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We study the combined impact of random disorder, electron-electron, and electron-hole interactions5

on the absorption spectra of a three-dimensional Hubbard Hamiltonian. We determine the single-6

particle Green function within the typical medium dynamical cluster approximation. We solve7

the Bethe-Salpeter equation (BSE) to obtain the dynamical conductivity. Our results show that8

increasing disorder strength at a given interaction strength leads to decreased absorption with the9

dynamical conductivity, systematically going to zero at all frequencies, a fingerprint of a correlation-10

mediated electron localization. Surprisingly, our data reveal that taking into account the effects11

of electron-hole interactions through the BSE significantly changes the oscillator strength with a12

concomitant reduction in the critical disorder strengths WU

c . We attribute this behavior to enhanced13

quantum correction induced by electron-hole interactions.14

PACS numbers: 71.35.-y, 64.70.Tg, 31.15.V-, 71.35.Cc15

Introduction.– Recent experiments have shown that16

most correlated materials contain a significant amount17

of defects, which appear to be intrinsic [1–7]. These18

inhomogeneities could significantly affect device perfor-19

mance. Most of the experimental transport data on dis-20

ordered materials have defied explanation by the con-21

ventional transport theory. For instance, the phase dia-22

gram of the binary mixture of the correlated ferromag-23

netic metal SrRuO3 (TC ≈160 K) [8] and the band in-24

sulator SrTiO3 (band gap ≈ 3.2) [9] is still under active25

research. One suggestion is that there is an Anderson26

insulator around x ' 0.5 and a disordered correlated in-27

sulator at ∼0.2 [7]. Other potential candidates where the28

coexistence of defects, electron-electron and electron-hole29

interactions could play a crucial role are the perovskite30

transition metal oxides, e.g., A1−xBA′
xO3. Understand-31

ing the defect morphology could greatly improve better32

characterization of their properties and that of materials33

in general.34

There is a decade’s history of theoretical research in-35

quiry into electron localization. Majority of these com-36

putational/theoretical works focus on localization due37

to disorder or electron-electron interactions [2, 10–19].38

These two limiting cases were pioneered by P. Ander-39

son [20, 21] and N. F. Mott [22, 23], now known as An-40

derson and Mott localization, respectively. As explained41

above, defects and electron-electron interactions coexist42

in many physical systems and they can both be substan-43

tial. Also, in some cases, due to dynamical screening in44

the local environment of the system, the transport is no45

more driven by electron or hole carriers but dominated by46

bound electron-hole pairs known as excitons. One conse-47

quence of this is the emergence of nontrivial many-body48

effects, e.g., spectral weight redistribution, multiferroic-49

ity [24–27] not observed in conventional systems. The in-50

cipient of electron localization in an otherwise “strongly”51

correlated system is generally difficult to model due to52

the competing energy scales that abound in this regime.53

Based on model-coupling theory, Götze [11, 28] develop54

a self-consistent localization formalism, which has been55

used by many authors, e.g., Prelovšek [19] to calcu-56

late the conductivity of the noninteracting electron sys-57

tem. An approach based on the potential well analogy58

of the coherent potential approximation was formulated59

and used to calculate the conductivity of various disor-60

der distributions [3, 15–18, 29]. The diagrammatic, self-61

consistent approach of Vollhardt and Wöfle [10] was used62

to calculate conductivity for the Anderson model [30–63

33], and various other models [15, 17, 34, 35]. Aguair et64

al [7] used the inverse of the typical density of states as65

an approximation to the resistivity and showed that the66

resistivity curves as a function of temperature are rem-67

iniscent of the Mooij correlations originally observed in68

disordered transition metal alloys [36]. Girvin and Jon-69

son [37] introduced an approximate scheme for calculat-70

ing conductivity that becomes accurate only close to the71

localization transition. This method was further used72

by Dobrosavljević et al [38] in their study using Bethe73

lattice. Zhang et al [39] proposed a two-particle formal-74

ism and calculated the dc-conductivity within the typical75

medium theory for the noninteracting fermionic system.76

In this paper, we present and explore the absorption77

properties of a disordered Hubbard model at experi-78

mentally relevant Hubbard interactions using the typ-79

ical medium dynamical cluster approximation [40–46].80

Herein, we focus on the limit where the disorder and the81

kinetic term is far greater than the interaction strength82

(i.e., the interaction strength is far smaller than the non-83

interacting bandwidth). Also, we will explore the regime84

where disorder and interaction strength are both sub-85

stantial (i.e., the interaction strength is large but still86

significantly smaller than the noninteracting bandwidth).87

The former is reminiscent of a correlated and strongly88

disordered semiconductor, e.g., Si:B [47] and the lat-89

ter could be compared to the perovskite compounds,90

e.g., (Ca,Sr)VO3. We will, however, not explore the91
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Mott physics, which is in the regime where the interac-92

