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The concept of a vestigial nematic order emerging from a “mother” spin or charge density-wave
state has been applied to describe the phase diagrams of several systems, including unconventional
superconductors. In a perfectly clean system, the two orders appear simultaneously via a first-
order quantum phase transition, implying the absence of quantum criticality. Here, we investigate
how this behavior is affected by impurity-free droplets that are naturally present in inhomogeneous
systems. Due to their quantum dynamics, finite-size droplets sustain long-range nematic order but
not long-range density-wave order. Interestingly, rare droplets with moderately large sizes undergo
a second-order nematic transition even before the first-order quantum transition of the clean system.
This gives rise to an extended regime of inhomogeneous nematic order, which is followed by a density-
wave quantum Griffiths phase. As a result, a smeared quantum nematic transition, separated from
the density-wave quantum transition, emerges in moderately disordered systems.

I. INTRODUCTION

In an electronic nematic phase, the crystalline point
group symmetry is lowered by electronic degrees of
freedom1–3. In analogy to liquid crystals, it can arise via
the partial melting of a translational symmetry-breaking
smectic phase, which in electronic systems corresponds to
a spin or charge density-wave (DW). In several materials,
the DW can have multiple wave-vectors Q related by the
symmetries of the underlying lattice. A well known ex-
ample is a DW on a square lattice with possible ordering
vectors (Q, 0) and (0, Q), related by tetragonal symme-
try. In these cases, upon melting the DW, the system
may form a vestigial Ising-nematic phase in which the
translational symmetry of the lattice is preserved, but
its rotational symmetry is broken. In the above example
on the square lattice, the nematic transition lowers the
tetragonal symmetry down to orthorhombic.

Such a mechanism for electronic nematicity has been
proposed in both iron-based superconductors4–6, in
which the DW is in the spin channel, and in the high-
Tc cuprates1,7–9, where the DW can be in both spin and
charge channels. Interestingly, both materials at optimal
doping exhibit behavior characteristic of a quantum crit-
ical point, such as strange metalicity and enhancement of
the quasiparticle effective mass10–12. This has motivated
deeper investigations of quantum nematic phase transi-
tions in metals, in order to elucidate whether a putative
nematic quantum critical point is a key ingredient of the
phase diagrams of these superconducting compounds13.

Several theoretical works have shown that, for a per-
fectly clean quasi-two-dimensional metallic system, the
vestigial Ising-nematic order and the mother density-
wave order undergo a simultaneous T = 0 first-order
transition, implying the inexistence of a quantum critical
point6,14–16. However, disorder, ubiquitously present in
realistic systems, can have dramatic effects on quantum
phase transitions3,17–26. Thus, in order to assess the rele-
vance of nematicity to the properties of these compounds,

Figure 1. Illustration of a moderately diluted system display-
ing an infinite cluster (light green) and finite-size droplets
(dark green) devoid of impurities. For this illustration, we
consider a “mother” spin-density wave and its vestigial Ising-
nematic phase. At T = 0, finite-size droplets cannot sustain
long-range spin order (indicated by the disordered spins in the
inset), but they can support long-range nematic order (indi-
cated by the different spin-spin correlations along the x and
y axis, resulting in unequal x and y bonds). Importantly,
droplets of moderate sizes undergo a second-order nematic
transition even before the bulk system (and thus the infinite
cluster) undergoes its simultaneous first-order density-wave
and nematic transition.

it is paramount to understand the interplay between dis-
order and nematic order. Previous works have focused
mostly on non-vestigial Ising-nematic phases27–29, in-
cluding the role of Griffiths effects30, and on random-field
or random-mass types of disorder in the DW degrees of
freedom31,32.

In this paper, we investigate the impact of rare re-
gions on the vestigial Ising-nematic order arising from
a DW quantum phase transition. A rare region is a
relatively large droplet that is devoid of impurities in
a disordered system (see Fig. 1). For our purposes,
we consider point-like, randomly diluted impurities that
completely suppress nematic and DW orders locally. Al-
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though the probability of finding such droplets decreases
exponentially with their size, their impact on phase tran-
sitions can be significant , causing Griffiths singulari-
ties in thermodynamic quantities33,34 or smearing phase
transitions35. These effects are particularly strong near
a quantum phase transition, due to the fact that the im-
purity at T = 0 is perfectly correlated along the “time”
axis21,36.

