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In this article we study examples of systematic biases that can occur in quantum Monte Carlo
methods due to the accumulation of non-linear expectation values, and approaches by which these
errors can be corrected. We begin with a study of the Krylov-projected FCIQMC (KP-FCIQMC)
approach, which was recently introduced to allow efficient, stochastic calculation of dynamical prop-
erties. This requires the solution of a sampled effective Hamiltonian, resulting in a non-linear op-
eration on these stochastic variables. We investigate the probability distribution of this eigenvalue
problem to study both stochastic errors and systematic biases in the approach, and demonstrate
that such errors can be significantly corrected by moving to a more appropriate basis. This is lastly
expanded to include consideration of the correlation function QMC approach of Ceperley and Bernu,
showing how such an approach can be taken in the FCIQMC framework.

I. INTRODUCTION

The introduction of the full configuration interaction
quantum Monte Carlo (FCIQMC) method1–4 has sub-
sequently seen a large number of new quantum Monte
Carlo (QMC) methods introduced by various groups,
making use of an FCIQMC-like spawning procedure.
Such approaches include, coupled cluster Monte Carlo
(CCMC)5–7, density matrix quantum Monte Carlo8,9,
model space quantum Monte Carlo (MSQMC)10–12,
and recently driven-dissipative quantum Monte Carlo
(DDQMC)13, to name only a few.

In some cases, these QMC methods are stochas-
tic adaptations of previously-existing deterministic algo-
rithms. Such stochastic adaptations can offer several
advantages, perhaps most importantly that stochastic
sampling often allows for reduced storage requirements
compared to deterministic equivalents, allowing accurate
study of extremely large systems in many cases. How-
ever, some significant care is required in reformulating a
deterministic algorithm as a stochastic one. Many de-
terministic methods make use of complicated non-linear
operations, often including poorly-conditioned problems.
In such cases, it would be potentially careless to assume
that a given deterministic method can be converted to a
Monte Carlo method in a straightforward manner.

Specifically, when estimating a desired quantity, f(x)
(for some other underlying quantity x), QMC methods
require a large amount of averaging to reduce stochas-
tic errors. For a linear function, f(x) can be estimated
by averaging f(q̂), where q̂ is a random variable be-
ing sampled by the QMC method (with E[q̂] = x).
However, for a non-linear function, it is well know that
E[f(q̂)] 6= f(E[q̂]), and so averaging must be performed

before the function is evaluated, rather than after. In
general this will negate the benefits of the sparse Monte
Carlo sampling by requiring storage of large parts of the
phase space. In FCIQMC, for example, the variable q̂ is
typically the sampled wave function from a single itera-
tion, and so estimating E[q̂] requires averaging the entire
wave function, eventually requiring as much memory as
a fully deterministic approach. One must average until
f(E[q̂]) ≈ f(x) with sufficient accuracy. For some cases
this is simple and the QMC approach is successful. For
others, it is challenging, or infeasible entirely. A par-
ticular issue occurs when the function is ill-conditioned,
meaning that any small error in the stochastic estimate
will lead to a substantial error in the final result. In such
cases, averaging before the function is applied may not
even be practical.
Observables in quantum mechanics can always be writ-

ten as (at most) quadratic expectation values of the
wave function. Given the central importance of these
pure expectation values, projector Monte Carlo methods
have long sought to compute these quadratic expecta-
tion values in an unbiased fashion, and techniques such
as forward-walking and reptation Quantum Monte Carlo
have emerged with the aim of removing this non-linear
bias14–21. An important example is the calculation of a
reduced density matrix (RDM), such as the two-particle
RDM Γpq,rs,

Γpq,rs = 〈Ψ|a†pa
†
qasar|Ψ〉, (1)

which is quadratic in the wave function |Ψ〉. Within
the FCIQMC approach, early attempts to sample the
two-particle RDM in FCIQMC were hampered by the
above bias, only slightly improved by partially averag-
ing the wave function prior to evaluating Γpq,rs

22. This
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was later corrected by the use of the so-called replica
trick23–25, such that the two wave functions in the es-
timate of Γpq,rs are made statistically independent and
the expectation value rewritten as a bilinear functional,
formally removing any bias.

While observables are at most quadratic functionals,
there often exists the need to compute beyond-quadratic
expectation values of stochastically-derived quantities in
QMC techniques, such as the computation of entangle-
ment measures, or the sampling and subsequent diag-
onalization of effective Hamiltonians. This solution to
a stochastically-sampled eigenvalue problem is a highly-
nonlinear operation, and so there is potential for non-
linear biases, and care must be taken. It is these ‘beyond-
quadratic’ operations which are the focus of this work,
where the above approaches for pure expectation values
are not appropriate.

Direct solution of stochastically-derived eigenvalue
problems is not uncommon in QMC methods. Per-
haps most notably, the linear method26–29, regularly
used to optimize wave function parameters in varia-
tional Monte Carlo30–33 (both in continuum and dis-
crete spaces), requires solution of a Hamiltonian eigen-
value problem in a space spanned by the wave function
and its first parameter derivatives. In other examples of
non-linear operations, FCIQMC has been recently used
to perform complete-active space self-consistent field
(CASSCF) calculations34,35, requiring non-linear opti-
mization of orbital coefficients, with no resulting difficul-
ties encountered thus far. The MSQMC method of Ten-
no10–12 obtains excited states by solving a stochastically-
sampled eigenvalue problem, once again with no difficul-
ties reported and highly accurate results. Furthermore,
QMC techniques have been used to obtain low-energy
effective Hamiltonians for correlated materials36.