tion strength is far greater than the effective bandwidth.93

This regime has been extensively studied in the litera-94

ture (see, e.g., Refs [48–53]). The main findings of this95

work is that electron-hole interactions significantly alters96

the critical behavior of a disordered, three-dimensional97

Hubbard Hamiltonian. Our calculations reveal that the98

critical disorder strengths are reduced by more than 10%99

due to electron-hole interaction effects.100

It is worthwhile to contrast the method presented101

herein from other approaches of calculating absorption102

spectra [2, 10–14]. The single-particle Green functions103

used in our two-particle calculations are obtained self-104

consistently from a mean-field approach with an intrinsic105

order parameter for characterizing electron localization106

even in the proximity of a localization transition [40–107

42]. Our approach also takes into account resonance ef-108

fects, which systematically incorporate longer-range spa-109

tial fluctuations up to the system (cluster) size. This110

resonance effect is due to having more than one lattice111

sites in the system as against just one impurity site, e.g.,112

as in the coherent potential approximation. The carriers113

now collide with each other as well as scatter off multiple114

lattice sites. One consequence of this inter-site correla-115

tion effect is coherent backscattering, which is a precur-116

sor to Anderson localization in a disordered system. We117

further take into account vertex corrections within the118

cluster. The vertex correction accounts for the polariza-119

tion effects in the effective medium beyond the leading120

order of the perturbation theory (see, e.g., Refs. [54–57].121

The typical medium, inter-site correlations, and the ver-122

tex corrections ensure the proper characterization of the123

large fluctuations in the local Green function that could124

lead to its typical value being far removed from the av-125

erage one [43, 58]. Unless otherwise stated, all the re-126

sults presented herein are for the three-dimensional cu-127

bic lattice of size 3× 3× 3 corresponding to a cluster size128

Nc = 27. We will focus on the paramagnetic phase, i.e,129

we do not allow for the formation of any local moments.130

All the reported results are obtained at zero tempera-131

ture. We used a broadening parameter of 10−4 and a132

computational accuracy (numerical uncertainty) of up to133

∼ ±0.1 in our calculations.134

Method.– We consider the Hubbard Hamiltonian of in-135

teracting electrons subjected to quenched random disor-136

ders137

H = −
∑

〈ij〉σ

tij(c
†
iσcjσ + h.c.) +

∑

i

Uini↑ni↓ +
∑

iσ

Viniσ,

(1)
where the first term describes the hopping of electrons138

on the lattice, the second term describes the energy cost139

of having two electrons with opposite spin sitting on the140

same lattice site, and the last term depicts the disor-141

der potential. c†i (ci ) is the creation (annihilation) oper-142

ator of an electron on site i with spin σ, ni = c†i ci is143

the number operator, tij = t is the hopping matrix ele-144

ment between nearest-neighbor sites, and Ui = U is the145

electron-electron interactions strength parameterized by146

the Hubbard onsite energy. The disorder is represented147

by a spatially, uncorrelated, spin-independent random148

potential Vi distributed according to a probability dis-149

tribution function P (Vi) =
1

2W Θ(W − |Vi|), where Θ(x)150

is the Heaviside step function and W is the width of the151

box, which parametrizes the strength of the disorder. We152

set the energy unit to 4t.153

To calculate the two-particle Green function, we need154

the single-particle counterpart. To obtain the single-155

particle Green function G(~k,E) in the presence of156

electron-electron interactions and random disorder, we157

solved the typical medium dynamical cluster approxima-158

tion (TMDCA) self-consistency equations. The TMDCA159

maps the lattice problem (1) onto a periodically repeated160

cluster of size Nc primitive cells embedded in a typi-161

cal medium. This typical medium is characterized by162

a self-consistently determined non-local, hybridization163

function ∆(~k,E) [40–46, 59–63]. The mapping is accom-164

plished by dividing the first Brillouin zone of the origi-165

nal lattice into Nc non-overlapping equal cells. As one166