As we show here, the rare regions completely change
the nature of the simultaneous first-order nematic-DW
quantum transition in a two-dimensional itinerant sys-
tem. This is because of the crucial role of the droplet’s
dissipative quantum dynamics37–39, which allows long-
range Ising-nematic order in finite-size droplets at T = 0
(see also Ref. 19), but not DW order (for spin or incom-
mensurate charge density-waves). By performing large-
N calculations on a finite-size droplet, we find a wide
parameter range for which the first droplets to order ne-
matically at T = 0 are not the largest ones, but the
droplets of moderately large sizes. Remarkably, while the
largest droplets undergo a first-order nematic transition
very close to the quantum phase transition of the clean
system, the droplets of moderate sizes undergo a second-
order nematic transition even before the clean system or-
ders. The result is the emergence of an inhomogeneously
ordered nematic phase, characteristic of a smeared ne-
matic quantum phase transition21,38, in the regime where
the clean system is not ordered. Our findings, illustrated
in Fig. 2, indicate also that a DW Griffiths phase appears
inside this inhomogeneous nematic state, preceding the
onset of long-range DW and homogeneous nematic or-
der. As we argue below, this behavior may be related to
recent puzzling experimental observations in iron-based
compounds.

II. LOW-ENERGY MODEL

We consider a general two-dimensional low-energy
model that yields vestigial Ising-nematic order from a
mother DW phase on the square lattice. For concrete-
ness, we consider two N -component DW order param-
eters, ∆X and ∆Y , corresponding to two wave-vectors
QX = (Q, 0) and QY = (0, Q) related by tetragonal sym-
metry. In the case of spin density-wave, N = 3 (commen-
surate) or N = 6 (incommensurate), whereas for charge
density-wave, N = 1 (commensurate) or N = 2 (incom-
mensurate). Hereafter, we consider only the case N > 1,
as relevant for copper-based and iron-based superconduc-
tors. The low-energy action is given by:6

S [∆X ,∆Y ] =

ˆ
q,ω

[
χ−1
q,ω

(
∆2
X + ∆2

Y

)
+
u

2

(
∆2
X + ∆2

Y

)2
−g

2

(
∆2
X −∆2

Y

)2]
(1)

where
´
q,ω

=
´

ddq

(2π)d

´
dω
2π . Here, χ

−1
q,ω = r0+q2+γ |ω|2/z

is the inverse DW susceptibility, with the “tuning param-
eter” r0 denoting the distance to the mean-field quantum

Figure 2. Schematic phase diagram illustrating our main re-
sults. Here, r0 is a control parameter, such as doping or
pressure. In the clean system at T = 0, the nematic (φ)
and density-wave (∆DW) order parameters appear simulta-
neously at r∗0,clean (dashed line). In the moderately diluted
system, which still has a percolating (infinite) cluster, the
first-order quantum transition is expected to be suppressed
down to r∗0,dirty (dotted line). For r0 > r∗0,clean, moder-
ately large droplets undergo a second-order nematic tran-
sition, giving rise to inhomogeneous nematic order. For
r∗0,dirty < r0 < r∗0,clean, exponentially large droplets have an
exponentially large DW correlation length, resulting in a DW
quantum Griffiths phase. Whether φ jumps or continuously
evolves at r∗0,dirty depends on details of the disorder distribu-
tion.

phase transition. For itinerant systems, the dynamical
critical exponent is z = 2 and γ is the Landau damp-
ing coefficient. Vestigial Ising-nematic order arises when
g > 0. Physically, the emergent Ising-nematic order pa-
rameter 〈φ〉 = g

〈
∆2
X −∆2

Y

〉
, which can onset before the

DW, corresponds to unequal fluctuations around the two
DW wave-vectors. Mathematically, it is obtained by per-
forming a Hubbard-Stratonovich transformation of the
second quartic term of Eq. (1):

Seff =

ˆ
q,ω

{
φ2

2g
− ψ2

2u
+
N

2
ln
[(
χ−1
q,ω + ψ

)2 − φ2
]}

(2)

To obtain this effective action, we also performed a
Hubbard-Stratonovich transformation of the first quartic
term of Eq. (1) to introduce the Gaussian-fluctuations
field 〈ψ〉 = u

〈
∆2
X + ∆2

Y

〉
. In the large-N limit, and af-

ter rescaling the quartic coefficients (u, g) → (u, g) /N ,
the equilibrium values of φ and ψ as function of r0 can
be found within the saddle-point approximation δSeff

