surface of a 3 + 1D SPT. The bulk partition function of this SPT on

a closed manifold X4 is just,

Sbulk = πi

∫
X4

w2[ξΦ] ∪ (w2[ξs] + w2
1[ξΦ]) (B8)

If X4 has a boundary M then we define,

Sbulk+bound =

∫
M

|Dazα|2 + 2πi

∫
Y4

dA

2π
∧ da

2π
+ πi

∫
X4∪Ȳ4

w2[ξΦ] ∪ (w2[ξs] + w2
1[ξΦ]) (B9)

Now, any dependence on the extension to Y4 is cancelled between the second and third term above.

However, the action does depend on the values of the background O(2)Φ × SO(3)s gauge fields on

the “physical” four-manifold X4.

Note that we may also re-write w2[ξs] + w2
1[ξΦ] = w2[ξ̃s], where ξ̃s = ξs ⊗ det(ξΦ) is an O(3)s

bundle derived from the original SO(3)s bundle ξs by multiplying the transition functions by −1

whenever the rotation in O(2)Φ is improper.

Further note that as shown in Ref. 25 we obtain the same anomaly by working with a different

proposed formulation of the deconfined critical point - the Nf = 2 QCD3 theory.[24] Recall that

the QCD3 formulation has an anomalous global SO(5) symmetry, and the anomaly is given by

Sbulk = πiw4[ξ5, X4] where ξ5 is an SO(5) bundle. For the symmetries explicit in the CP1 model,

we ξ5 = ξΦ ⊕ ξ̃s is a direct sum of O(2)Φ bundle and O(3)s bundle. Using the Whitney formula,

w4[ξ5] = w1[ξΦ]w3[ξ̃s] + w2[ξΦ]w2[ξ̃s] (B10)
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But w1[ξΦ] = w1[ξ̃s] and w1w3 = dw3

2
, so the first term is a total derivative and does not contribute

to the bulk action. We then recover, w4[ξ5] → w2[ξΦ]w2[ξ̃s] in agreement with the computation in

the CP1 model.

1. Vanishing of anomaly

We now show that the anomaly (B8) vanishes for the symmetry appropriate to the honeycomb

lattice and for the intrinsic symmetry appropriate to the S = 1 square lattice.

We begin with the honeycomb lattice. Here, the relevant subgroup of O(2)Φ is D3. We want

to show that w2[ξΦ] = 0. Recall that w2 is the obstruction to lifting an O(n) bundle to a pin(n)+

bundle.[45] Let, π : pin(2)+ → O(2) be the projection map. Now, pin(2)+ = O(2). Write,

O(2) = U(1)oZ2 with Z2 generated by C. Then π(uα) = u2α and π(C) = C, where uα is a rotation

by α in U(1). Furthermore, if we restrict O(2) to a D3 subgroup π : D3 → D3 is an isomorphism.

In fact, π2 = 1. Thus, for any D3 bundle we obtain a lift to pin(2)+ simply by applying π to the

transition functions. Therefore, w2[D3] = 0.

Next, we proceed to the S = 1 square lattice. Here, we want to show that the intrinsic anomaly

vanishes. For this, we have to consider bundles associated with the microscopic symmetry group

(Zx × Zy) o Zrot
4 . Let x be the generator of Zx, y the generator of Zy and r the generator of

Zrot
4 . The associated O(2)Φ bundle is a Z2×Z2 bundle obtained via the projection p : (Zx×Zy)o

Zrot
4 → Z2 × Z2, with p(x) = C, p(y) = C, p(r) = uπ. We can also form a D4 representation

s : (Zx×Zy)oZrot
4 → D4, with s(x) = C, s(y) = uπC and s(r) = uπ/2. We then have the sequence

(Zx × Zy) o Zrot
4

s→ D4
π→ Z2 × Z2, with π : pin(2)+ → O(2) as before. Further, π ◦ s = p. So

to obtain a lift of Z2 × Z2 to D4, we simply apply s to the parent (Zx × Zy) o Zrot
4 . Therefore,

w2[ξΦ] = 0.

Appendix C: Asymmetric Vortices

In section III C we revisited the well-known fact that Zrot
4 VBS vortices on the square lattice

carry S = 1/2 in their core. We emphasized that in general one needs to consider Zrot
4 symmetric

VBS vortices in order to reach this conclusion. In our analysis, we defined a vortex as having four

macroscopic VBS domains in a clock configuration. The details of the domain walls separating

the domains did not affect the counting of the vortex winding. In this appendix, we show that for
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FIG. 5: A unit cell for the branching structure of the usual VBS convention. Edges occupied with a dimer

are considered part of a domain associated with the direction labeling that edge.

the nearest neighbour dimer model there is an alternative way to define the vorticity by a closed

line integral around a contour enclosing the vortex core, so that the vorticity does depend on the

microscopic details of the domain walls. Further, with this definition, the vorticity is always equal

to NA −NB, where NA/B is the number of “dangling spins” on A/B sites in the vortex core. This

holds even when the vortex is not rotationally symmetric. Further, we use this definition of vorticity

to make contact with the anomaly formula (18): S = πi
∫
X4

dγ
4
∪ ws2.