increases Nc, longer-range spatial fluctuations are sys-167

tematically accounted for up to . N
1/d
c , where d is the168

spatial dimension. The TMDCA self-consistency could169

be summarized as follows. We make an initial guess of170

hybridization function; ∆(~k,E) describes how the clus-171

ter sites couple to the typical medium. Using ∆(~k,E),172

we calculate the fully dressed cluster Green function173

Gc(E) = (G−1 − V − ΣInt)−1, where G is the cluster-174

excluded Green function, V is the disorder potential,175

and ΣInt is the electron-electron interactions, which is176

included up to its second-order perturbation expansion.177

We note that the disorder is accounted for exactly within178

the cluster and ΣInt is obtained self-consistently within179

the cluster solver using second-order perturbation theory.180

The cluster density of states ρc = − 1
πImGc is then calcu-181

lated by averaging over a large number of configurations182

to obtain the momentum dependent, non-self-averaged183

typical density of states [41, 42, 42]184

ρct(K) = 〈ρci 〉geom

〈

ρc(K)
1
Nc

∑

i ρ
c
i

〉

arit

, (2)

where 〈ρci 〉geom = exp 〈ln ρi〉arit is the diagonal elements185

of ρc and the second factor ensures that non-local fluc-186

tuations up to . N
1/d
c is captured withing the typical187

environment. Using Hilbert transformation, we obtain188

the cluster typical Green function Gc
t(K) from ρct(K) and189

then calculate the coarse-grained Green function190

Ḡ(K) =
Nc

N

∑

k̃

[

Gc
t(K)−1+∆(K)− ǫ(k)+ ǭ(K)+µ

]−1

,

(3)
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where the overbar depicts cluster coarse-graining and µ191

is the chemical potential. The TMDCA loop is closed by192

calculating a new hybridization function193

∆n(K) = (1− ς)∆o(K) + ξ
[

(Gc)−1 − Ḡ−1
]

, (4)

where ∆n (∆o) refers to the new (old) hybridization194

function and ξ is a mixing parameter. Convergence195

is achieved when Gc
t ≈ Ḡ, which also coincides with196

∆n ≈ ∆o.197

To determine the two-particle properties of the many-198

body Hamiltonian above, we solve the Bethe-Salpeter199

equation using the converged, single-particle Green func-200

tion obtained from the above TMDCA self-consistency201

equations as input. Herein, we focus on the particle-202

hole channel and calculate the dynamical, conductivity203

with and without electron-hole interactions. We obtain204

the full lattice, dynamical conductivity by solving the205

Bethe-Salpeter equations as outlined below.206

1. The TMDCA self-consistency equations is solved207

to obtain the single-particle Green functions used208

in the two particle calculations. This requires209

both the single particle retarded GR(~k,E) and ad-210

vanced GA(~k,E) Green functions. However, since211

A(~k,E)A(~k,E) = 1
2πi [ϑ] ×

1
2πi [ϑ], where ϑ =212

GA(~k,E)−GR(~k,E) and A(~k,E) = − 1
πImG(~k,E)213

is the spectral function, we only require to know214

the retarded Green function. In calculating the215

two-particle Green function, we have used the aver-216

aged lattice and cluster Green functions obtained217

within the typical medium. This is important as218

the underlying dynamics present in the system are219

encoded in these average quantities. Further and220

most importantly, these averaged quantities are the221

only ones that represent the physical Green func-222

tions of the material. In Matsubara frequency, the223

bare dynamic charge susceptibility χ0(~q, iω) is224

χ0(~q, iω) =
1

βN

∑

~k,iE

G(~k + ~q, iE + i~ω)G(~k, iE) (5)

where β is the inverse temperature [56, 57]. Gen-225

erally, one needs to carryout analytic continua-226

tion of Eq. 5 in order to calculate any observ-227

able. This process especially for disordered sys-228

tems could miss important features in the spectra229

if not done carefully. However, since our cluster230

problem is solved in real space, we can avoid the231

analytic continuation by converting the Matsubara232

sums to real frequency integrals using spectra rep-233

resentation: G(~q, iω) =
∫

dǫA[G](ǫ)/(iω−ǫ), where234

A(~k,E) = − 1
πImG(~k,E) is the spectral function.235

Using the spectral representation, the Matsubara236

sum in Eq. 5 could be converted to real frequency237

integrals as [64]238

Imχ0(~q, ω) = −
2π

Nc

∑

~k

∫ +∞

−∞

[f(E)− f(E + ~ω)]A(~k + ~q, E + ~ω)A(~k,E) dE, (6a)