Perhaps the most challenging quantities to sam-
ple in QMC (yet among the most highly-sought af-
ter) are dynamical properties, specifically many-body
Green’s functions37. FCIQMC, diffusion Monte Carlo
(DMC)31 and other projector QMC methods perform
imaginary-time evolution, allowing access to imaginary-
time Green’s functions as quadratic expectation values
which can be sampled with the techniques above. How-
ever, the transformation from imaginary-time to real-
time (or the frequency domain) is highly non-linear and
ill-conditioned38, and so challenging to perform in the
presence of noise. This transformation is typically per-
formed by maximum-entropy methods39–43 which, de-
spite sometimes being accurate, are unsatisfactory in gen-
eral.

As a further example, we recently introduced a
QMC approach to estimate many-body Green’s func-
tions (and finite-temperature and excited-state prop-
erties in general), denoted Krylov-projected FCIQMC
(KP-FCIQMC)44. This method can be loosely charac-
terized as a stochastic version of the Lanczos method,
and therefore allows access to dynamical and finite-
temperature properties in analogy with dynamical and

finite-temperature Lanczos. Although Lanczos-type al-
gorithms have been performed with QMC previously45,
we are unaware of their use to this extent, specifically in
the calculation of spectral or finite-temperature proper-
ties. KP-FCIQMC was applied to study one and two-
particle Green’s functions in a one-dimensional Hub-
bard model, showing that essentially-exact Lanczos re-
sults can be reproduced, particularly in low-frequency
regions. However, subtle features (particularly at high
frequencies) were difficult to reproduce. Clearly, there
is an issue with certain eigenvalue problems depending
on their nature, with poor conditioning being an obvious
potential problem. Given the significant utility of being
able to solve such problems, it is worth investigating and
discussing such issues, with the KP-FCIQMC approach
constituting the exemplar approach for these investiga-
tions.
In Section II we re-introduce the KP-FCIQMC

method; the theory of many-body Green’s functions is
introduced in Section III, including a description of their
calculation by KP-FCIQMC. In Section IV we apply this
approach to one-dimensional Hubbard models in both
the weak and intermediate-coupling regimes, including
investigation of probability distributions of the solutions;
Section V presents a theoretical model to explain these
errors, and so demonstrates a solution using trial wave
functions. Section VI extends this idea to the correlation
function QMC approach of Ceperley and Bernu46, which
can partly resolve such biases, although systematic errors
grow eventually. In Section VII we discuss how excited-
state FCIQMC uses orthogonalization to overcome issues
of previous sections, and discuss similarities between KP-
FCIQMC and dynamical DMRG in the errors observed.

II. KRYLOV-PROJECTED FCIQMC

A. Defining the Krylov subspace

The Krylov-projected FCIQMC (KP-FCIQMC)
method is essentially a stochastic adaptation of the
Lanczos method (and other Krylov subspace methods
in general). In the Lanczos method, one builds the
Hamiltonian eigenvalue problem in the subspace spanned
by

K = {|ψ0〉, Ĥ|ψ0〉, Ĥ
2|ψ0〉, . . . , Ĥ

NK−1|ψ0〉}, (2)

where |ψ0〉 is some initial state (that can be varied de-

pending on the quantity desired) and Ĥ is the Hamil-
tonian operator. The states spanning K are “Lanczos
vectors”, or for a more general subspace, “Krylov vec-
tors”. We use the latter terminology, and refer to the
span of K as the Krylov subspace. Typically, one con-
structs the Hamiltonian eigenvalue problem in this sub-
space (which, for this particular subspace, can be put
in an efficient tridiagonal form). In deterministic ap-
proaches, the Krylov vectors are orthonormalized (im-
plicit in the tridiagonal form), though this does not alter
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their span, but improves the efficiency and numerical sta-
bility of the algorithm.
In the FCIQMC method, we sample the vectors (1 −

∆τĤ)n|ψ0〉, where n labels the iteration. Thus, the
Krylov subspace we work with in KP-FCIQMC is

K = {|ψ0〉, (1 −∆τĤ)n1 |ψ0〉, (1 −∆τĤ)n2 |ψ0〉,

. . . , (1 −∆τĤ)n(NK−1) |ψ0〉}, (3)

where nl labels the FCIQMC iteration at which the l’th
Krylov-vector is sampled. If both ∆τ and nl+1 − nl are
small then the vectors will be similar, potentially leading
to near-linear dependencies and poor conditioning. In
practice, we therefore chose nl such that Krylov vectors
are chosen more frequently at first (as the wave function
varies rapidly, and high-energy states are sampled), and
less frequently as the ground state is approached.
For notational convenience, we label the l’th Krylov

vector |ψl〉 ≡ (1−∆τĤ)nl |ψ0〉, with |ψ0〉 the initial vector
and |ψNK−1〉 the final vector, with NK Krylov vectors in
total.

B. Estimating the subspace Hamiltonian and

overlap matrices

After deciding at which iterations of the FCIQMC al-
gorithm Krylov vectors are to be sampled, the task is
to perform those iterations and sample the Hamiltonian
and overlap matrix between these vectors. It should be
remembered that the ‘vectors’ in this approach are in
practice given by sparse, stochastic walker distributions
over instantaneously occupied determinants. The over-
lap matrix is simple, as we store all Krylov vectors next
to each other in an array (containing only determinants
sampled in at least one Krylov vector, reducing memory
requirements significantly). Thus, calculating all over-
lap elements requires a dot product between each pair of
vectors in this array (naturally parallelized as the array
storage is already distributed). Thus the overlap matrix
is calculated exactly for each pair of vectors. However,
each Krylov vector is stochastically sampled, so noise ap-
pears in the overlap matrix regardless.
Estimation of the Krylov-projected Hamiltonian is

more challenging, but can be formally sampled using
the same spawning dynamics as in standard FCIQMC.
To calculate HK

ij ≡ 〈ψi|Ĥ |ψj〉 (where H
K indicates the

Hamiltonian projected into the Krylov subspace), one
cycles through each determinant in |ψi〉 and performs
FCIQMC spawning to sample determinants in |ψj〉. For
some small systems, it is possible to calculate HK ex-
actly (although we again emphasize that Krylov vectors
are stochastically sampled, so that stochastic errors re-
main).
As discussed in the introduction, the calculation of a

quantity like 〈ψi|Ĥ|ψj〉 is biased if 〈ψi| and |ψj〉 are sam-
pled from the same QMC simulation, because E[q̂iq̂j ] 6=
E[q̂i]E[q̂j ], for random variables q̂i and q̂j , unless they

are uncorrelated. This is resolved by using replica sam-
pling, where two FCIQMC simulations are performed si-
multaneously and independently of each other, removing
correlation and therefore bias. We therefore perform two
FCIQMC simulations independently, with the first used
to sample the ‘bra’ Krylov vectors, 〈ψi|, and the second
used to sample ‘ket’ Krylov vectors, |ψj〉, as used in es-

timation of both 〈ψi|ψj〉 and 〈ψi|Ĥ|ψj〉 elements.