For a dimer configuration on the square lattice, we want to compute the “vortex charge” Q(U) of

a region U . We assume that if any “dangling” spins are present, they are away from the boundary

∂U . We define Q(U) = 1
4

∫
∂U
γ, where γ is a 1-cochain living on the links of the square lattice.

This cochain is defined by counting VBS domain walls crossing the (oriented) contour ∂U in the

following way. First, we assign numbers 1, i,−1,−i to the links of the square lattice using a 2× 2

unit cell as shown in figure 5 (1 is represented by a right arrow, i by an up arrow, −1 by a left arrow

and −i by a down arrow). For each site j, we define the VBS order parameter Vj by the number

on the dimer covering j - this is the standard definition of the columnar dimer order parameter.

Now, to define γ on a link jµ, µ = x̂, ŷ, we consider
Vj+µ
Vj

. If
Vj+µ
Vj

= 1, we set γjµ = 0. If
Vj+µ
Vj
6= 1,

the link crosses a VBS domain wall. For
Vj+µ
Vj

= ±i, this is a “single” domain wall, and we assign

γjµ = ±1. For
Vj+µ
Vj

= −1, we have a double domain wall and assign γjµ = ±2. The sign can be

determined by breaking up the double domain wall into two single domain walls, as demonstrated

in Fig. 6. Using this procedure, we obtain the following general expression for the sign of γjµ. Let

λjx = (−1)jx , λjy = i(−1)jy (so that λiµ coincides with the number we assigned to the corresponding
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link in Fig. 5). If
Vj+µ
Vj

= −1, −λjµ
Vj

= ±i and we define γjµ = ±2.

+2 +1 +1

FIG. 6: A domain wall accross which the direction of the VBS order (arrows highlighted by dimers)

rotates by π (left). This domain wall may be resolved as two π/2 domain walls (right), revealing that it is

a counterclockwise (positive) π rotation.

A direct computation shows that away from “dangling” spins dγ = 0. Therefore, Q(U) is

invariant under deforming the boundary of U (as long as we don’t push the boundary through sites

with dangling spins). One can also show that in terms of the two sublattices A (those vertices

with all arrows incoming or all arrows outgoing) and B (those vertices with two incoming arrows

and two outgoing arrows), Q(U) with a counterclockwise contour counts the number of unoccupied

+2 +2 +2 -2

FIG. 7: On the left, a Q = −1 VBS vortex (as measured by a counter-clockwise integration contour around

the edge of the figure); note that the missing spin sits on the B site, in agreement with Q = NA−NB. On

the right, a VBS vortex and VBS anti-vortex sit side-by-side and their cores dimerize. The total winding

number Q = 0.
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A sites minus the number of unoccupied B sites in U . Modulo 2, this just counts the number of

unoccupied sites. Note that this identification works independent of the details of domain walls.

For instance, in figure 2 top-left Q = 1, top-right Q = 0, and bottom Q = −3, in agreement with

NA − NB (we take the unoccupied site in 2 top-left to be an A site). Note, however, that there

is no obvious way to extend this formula to more general dimer configurations (not just nearest

neighbour). In particular, the integer nature of the invariant Q is an artifact of only bipartite

configurations being considered. Nevertheless, the formula for Q is very reminiscent of the anomaly

formula (18): S = πi
∫
X4

dγ
4
∪ws2. Indeed, this formula indicates that in a spatial boundary slice Σ,∫

Σ
dγ
4

(mod 2) tells us whether we have a projective SO(3) representation or not. Identifying the

cochain γ extracted from the domain walls with the background Zrot
4 gauge field γ in the spirit of

[15], we see a geometric confirmation of the anomaly formula.

We can also extend the definition of the vortex charge Q to the honeycomb lattice. Here, we

have three different Kekule VBS domains with V = 1, e2πi/3, e4πi/3. For a given link (ij) we compute
Vj
Vi

. If
Vj
Vi

= 1, we assign γij = 0 to the link. If
Vj
Vi

= e±2πi/3, we assign γij = ±1. Note, that in this

case there are no double domain walls. It is again true that Q = NA−NB. For instance, the vortex

in figure Fig. 3 left has Q = 1 and the vortex in figure Fig. 3 right has Q = −2, as required.
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