Reχ0(~q, ω) =
1

π
P

∫ +∞

−∞

Imχ0(~q, ω)dω
′

ω′ − ω
, (6b)

where P denotes the principal value and f(E) is239

the Fermi function.240

2. The bare charge susceptibility for both the cluster241

(c) and the lattice (l) is then obtained as the renor-242

malized one due to the screening within the typical243

medium as244

χ̃
c/l
0 (~q, ω) = χ

c/l
0 (~q, ω)

[

1− Uχ
c/l
0 (~q, ω)

]−1

(7)

where 1 is the identity matrix.245

3. The lattice irreducible vertex is approximated with246

the cluster counterpart, i.e., Γl ≈ Γc ≡ Γ [59–63].247

The full lattice vertex function is then calculated248

using Γ(~q, ω) as249

F(~q, ω) = Γ(~q, ω)[1− χ̃0(~q, ω)Γ(~q, ω)]
−1 (8)

The full vertex function F includes all the possi-250

ble scattering events between any two propagat-251

ing particles. Diagrammatically, F consists of all252

the fully connected two-particle diagrams to infi-253

nite orders as such, reducible. On the other hand,254

the irreducible vertex function Γ is a subclass of255

the two-particle diagram in F that cannot be sepa-256

rated into two distinct parts by cutting two internal257

Green function lines in any given channel [59–61].258

4. With the full lattice vertex function and the renor-
malized dynamical charge susceptibility calculated,
the full, dynamical lattice susceptibility is obtained

〈~k|χ|~k′〉 = 〈~k|χ̃0|~k〉+
∑

~k′′

〈~k|χ̃0|~k〉〈~k|F|~k
′′〉〈~k′′|χ|~k′〉. (9)
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5. The real part of the dynamical conductivity that259

takes into account electron-hole interactions (exci-260

ton) effects σeh(ω) is then obtained from Eq. 9 as261

σeh(ω) = lim
~q→0

1

ω
Imχ(~q, ω) (10)

Results.– We start the discussion of our results by pre-262

senting in Fig 1 the single-particle quantity as manifested263

in the imaginary part of the integrated hybridization264

function Im
∫

∆(K, ω)dKdω for various disorder and in-265

teraction strengths, respectively. The hybridization func-266

tion is a natural order parameter for characterizing disor-267

dered systems as it measures the probability of how the268

electrons move between the cluster and the host (escape269

rate) [43]. In the dilute limit, i.e., small disorder strength270

up to W ≈ 0.5, the hybridization function is practical the271

same for all the interaction strengths studied. However,272

as the strength of the disorder increases and in the limit273

where the interaction strength is far smaller than the274

noninteracting bandwidth of 3 (in unit of 4t), the spec-275

tra starts to deviate from each other with the critical dis-276

order strength WU
c systematically moving to higher val-277

ues (as indicated by the arrow) for increasing interaction278

strength. Observe also that as both W and U becomes279

substantial and comparable to each other, the delocaliza-280
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FIG. 1. The semi-log plot of the integrated, imaginary part
of the hybridization function for a 3× 3× 3 cubic lattice sites
at various interaction strengths, U = 0.0, 0.4, 1.0, and 2.0 in
the unit of 4t. The arrow indicates the systematic increase
of the critical disorder strengths W

U

c due to interaction in-
duced delocalization (disorder screening). The obtained W

U

c

are 2.13, 2.21, 2.51, and 2.49 for the 3 × 3 × 3 cubic lattice
sites. Inset is the typical density of states for U = 0.0, 0.4,
1.0, and 2.0 at W = 2.0, which is close to the W

U=0.0

c . An
unconventional soft-pseudogap develops at the Fermi level for
small interaction U ≪ W , which systematically evolves into
a conventional hard-gap at large U . The former gap is linear
in E while the latter shows E2-dependent. Observe that this
gap is absent for U = 0.
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h
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FIG. 2. The dynamical conductivity obtained with the effects
of electron-hole interactions included for a disordered Hub-
bard model as a function of the excitation energy ~ω obtained
using Eq. 9. Electron-hole interactions effect are included us-
ing the Bethe-Salpeter equations. The disorder strengths are
0.5, 1.0, 1.5, and 2.0, respectively for the various Hubbard
interaction strengths U = 0.0, 0.4, 1.0, and 1.0, respectively
in the unit of 4t.