Thus, using replica sampling, estimates of HK and
SK , are essentially unbiased. Perhaps the only cause of
“bias” (where “bias” here refers to a systematic discrep-
ancy from an otherwise-identical deterministic calcula-
tion) is the use of a shift for population control, which
typically leads to a negligible error. When studying prob-
ability distribution functions later, we keep the shift con-
stant throughout, to remove any theoretical discrepancy
in the estimates of HK and SK .

C. Comparison to the Lanczos method

We briefly compare the above approach with the tra-
ditional Lanczos method. Firstly, we note that the sub-
space spanned is only formally the same as that in the
Lanczos method, Eq. (2), when a Krylov vector is sam-
pled at every FCIQMC iteration (nl = l). However, this
is not necessary. The only requirement is that the space
sampled is sufficient to span the “important” features of
the desired quantity. For example, in calculating spectral
properties, it is important that the Krylov vectors con-
tain significant contributions from eigenstates with large
amplitudes in the spectrum.

More significantly, one may wonder why the Krylov
vectors used are not orthogonalized. In the Lanczos al-
gorithm, the subspace Hamiltonian takes exactly a tridi-
agonal form, which means that only three Lanczos vec-
tors need storing, and also improves numerical stabil-
ity. For KP-FCIQMC the situation is somewhat dif-
ferent. Firstly, performing this orthogonalization pro-
cedure could introduce a bias into the calculation of HK

and SK , compared to a deterministic equivalent, because
the orthogonalization operation is non-linear. We have
recently introduced the excited-state FCIQMC method,
where orthogonalization is used and this potential bias
is not observed. Nonetheless the situation here is rather
different, as subsequent FCIQMC vectors are nearly iden-
tical, whereas in excited-state FCIQMC the orthogonal-
ized vectors are approximately orthogonal beforehand,
resulting in only a small change from orthogonalization.
Secondly this leads into a practical issue, as orthogonal-
izing a vector with respect to all previous Krylov vector
mostly reduces it to zero, which in a QMC algorithm
means killing almost all walkers. In traditional Lanczos
one need not ever actually perform the orthogonalization,
but in a stochastic setting with approximate vectors, this
is not the case, and HK would never be exactly tridiag-
onal regardless.
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D. Solution of the subspace eigenvalue problem

The subsequent subspace eigenvalue problem can be
solved by usual methods. This problem can be written
as

HKψK = ǫSKψK . (4)

This is solved with a standard canonical Löwdin orthog-
onalization procedure, transforming to an orthonormal
basis with

ψK = UD−1/2ψL. (5)

where U is the matrix with eigenvectors of SK in
its columns, and D is the matrix with corresponding
overlap-matrix eigenvalues on the diagonal. We call this
new basis the Löwdin basis, using superscript label L.
The Hamiltonian eigenvalue problem is then

HLψL = ǫψL, (6)

with

HL = D−1/2UTHKUD−1/2. (7)

As discussed above, because many of the Krylov vectors
will be nearly linearly dependent, many overlap matrix
eigenvalues will be very small, for the exact deterministic
problem. In the stochastic problem, the overlap matrix
will not take the form of a true overlap matrix, and so will
even have negative eigenvalues. We therefore throw away
eigenvectors of SK with negative or very small eigen-
values. Typically, we keep 10 − 15 eigenvectors. These
remaining eigenvectors form the final Löwdin subspace,
with dimension denoted NL, such that NL < NK . Re-
stricting NL to only 10 − 15 means that we only obtain
the same number of final eigenvector solutions, which is
an approximation to the true spectrum (as it is also for
the dynamical Lanczos approach), but is nonetheless use-
ful for many situations, for reasons clarified in the next
section.

III. MANY-BODY GREEN’S FUNCTIONS

FROM KP-FCIQMC

Green’s functions are key observables in many-body
condensed matter physics and chemistry, which are di-
rectly accessible experimentally, and often allow detailed
examination and understanding of important many-body
phenomena. As such, their accurate and routine calcula-
tion represents a high-priority goal. Unfortunately they
are typically difficult to calculate accurately, particularly
through QMC methods.
KP-FCIQMC, like dynamical Lanczos, can access two-

body Green’s functions, but here we focus on the often-
studied single-particle (retarded, ground-state) Green’s

function, defined by

G(k, ω) = 〈Ψ0|akσ
1

ω + µ− (Ĥ − E0) + iδ
a†kσ |Ψ0〉

+ 〈Ψ0|a
†
kσ

1

ω + µ+ (Ĥ − E0) + iδ
akσ |Ψ0〉, (8)

where ω is the frequency, µ is the chemical potential, a†kσ
is a creation operator for a particle with momentum k and
spin label σ, and E0 and |Ψ0〉 are the ground-state energy
and eigenvector (in the N -particle sector), respectively.
δ is a broadening added to give finite width to poles, but
is also related to the rate at which the created quasi-
particles decay in an experiment measuring G(k, ω), so
is physically justified. In the non-interacting limit this
reduces to the often-quoted expression

G(k, ω) =
1

ω + µ− ξk + iδ
, (9)

for single-particle eigenvalues ξk. This is the starting
point for expanding the interacting Green’s function in
terms of a self energy, as performed in methods such as
dynamical mean field theory (DMFT)47–49, but we take
a more direct approach here.
The quantity of interest studied here is the spectral

function, A(k, ω), proportional to the imaginary part of
the Green’s function, typically with −1/π as the propor-
tionality factor to ensure normalization,

A(ω) = −
1

π
ℑ[G(ω)]. (10)

Inserting a resolution of the identity in the appropriate
(N + 1) or (N − 1)-particle sector gives

A(k, ω) =
∑

i

δ

π

|〈ΨN+1
i | a†kσ |Ψ0〉|

2

[ ω + µ− (EN+1
i − E0) ]2 + δ2

+
∑

i

δ

π

|〈ΨN−1
i | akσ |Ψ0〉|

2

[ ω + µ+ (EN−1
i − E0) ]2 + δ2

. (11)

where N +1 and N − 1 superscripts denote states in the
corresponding sectors in the obvious way. In the limit
δ → 0+, this becomes a sum of delta functions at the
energy eigenvalues, with weights given by the transition

probabilities |〈ΨN+1
i | a†kσ |Ψ0〉|

2 and |〈ΨN−1
i | akσ |Ψ0〉|

2.
In the non-interacting limit, this reduces to

A(k, ω) = δ(ω + µ− ξk), (12)

and so A(k, ω) maps out the single-particle bandstruc-
ture.
We also consider the local single-particle density of

states (DOS), defined as

A(ω) =
1

N

∑

k

A(k, ω), (13)
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corresponding to a Fourier transform to the real space
spectral function at the origin.
We now consider how these quantities can be calcu-

lated in KP-FCIQMC. The Lehmann representation ex-
presses the spectral function as a sum over eigenstates,
Eq. (11). The dynamical Lanczos and KP-FCIQMC
methods give access to a number of eigenstates equal to
the size of the subspace studied, NL in the case of KP-
FCIQMC. This will typically be small compared to the
full Hilbert space dimension, and so this may appear un-
helpful. However, the subspace is chosen such that the
important eigenstates will appear as solutions. The im-
portant eigenstates are those with large probability am-

plitudes, |〈ΨN+1
i | a†kσ |Ψ0〉|

2 and |〈ΨN−1
i | akσ |Ψ0〉|

2, as
these give the largest contributions to Eq. (11). Thus, the

key is that the Krylov subspace is chosen using a†kσ|Ψ0〉 as
the initial vector to obtain states in the (N + 1)-particle
sector, and akσ|Ψ0〉 as the initial Krylov state for the
(N−1)-particle sector. Thus, those eigenstates with large
contributions in Eq. (11) will have relatively large com-
ponents in the Krylov subspaces, and may be extracted
accurately.
The KP-FCIQMC calculation is started from a per-

turbed ground state. As such, an FCIQMC calculation
is first performed to obatin a stochastic sampling of the
ground state. The perturbation is applied from there,
and this whole process may be repeated to allow averag-
ing of the (unbiased) HK and SK , before the (biased)
eigenvalue estimate are obtained. This averaging should
reduce the systematic error in the final eigenvalue esti-
mates and probability amplitudes, thus improving the
quality of spectra. This key aspect will be studied in the
following sections.

IV. KP-FCIQMC RESULTS

A. One-body Green’s functions from KP-FCIQMC

We study the one-dimensional, periodic 14-site Hub-
bard model at half-filling. In our original KP-FCIQMC
study, we took U/t = 2, but here we take U/t = 1 and
U/t = 4 to study both the nearly-free and intermediate-
coupling regimes.
Results for U/t = 1 are presented in Fig. (1). This case

is fairly trivial: in this low-coupling regime, the band-
structure is close to the non-interacting bandstructure,
where only one or two eigenstates contribute from each
K sector. The stochastically-sampled results here accu-
rately reproduce results from dynamical Lanczos. The
number of walkers used was 105. The initiator adapta-
tion was used, although initiator error is negligible. The
semi-stochastic adaptation was also used with a deter-
ministic space of dimension |D| = 5 × 104, chosen us-
ing the population-based scheme of Ref. (50). We set
δ = 0.05t. There are only one or two states of significance
to sample in eachK sector, which are well-sampled in the
Krylov vectors, and effectively no bias is noticeable.

(a)

Dynamical Lanczos

KP-FCIQMC

−4 −3 −2 −1 0 1 2 3 4

0.0

0.2

0.4

0.6

0.8
(b)

ω/t

A
(k
,ω

)
A
(ω

)

FIG. 1. (a) A(k, ω) from k = −

6

7
π (bottom) to k = π (top) for

the 1D, periodic 14-site Hubbard model at U/t = 1, compared
to dynamical Lanczos. (b) The local density of states. In
this low-coupling regime, the situation is simple and easy to
calculate by KP-FCIQMC, with only a small number of low-
energy states making significant contributions.

In Fig. (2), the same system is studied but with U/t =
4. Here the situation is more challenging, with a larger
number of eigenstates making a significant contribution,
and low-energy states generally making a smaller contri-
bution. We use the same parameters as for the U/t = 1
case, but study walker populations, Nw, of both 105 and
106. At Nw = 105 there are clear errors in the whole
spectrum. This could be due to a number of factors, but
we believe that initiator error is the biggest issue, as ini-
tiator error is significant even in ground-state FCIQMC
calculations. This is largely resolved at Nw = 106, where
KP-FCIQMC results are in good agreement with dynam-
ical Lanczos.

This shows that the stochastic Krylov-space approach
presented here can be successful and accurate, even in
the intermediate coupling regime. Because of the sparse
sampling (and therefore relatively-low memory require-
ments), this approach is possible for systems beyond
those treatable by dynamical Lanczos (although in this
particular example, the density matrix renormalization
group (DMRG) method would be a more efficient ap-
proach due to its one-dimensional nature). Results are
particularly accurate at low |ω|, allowing crucial proper-
ties around the band gap to be studied.