tion of the states rather increases. This is different from281

the monotonic decrease in the magnitude of the spectra282

for increasing disorder strength observed in the noninter-283

acting systems [41, 43, 65–72]. The renormalization of284

the spectra and the increase in WU
c could be attributed285

to delocalization induced by U , which injects mobile car-286

riers into the system. This is in agreement with the con-287

clusions reached using the typical density of states as an288

order parameter [42] and has been interpreted by various289

authors to be due to disorder screening [42, 73–75]. Our290

calculations for the various interaction strengths 0.0, 0.4,291

1.0, and 2.0 also led to WU
c of 2.13, 2.21, 2.51, and 2.49.292

The critical disorder strength of 2.13 for the noninteract-293

ing limit is in good agreement with that obtained using294

the typical density of states within the typical medium295

dynamical cluster approximation [41, 42, 42] and with296

numerical exact value Wc ≈ 2.10 [65–72].297

The insert in Fig 1 is the typical density of states ob-298

tained at W = 2.0 for various interaction strengths. This299

disorder strength is close to the WU=0.0
c and could be300

said to depict a strongly disordered system. Observe301

that at U = 0.0, there is no gap in the spectra. How-302

ever, for finite U , a gap (which is independent of filling)303

opens at the Fermi level. For small U , this gap is an304

unconventional soft-pseudogap, which is almost linear in305

energy E. We have recently demonstrated that this soft-306

pseudogap emerges due to the reduction in phase space307
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for scattering by U and it is linear instead of the nor-308