Nonetheless, it is informative to study the convergence
of this approach to the exact results. At Nw = 106,
results are in good agreement with dynamical Lanczos,
but error remains, particularly at high |ω|. We have per-
formed multiple repeated calculations on this system and
found that results at high frequency are largely unchang-
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(a)
Dynamical Lanczos

KP-FCIQMC

−4 −3 −2 −1 0 1 2 3 4
0.0

0.2

0.4

0.6

0.8
(b)Nw = 10

5

(c)

−4 −3 −2 −1 0 1 2 3 4

(d)Nw = 10
6

ω/t ω/t

A
1
(k
,ω

)
A

1
(ω

)

FIG. 2. Results for the 1D, periodic 14-site U/t = 4 Hubbard model, using walker populations, Nw, of both 105, (a) and (b),
and 106, (c) and (d). At Nw = 105, noticeable error exists, which is significantly corrected at Nw = 106. We believe that this
error is largely due to initiator error, which is significant in the Hubbard model at U/t = 4, although other systematic biases
exist. Even at Nw = 106, errors are more noticeable in the high-frequency regime, which we find to be systematic.

ing, suggesting a systematic bias rather than statistical
error. In the limit of exact sampling, both HK and SK

will be obtained exactly, and so will their eigenvalues,
but it is informative to study how this convergence comes
about.

B. Probability distributions from

stochastically-sampled eigenvalue problems

To study this problem in the most detail, we investi-
gate the probability distributions functions (PDFs) of the
underlying eigenvalue estimates, and also PDFs for tran-

sition amplitudes, 〈ψi|a
†
k|Ψ0〉. Probability distributions

of QMC estimates are rarely considered; it is usually as-
sumed that such distributions are Gaussian due to the
central limit theorem, but this is not clear for solutions
of poorly-conditioned problems. However, to construct
such a distribution requires performing a large number
of repeated calculations (here we perform ∼ 104). We
therefore consider a much smaller system: the 1D, pe-
riodic 6-site Hubbard model at U/t = 4. This some-
what mimics the above case, but now in a system where
only a small Nw is required. We also only consider the
K = 2π/3 sector, again mimicking a sector with poor
results in the above 14-site case. We use Nw ∼ 100 and a
deterministic space of the Hartree–Fock determinant and
all single and double excitations.
For this system, there are only three eigenstates with

significant contributions to the single-particle spectrum.
Therefore, to make the probability distributions clear to
view and interpret, we take NL = 3, i.e., projecting the

eigenvalue problem into a space of dimension 3, such that
a stochastically-sampled 3× 3 eigenvalue problem is ob-
tained. We compare the eigenvalue estimates to those
from a completely deterministic KP-FCIQMC calcula-
tion, but with the same projection into a 3 × 3 problem
performed, so that exactly the same eigenvalues will be
obtained in the limit of infinite averaging in the stochas-
tic case.

We perform∼ 104 repeated KP-FCIQMC calculations,
each with a different random number generator (RNG)
seed. Within each of these 104 repeats, we average HK

and SK over either 1, 10, 100 or 1000 repeats, before

the eigenvalue problem is solved. As more averaging of
the unbiased HK and SK is performed, any bias in the
eigenvalue estimates should be reduced. The shift is kept
constant to avoid any theoretical population-control dis-
crepancies.

The constructed PDFs are presented in Fig. (3). Re-
sults on the left are for the ground-state solutions, while
those on the right are for the two excited states. Re-
sults at the top show PDFs for the energy eigenvalues
themselves, while those at the bottom are PDFs for the

transition amplitudes, 〈ψi|a
†
k|Ψ0〉. PDFs for the ground

state are sensible for all levels of averaging performed.
There is a slight skew occurring when no averaging is
performed (i.e., 1 ‘repeat’), although even in this case
the PDF mean is approximately correct.

In contrast, PDFs for the two excited states show re-
sults in significant error. For energy eigenvalues (top)
with no averaging, the first excited state is slightly too
high, while the second eigenstate is in error on average
by more than 4t, with a variance so large that results are
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FIG. 3. Probability distributions for eigenvalues and transition amplitudes from KP-FCIQMC. Dashed lines show exact values.
We take a trivial system, the 1D, periodic 6-site Hubbard model at half-filling and U/t = 4, in the K = 2π/3 sector. This allows
investigation of probability distributions for solutions of stochastically-sampled eigenvalue problems. We aim to study only the
3 dominant eigenvalues in the spectrum. Results on the left are for the ground state, and on the right for the two excited states.
The stated number of repeats is the number of repeats over which H

K and S
K are averaged before the eigenvalue problem is

solved. Since the Hamiltonian and overlap matrices themselves are unbiased, this should reduce biases in eigenvalue solutions.
This is indeed found to be the case, with reasonable distributions once averaging over 1000 repeats is performed. However, for
less averaging, significant biases occur for the excited-state estimates (right), in both eigenvalues and transition amplitudes.

smeared out entirely. Increasing averaging up to 1000
repeats does eventually bring results to be distributed
about approximately the correct values, although even
then with a strong skew.
Transition amplitudes for excited states are also in sig-

nificant error until significant averaging is performed. For
low-averaging, one of the excited states has a transition
amplitude which is approximately 0 (while the other is
too large, such that two peaks are merged into one),
which does not begin to resolve until averaging over 100
repeats, and not satisfactorily until averaging over 1000
repeats. Clearly, even though this is a simple system,
significant biases occur in the eigenvalue estimates of the
excited states, although ground-state estimates are accu-

rate. While the number of walkers is similarly small with
the system size, this should act as a warning for the is-
sues that can occur in stochastically-sampled eigenvalue
problems, even in simple cases. Despite this, given the
utility of such solutions in QMC methods, this issue is
usually not so severe.

V. ANALYSIS OF ERROR FOR A TWO-STATE

MODEL

We now consider a theoretical model in only two di-
mensions, where the source of this significant bias can be
identified.
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Suppose we sample two Krylov vectors of the form

|K0〉 = |ψ0〉 |K1〉 = |ψ0〉+ δ|ψ1〉, (14)

where |ψ0〉 and |ψ1〉 are orthonormal solutions which we
seek to obtain, and δ is some small and positive num-
ber. This mimics what happens in real simulations where
there is one vector (the ground state) making up a rel-
atively large component of all Krylov vectors. Then the
eigenvalue problem is

(

a a
a a+ δ2b

)(

x0
x1

)

= ǫ

(

1 1
1 1 + δ2

)(

x0
x1

)

, (15)

where a = 〈ψ0|H |ψ0〉, b = 〈ψ1|H |ψ1〉 and 〈ψ0|H |ψ1〉 has
been defined as 0 for simplicity.
It can be shown that the eigenvalues of the overlap

matrix are (using zero-indexing),

D00 = 2 +O(δ2) D11 =
δ2

2
+O(δ4) (16)

and that the corresponding eigenvectors are

(

1√
2
1√
2

)

+O(δ2)

(

−1√
2
1√
2

)

+O(δ2). (17)

The Hamiltonian in the Löwdin basis (the final orthonor-
mal basis) is

HL =

(

a+O(δ2) O(δ)
O(δ) b+O(δ2)

)

. (18)

The eigenvalues of the exact HL matrix are a and b, as
expected by construction.
If this eigenvalue problem were sampled by KP-

FCIQMC, then the stochastic estimate of the Krylov-
space Hamiltonian could be written

HK + η, (19)

where HK is the exact Krylov-space Hamiltonian, and
η is the error matrix (and symmetry is enforced on the
Hamiltonian estimate, so that η10 = η01). If the trans-
formation matrix from the Krylov to the Löwdin basis is
denoted T , then the stochastic estimate of the Krylov-
projected Hamiltonian transforms as

TT(HK + η)T = TTHKT + TTηT . (20)

The first term is the desired HL. We would like second
term to equal 0. For finite stochastic error, however, this
term can be shown to equal (to leading order in δ)

TTηT =

(

1
4
(η00 + 2η01 + η11)

1
2δ (η11 − η00)

1
2δ (η11 − η00)

1
δ2 (η00 − 2η01 + η11)

)

.

(21)
Therefore,HL

11 has a large error when δ is small. Roughly
speaking, to obtain an accurate estimate of the Hamil-
tonian in the final orthonormal basis, the Hamiltonian
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FIG. 4. Distributions of KP-FCIQMC eigenvalues around the
exact ground and first-excited energies (dashed lines) for the
same system as Fig. (3), as the number of repeats (over which
H

K and S are averaged) is varied. In contrast to Fig. (3),
the initial Krylov vector was here taken as the CISD estimate
of the first excited state. Both ground and first excited states
are obtained with relatively small biases for 1 repeat, and
with no visible bias when averaging over 10 or more repeats.

in the Krylov basis must have errors ηij smaller than
δ2 ≈ D11. This makes more rigorous the intuitive notion
that eigenvectors with a small component in the Krylov
vectors require a similarly small associated stochastic er-
ror for accurate estimation, quickly becoming unreason-
able. In this case it is difficult to ‘extract’ the |ψ1〉 solu-
tion accurately from the noise.

The above analysis suggests that the main source of
bias is due to the desired states having small compo-
nents in the Krylov vectors. It is therefore informative
to study different subspaces, where the Krylov vectors are
constructed to be similar to the desired excited states.

Such an example is demonstrated in Fig. (4). Here
we take the same system as that studied in Fig. (3).
However, while Fig. (3) took the initial Krylov vector

as a†k|Ψ0〉, where |Ψ0〉 is the exact ground-state wave
function in the N -particle sector (N = 6) (appropri-
ate for constructing the single-particle Green’s function),
here we take the initial Krylov vector as the CISD es-
timate to the first excited state in the same final sector
(N = 7). As can be seen, by choosing the subspace more
appropriately, the bias is effectively removed in the first
excited state estimates. Note that the numerical value
for the first excited state is different between Figs. (3)
and (4) - this is because we project into different final
3-dimensional subspaces in each case. However, this is
unimportant; here we are simply assessing biases in the
different approaches.
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VI. A CORRELATION FUNCTION QMC

APPROACH IN FCIQMC

The approach considered in Fig. (4) overcame sys-
tematic errors by constructing the subspace in terms of
trial wave functions. This approach is also taken in the
correlation function quantum Monte Carlo (CFQMC)
method of Ceperley and Bernu46,51–55, which we now
briefly consider within an FCIQMC context. Note that
this approach is called correlation function QMC because
the sampled HC

ij and SC
ij (see below) can be viewed as

imaginary-time correlation functions. However, in this
method one is only interested in eigenvalues and prop-
erties of a small number of low-lying excited states, not
Green’s functions, where the entire spectrum is (in prin-
ciple) obtained. Nonetheless the approach is interesting
to consider in relation to the current question of biases
and stochastically-sampled eigenvalue problems.
Suppose one has m trial functions,

{|f0〉, |f1〉, . . . , |fm−1〉}, for the m lowest energy
eigenstates of a system. Improved solutions can be
formed by taking linear combinations of the original set
of states. The best linear combinations (in a variational
sense) are formed by solving the Hamiltonian eigenvalue
problem, projected into the space spanned by {|fi〉},

HCφi = ΛiS
Cφi, (22)

where HC
ij = 〈fi|Ĥ |fj〉 and S

C
ij = 〈fi|fj〉. The eigenvalue

estimates, Λi are variational by MacDonald’s theorem56

and so will be improved by using more or better-quality
trial states, |fi〉.
Define projected trial states by

|fi(τ)〉 = e−τĤ |fi〉. (23)