mal E2-dependence due to the loss of momentum con-309

servation [42]. Hence, a strongly disordered, correlated310

system (W ≫ U) could be said to exhibit a non-Fermi311

liquid behavior since a well-defined quasiparticle could312

be said to no longer exist [76]. The deviation from the313

usual E2 behavior in the vicinity of electron localization314

have been experimentally observed in some perovskite315

materials, e.g., A1−xBA′
xO3 [77–79]. For example, the316

photoemission spectra of SrRu1−xT ixO3 exhibit a soft317

pseudogap gap at x = 0.5 and a hard gap at higher val-318

ues of x [79]. Observe further from the inset that the319

soft-pseudogap systematically evolves into a hard-gap at320

large U with the usual E2-dependence behavior restored321

and inelastic scattering now vanishes as E → 0 reminis-322

cent of a Fermi liquid. This latter observation suggests323

that a strongly correlated and disordered system could be324

described using the Fermi liquid physics but the contrary325

may not be the case especially in the regime of strong dis-326

order and weak interaction strength as observed herein.327

Next, we consider the two-particle quantities for a dis-328

ordered Hubbard model. We show in Fig. 2 the calcu-329

lated dynamical conductivity σeh(ω), which accounts for330

the effects of electron-hole interactions obtained using331

Eq. 10 for the same parameters as in Fig. 1. This spec-332

trum also included vertex corrections. The vertex cor-333

rection effects renormalized the spectra, which is more334

significant at low-energy ω < 1.0. While the vertex cor-335

rections have subtle effects, i.e., it increases the mag-336

nitude of the low-energy of the absorption spectra (not337

shown), our calculations show that non-local corrections338

are more important for the proper description of the ab-339

sorption spectra of correlated, disordered systems. We340

note that the former effect could become significant, e.g.,341

for the description of transport phenomena in Kondo sys-342

tems [80].343

Our data show different behavior at different energy.344

At high-energy ω > 1.0, we observed Lifshitz tails and345

the suppression of the spectra with significant broaden-346

ing and a reduction in the oscillator strength. The latter347

measures the absorption probability. In the low-energy348

regime ω < 1.0, observe that the Drude-like behavior349

normally observed at zero or small disorder strength (as350

could be seen in Fig. 3) is absent. This could be un-351

derstood since the transport is now dominated by the352

electron-hole pairs. The maximum of the spectra oc-353

curs at ∼ 1.0 and it is systematically blue-shifted as the354

strength of the disorder and interaction is increased. Our355

data further reveal that the initial delocalization effects356

are significantly higher at small W and U . For exam-357

ple, the highest magnitude of the spectra occurs for the358

parameters W = 0.5 and U = 0.4. However, in the in-359

termediate and strong disorder limit 1.5 ≦ W = 2.0, the360

delocalization effects systematically increases as U is in-361

creased. We explain this observation as follows: when362

the disorder strength is small and the interaction is finite363

but also smaller, more free electron-hole pairs are gen-364

erated leading to the observed increase in conductivity.365

Still, even in the small disorder limit, if the interaction366

strength is significantly larger than W , “strongly cor-367

related” physics could dominate. The system adopts a368

Mott-like behavior preferring to open a gap at the Fermi369

level due to less generation of free electron-hole pairs (see370

the inset of Fig. 1 where increasing U induces the open-371

ing of a gap at the Fermi level). On the other hand, when372

the interaction strength is large and the disorder strength373

is close to the noninteracting critical disorder limit, the374

system could become a correlated dirty metal leading to375

the observed delocalized in this regime.376

Generally, the single- and two-particle behavior is qual-377

itatively similar since they both systematically go to zero378

as the strength of the disorder is increased. But quanti-379

tatively, significant differences exist in their critical be-380

havior. For instance, the two-particle calculations led to381

critical disorder strengths that are far smaller than their382

single-particle counterparts.383

We can further gain some insights on how the critical384

quantities, e.g., the critical disorder strengths change in385

the two-particle picture by exploring the dc-conductivity,386

which could be obtained from the dynamical conduc-387

tivity by taking the zero limit of the excitation energy388

as σeh(ω → 0). In our analysis, we instead adopt the389

maximum value σeh(ω → ωmax) to avoid any ambiguity390

due to the nature of the excitation spectra, e.g., Lifshitz391

tails [81]. The extracted σeh(ω → ωmax) values were fur-392

ther interpolate to a finer grid. The associated contour393

plot is shown in Fig. 3. The essence of this plot is to394

show more clearly, the overall evolution of the dynamical395

conductivity in the disorder-interaction parameter space.396

From Fig. 3, up toW ≈ 0.25 for all U -values, we observed397

a ‘pure’ metallic-like behavior. Then a weakly interact-398

ing metallic character up to W ≈ 0.75, followed by some399

intermediate states, and then a correlated ‘dirty’ metal400

before the system goes into the strongly correlated An-401

derson insulator regime. TheWU
c obtained from our data402

are: 1.93, 2.04, 2.11, and 1.98 for U = 0.0, 0.4, 1.0, and403

2.0 in that order. This shows a reduction of more than404

10%, e.g., WU=0.0
c is reduced by ≈ 0.2 when compared405

to the single-particle equivalent.406

To explore the origin of this discrepancy, we fur-407

ther calculated the dynamical conductivity (without the408

effects of electron-hole interactions) using the Kubo-409

Greenwood formula [82, 83]410

σ(ω) =
σ0

2π2
Re

∫ ∞

−∞

dE
[f(E)− f(E + ω)]

ω

[

G∗(E) −G(E + ω)

γ(E + ω)− γ∗(E)
−

G(E)−G(E + ω)

γ(E + ω)− γ(E)

]

, (11)
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where γ(ω) = ω − µ−Σ(ω) and σ0 is the zero frequency411

value. We show in Fig. 4 the plot of the dynamical con-412

ductivity obtained using Eq. 11 in unit of σ0 for the413

same parameters as in Fig. 2. Our results show a Drude-414

like behavior at the low-energy regime when the disorder415

strength is still small. However, for a given interaction,416

as the strength of the disorder increases, the conductivity417

is suppressed especially in the low-energy regime, which418

becomes non-Drude-like. At high-energy, the delocaliza-419

tion by interaction and the suppression of the spectra420

as W increases are seen both in the single-particle hy-421

bridization function and the two-particle spectra data.422

We interpret this behavior to be due to quantum correc-423

tions to the Drude conductivity by both weak localization424

effects and the disorder-modified electron-electron inter-425

actions [84].426

As can be inferred from Fig. 4, the σ(ω → 0) or427

σ(ω → ωmax) is still significant at the disorder and428

interaction strengths where their two-particle counter-429

part that included the electron-hole interaction effects430

are already localized. For example, at U = 0.0 and431

W = 2.0, the calculated dynamical conductivity with-432

out the electron-hole interactions is still finite while the433

counterpart obtained from the BSE is already practical434

zero. The overall trend of the critical parameters, e.g.,435

WU
c -values obtained in the absence of electron-hole in-436

teractions is in agreement with the ones calculated from437

the single-particle quantity. Since the critical behavior of438

the dynamical conductivity calculated without electron-439

FIG. 3. The contour plot of disorder-interaction phase dia-
gram of the dynamical conductivity obtained with the effects
of electron-hole interactions included in the unit of 4t. Data
is obtained from Fig. 2 by interpolating the maximum for
each data set to finer grid. The dashed-white line is intended
to give a rough estimate of the location of the critical disorder
strengths in the parameter space. The trend of the WU