If the Hamiltonian eigenvalue problem is evolved with τ ,
so that HC

ij(τ) = 〈fi(τ)|Ĥ |fj(τ)〉, S
C
ij(τ) = 〈fi(τ)|fj(τ)〉

and

HC(τ)φi(τ) = Λi(τ)S
C(τ)φi(τ), (24)

then since the slowest decaying contributions to each trial
state will span the lowest-lying excited states, in prin-
ciple, the exact energy eigenstates and eigenvalues are
retrieved in the limit of large imaginary time, as

lim
τ→∞

Λi(τ) = Ei. (25)

The above approach is that taken in the CFQMC
method.
However, the approach above is only stable in the com-

plete absence of numerical errors, either due to finite pre-
cision, or stochastic noise. This is because for large τ , all
states |fi(τ)〉 will converge to the ground state, and the
trial states will exponentially become linearly dependent,
and eigenvalues of the overlap matrix will become expo-
nentially small. Stochastic or numerical errors in HC

will therefore be greatly magnified, and large biases will
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FIG. 5. FCIQMC energies (from a variational estimator) dur-
ing propagation for the neon atom in an aug-cc-pVDZ basis,
with 2 core electrons frozen. Simulations begin from the CISD
estimates of the five lowest excited states (labelled E1 −E5).
Energies converge quite stably to exact energies (dashed lines)
for considerable imaginary time, before converging towards
the ground state. Note that three states appear to diverge
to higher energies, which occurs when the ground state com-
ponent gains an opposite sign in the two replica simulations,
resulting in the denominator of the energy estimator passing
through zero. However, the ground state is converged upon
eventually (not shown). Note also that there are double de-
generacies in two states because the Ag irrep of D2h is used.

result, as for KP-FCIQMC, resulting in a transient esti-
mate of the excited eigenstates in practice. However, it
is usually possible to converge far enough to obtain good
eigenvalue estimates before such issues become unman-
ageable.
In the original approach of Ceperley and Bernu46, this

procedure was performed in real space. However, it is just
as simple to perform in an FCIQMC-framework, as there
one also performs imaginary-time propagation of initial
states. Indeed, the approach is perhaps more convenient
here, as it is simple to construct particularly-accurate
trial excited states in finite-dimension Hilbert spaces, us-
ing standard quantum chemistry methods.
Before applying the full CFQMC approach, we first

consider what happens when FCIQMC simulations are
performed starting from trial solutions to excited states.
This has already been performed in the excited-state
FCIQMC approach, but in that approach orthogonal-
ization prevents collapse to the ground state. Here we
consider propagation without orthogonalization. An ex-
ample of this is considered in Fig. (5), where the Ne atom
is considered in an aug-cc-pVDZ basis set for the five low-
est excited states, initialized from configuration interac-
tion singles and doubles (CISD) solutions to the states.
We use the following energy estimator,

Ei(τ) =
〈fi(τ)|Ĥ |fi(τ)〉

〈fi(τ)|fi(τ)〉
, (26)

calculated in the same way as in KP-FCIQMC (using
the spawning procedure to sample pairs of determinants,
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FIG. 6. Results from the CFQMC procedure for the first ex-
cited state, for the one-dimensional, periodic 6-site Hubbard
model at half-filling and U/t = 2. Simulations began from
CISD estimates to the ground and first excited states. H

C

and S
C were averaged over 1, 10 and 100 repeated simula-

tions before eigenvalues were obtained. Top: Mean eigenval-
ues estimates as a function of imaginary-time, with standard
deviations presented as error bars. Eigenvalue bias increases
exponentially for large τ . Bottom: PDFs of eigenvalues for
the first excited state at iteration 200 (τ = 2).

and the replica trick). Results of Fig. (5) show that,
perhaps surprisingly, the energy estimates converge ac-
curately towards the exact eigenvalues for over 6000 iter-
ations before eventually converging to the ground-state
energy. One might have expected the collapse towardsE0

to happen much quicker, especially starting from fairly
basic CISD estimates, even for this simple system. Note
that when collapse to the ground state does occur, some
energy estimates diverge to higher values, rather than
directly to the ground state. This is because the com-
ponent of the ground state in the two replicas sampling
|fi(τ)〉 obtain opposite signs in early iterations due to
stochastic noise, causing the denominator, 〈fi(τ)|fi(τ)〉,
to pass through 0 during convergence.

The CFQMC procedure then projects Ĥ into the sub-
space spanned by these states, and solves the resulting
eigenvalue problem to prevent this collapse. An exam-
ple of this is shown in Fig. (6). Here, to allow study of
PDFs, we again study the same 6-site Hubbard model as

in Figs. (3) and (4), but here taking U/t = 2. We consider
the first excited state. While the collapse of the expecta-
tion values is prevented in the zero-stochastic-error (and
infinite numerical precision) limit, in a stochastic setting
the bias on the eigenvalues grows exponentially, as proven
by Ceperley and Bernu in their original presentation46.
This exponential growth of bias is clear here. When per-
forming no averaging, significant error occurs by iteration
200 (τ = 2), although this can be corrected by averaging
to reduce noise on HC and SC.
Despite the eventual breakdown, the first excited state

is sampled with a near-exact energy for a considerable
period of imaginary time before this occurs. This situa-
tion is therefore significantly improved compared to that
in KP-FCIQMC, due to the use of trial solutions which
are already close to spanning the target subspace, result-
ing in a well-conditioned problem where the first excited
state has significant amplitude in the sampled subspace.

VII. DISCUSSION

A. Excited-state FCIQMC

The exponentially-growing error in CFQMC with τ is
caused by all states converging to the ground state, re-
sulting in a poorly-conditioned eigenvalue problem. The
obvious solution to this is to orthogonalize each state
against all lower-energy states, to prevent collapse. This
approach was taken in our excited-state extension to
FCIQMC57. The projection here takes the form

|fi(τ+∆τ)〉 = Ôi(τ+∆τ)[1−∆τ(Ĥ−S1)]|fi(τ)〉, (27)

with

Ôi(τ) = 1 −
∑

j<i

|fj(τ)〉〈fj(τ)|

〈fj(τ)|fj(τ)〉
. (28)

Here, the initial ground-state trial wave function, |f0〉,
is evolved exactly as in standard FCIQMC. All higher-
energy states follow a similar evolution, but with Ôi(τ)
applied after each iteration.
With biases in mind, a possible concern in this ap-

proach is that the orthogonalization operator Ôi(τ) is
non-linear in |fj(τ)〉, so that biases may occur. This was
considered in some detail in our initial presentation. Al-
though we believe that some extreme limits must exist
where the non-linear nature leads to undesired results,
in practice we have never found this issue to occur and
indeed have obtained extremely accurate results in all
cases tested. For a test Hubbard model example, any
bias was shown to be less than ∼ 10−4 − 10−6t for all
states studied. For the stretching of C2 in a cc-pVQZ ba-
sis we found agreement with DMRG results to ∼ 10−4Eh,
with remaining error almost certainly from the initiator
approach.
As a demonstration, we again consider the test case

of the one-dimensional 6-site Hubbard model at half-
filling and U/t = 2, as in Fig. (6). Simulations are
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FIG. 7. Results for the first excited state of the one-
dimensional, periodic 6-site Hubbard model at half-filling and
U/t = 2. Simulations were initialized from CISD wave func-
tions. Free propagation is shown in red, where large errors
occur quickly. The CFQMC procedure is shown in blue (here
H

C and S
C were averaged over 103 repeated simulations be-

fore the plotted eigenvalues were obtained), demonstrating
improved stability. The excited-state FCIQMC approach is
shown in green, where orthogonalization ensures stable con-
vergence to the exact result. Note that under free propagation
the ground state is eventually converged upon, although di-
vergence to higher energies is observed here; this occurs for
the same reason as in Fig. (5).

initialized from CISD wave functions, with the aim of
sampling the exact first excited state. A compari-
son is performed between three cases: free FCIQMC
propagation; the CFQMC procedure; and the excited-
state FCIQMC procedure, performing orthogonalization
against the ground-state FCIQMC wave function. For
excited-state FCIQMC results, an RDM-based energy es-
timator is used (with replica sampling)25, for a relevant
comparison. CFQMC is more stable than free propa-
gation, allowing the first excited state to be accurately
sampled for a longer period of imaginary time. The
orthogonalization-based approach is fully stable. Contin-
uing this simulation for 106 iterations (using ∼ 80 walkers
on average) gives an energy estimate of −2.55677(23)t,
compared to the exact value of −2.55683t, showing no
bias to good accuracy.

A similar orthogonalization approach would not be ap-
propriate in real-space projector QMC methods, as the
overlap between two stochastically sampled wave func-
tions in real space will be zero. Clearly there are advan-
tages and disadvantages to both real-space and finite-
space approaches. The ability to calculate overlaps be-
tween two statistically-sampled wave functions, as used
in both the excited-state approach and the unbiased sam-
pling of RDMs, has been a large benefit in FCIQMC. As
such, the problem of sampling a small number of low-
lying states by FCIQMC has, we believe, been effectively
solved by the above orthogonalization approach. How-
ever, the task of computing dynamical properties remains
a more significant and open challenge.

B. Comparison of KP-FCIQMC with DMRG

approaches

The KP-FCIQMC approach can be compared to simi-
lar approaches for calculating dynamical correlation func-
tions in the DMRG framework. Several methods have
been attempted by a variety of approaches58–62. An ap-
proach based on the Lanczos algorithm was attempted
by Hallberg58, which is directly comparable to the KP-
FCIQMC approach. A similar approach has been used
recently by Dargel et al.63,64 This approach was also in-
vestigated by Kühner and White in 199960, who interest-
ingly came to similar conclusions in DMRG as we have
in FCIQMC - they state that “the Lanczos vector method

works very well if only the low-energy part of the corre-

lation function is of interest, or if the bulk of the weight

is in one single peak.” This makes evident that these
discrepancies are not simply the result of stochastic-type
errors; small systematic errors due to other approxima-
tions are equally problematic.

VIII. CONCLUSION

We have investigated examples of sampling non-linear
functions in QMC methods, including ill-conditioned
problems. KP-FCIQMC allows sampling of dynamical
and finite-temperature properties by an approach com-
parable to the Lanczos method, but with memory lim-
itations removed due to stochastic sampling. For small
Hubbard model examples we obtained accurate spectra
even in the intermediate-coupling regime, demonstrat-
ing the potential of this stochastic Krylov-projected ap-
proach, which may be appropriate as an impurity solver
for DMFT.
However, in results similar to those obtained from

a DMRG-based approach to the spectral Lanczos
method60, we find that high-energy spectral features are
challenging to obtain accurately, particularly for poles
with small transition amplitudes. This was demonstrated
in a small 6-site Hubbard model, where probability distri-
butions were obtained for the KP-FCIQMC eigenvalues
and transition amplitudes, showing large errors in rel-
atively high-energy states, eventually corrected by per-
forming further averaging. A simple two-state theoret-
ical model was considered to explain this issue, show-
ing that the problem can be traced back to states with
small components in the Krylov vectors, leading to an ill-
conditioned problem, for which QMC is not best-suited.
By moving to a more appropriate subspace, where a

desired excited state has large components in the Krylov
vectors, this bias can be largely removed. An example
of this is the CFQMC method, which largely resolves
such issues for small τ , although biases eventually become
significant at large imaginary time.
A large number of stochastic quantum chemistry meth-

ods have been formulated in recent years in a similar vein
to FCIQMC; we hope that the considerations presented
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here will be informative, and beneficial in the appropriate
formulation of such approaches in the future.
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