c is in
agreement with previous studies [85, 86].

0 1 2
h
_ ω

0

0.1

0.2

σ 
(ω

)/σ
0

0

0.1

0.2

0.3

0.4

σ(
ω

)/
σ 0

0 1 2 3
h
_ ω

U = 0.0 U = 1.0

U = 0.4 U = 2.0

FIG. 4. The dynamical conductivity obtained without the ef-
fects of electron-hole interactions ((normalized to its zero fre-
quency value σ0) at various interactions and disorder strength
for the same system size as in Fig. 1 obtained using Eq. 11
in the unit of 4t. Observe the systematic evolution from a
Drude-like to non-Drude-like behavior and also decrease in the
oscillator strength at the low-energy regime as the strength
of the disorder increases.

hole interactions (Eq. 11) is in basic agreement with the440

single-particle behavior of the critical quantities, we at-441

tribute the reduction in the critical disorder strengths442

in the presence of electron-hole interactions to enhanced443

multiscattering processes induced by the disorder, which444

breaks up the extended states within the system, leading445

to less generation of free electron-hole pairs.446

While we cannot directly verify with our data, the ex-447

citon states induce changes in the oscillator strengths,448

i.e., the relative heights/positions of the absorption spec-449

tra thereby lowering WU
c . This is similar to what is450

observed in some materials where an electron-hole pair451

has a binding energy that causes the quasiparticle gap to452

be higher than the fundamental gap obtained from con-453

ventional methods or measured via photoemission spec-454

troscopy. Several experiments have shown that exciton455

effects drastically change the spectra of materials. The456

data of Varley and Schleife [87] for some transparent457

conducting oxides showed that the absorption spectra is458

strongly modified by the inclusion of electron-hole in-459

teractions especially the lower photon-energy behavior460

which, was red-shifted. The redistribution of the spectral461

weight at low photon-energy due to excitonic effects were462

also reported in several oxides [88–90]. The electron-hole463

interactions have also been demonstrated to be important464

in describing the properties of nanostructure materials,465

e.g., monolayer MoS2 where it is vital for the proper in-466

terpretation of the low-energy absorption spectra [91] es-467
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pecially the position of the principal exciton peaks. The468

impact of electron-hole interactions could even be greater469

in disordered and/or interacting physical systems where470

the disorder degrees of freedom could couple nontrivially471

to the electron-electron interactions and/or the electron-472

hole interactions. Hence, the approach and the results473

presented herein could be of great importance in under-474

standing and interpretation of transport data of disor-475

dered and/or interacting systems where conventional ap-476

proaches may not be adequate.477

Summary.– We have presented and explored the role of478

electron-hole interactions in disordered Hubbard model479

for a random disorder potential distributed according to a480

box probability distribution function in three dimensions481

using the typical medium approach. Our calculations482

reveal heretofore, a significant reduction in the critical483

disorder strengths when compared to the single-particle484

values. We attribute this reduction in WU
c to enhanced485

coherent backscattering processes (cooperon correction)486

due to the inclusion of electron-hole interactions.487
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Phys. Rev. Lett. 105, 046403 (2010).641

[68] G. Schubert, A. Weibe, G. Wellin, and H. Fehske,642

HQS@HPC: Comparative numerical study of Anderson643

localisation in disordered electron systems in High Perfor-644

mance computing in Science and Engineering, Garching645

2004 (Springer, 2005).646

[69] Y. Song, W. A. Atkinson, and R. Wortis, Phys. Rev. B647

76, 045105 (2007).648

[70] K. Slevin and T. Ohtsuki, Phys. Rev. B 63, 045108649

(2001).650

[71] A. Rodriguez, L. J. Vasquez, K. Slevin, and R. A. Römer,651
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