δψ =
δSeff

δφ = 0. Note that r0 + ψ = |φ| indicates an instability
towards the DW phase, whereas φ 6= 0 indicates an in-
stability towards the Ising-nematic phase. For d = 2, the
two transitions are split at finite temperatures, but merge
into a single first-order transition at T = 0 (see Fig. 2).
These large-N results, reproduced in the Appendix, were
obtained before6 and confirmed by renormalization group
analysis14–16.
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III. LARGE-N SOLUTION FOR A SINGLE
DROPLET

To assess the relevance of rare regions to the nematic
and DW quantum phase transitions, we first solve the
large-N saddle-point equations for a single droplet of lin-
ear size L, and later average over the distribution of
droplets. The strategy is similar to that employed in
Ref. 36 to study Griffiths effects near a metallic anti-
ferromagnetic quantum critical point. Due to the finite
size of the droplet, the momentum integration in Eq. (2)
is replaced by a discrete sum over momenta q = 2π

L n,
with n = (nx, ny) and nx,y integer. The saddle-point
equations at T = 0 become (details in Appendix A):

r = r0 − ur

(
ln

Λ2√
r2 − φ2

+ 1− φ

r
tanh−1 φ

r

)

+
2πu

L2

{
F
[
(r − φ)L2

]
+ F

[
(r + φ)L2

]}
(3)

φ = φg

(
ln

Λ2√
r2 − φ2

+ 1− r

φ
tanh−1 φ

r

)

+
2πg

L2

{
F
[
(r − φ)L2

]
−F

[
(r + φ)L2

]}
(4)

where r = r0 + ψ is proportional to the inverse squared
DW correlation length, r0 → r0 + u

´
q,ω

1
q2+γ|ω| is the

renormalized distance to the DW quantum critical point,
and Λ is the momentum cutoff, hereafter set to be 1/a
(a is the lattice parameter). Note that the quartic co-
efficients have been rescaled by u → u/

(
4Nπ2γ

)
and

g → g/
(
4Nπ2γ

)
. The droplet finite-size effects are

encoded in the function F(y) = 1
π

∑
n6=0

√
y

|n|K1

(
|n|√y

)
,

where K1 (x) is the modified Bessel function of the sec-
ond kind. Because F (y � 1) ∼ y1/4 e−

√
y, Eqs. (3)-(4)

recover the saddle-point expressions for the infinite sys-
tem L→∞.

To understand how the finite size of the droplet af-
fects the DW and nematic transitions, we recall that the
DW transition takes place when r = |φ|. But because
F (y � 1) ∼ − ln y, there is no solution to Eqs. (3)-(4)
with r = |φ|. This is a consequence of Mermin-Wagner
theorem: at T = 0, the finite-size droplet has an effective
dimensionality deff = z = 2, which is the lower critical
dimension for the DW transition36.

The situation is completely different for the Ising-
nematic transition: since its lower critical dimension
dc = 1 < deff , long-range Ising-nematic order can onset
at T = 0 even in a droplet of finite size L19,38. To address
which droplets order first, and the character of the Ising-
nematic transition inside them, we solved Eqs. (3)-(4)
to obtain φ (r0, L). The results are shown in Fig. 3; for
comparison, we also show the first-order behavior of the
nematic order parameter of the clean system, φclean ≡
φ (L→∞), which orders at r∗0,clean ≡ r∗0 (L→∞).

The figure illustrates two very different behaviors:
droplets of moderately large sizes display a non-zero ne-

Figure 3. Nematic order parameter φ (in units of Λ2) in-
side a droplet of “volume” L2, as a function of the control
parameter r0 (in units of the value r∗0,clean for which the
clean system undergoes the first-order nematic transition).
φclean ≡ φ (L→∞) is shown as a dashed line. First-order
transitions are indicated by the dotted line. The inset shows
the value of the tuning parameter r∗0 at the nematic transition
inside a droplet as function of the droplet volume L2.

matic order parameter already in the non-ordered phase
of the clean system, i.e. the nematic transition inside
these droplets happens at r∗0 (L) > r∗0,clean. Impor-
tantly, the nematic transition in these droplets is gen-
erally second-order. In contrast, large droplets undergo
a first-order nematic transition very close to the clean
phase transition, i.e. r∗0 (L) ≈ r∗0,clean. Note that small
droplets (not shown) only order below r∗0,clean. This is
more clearly seen in the inset, which shows the nematic
transition parameter r∗0 (L) as function of the size L.
For the particular values of u and g used here, u = 0.9
and g = 0.25u, the first droplet to order has “volume”
L2 ≈ 40a2, and all droplets with volumes smaller than
L2 = 58a2 undergo a second-order nematic transition.
As we show in Appendix B, this behavior is not specific
to these values of u and g, but happen in a wide region of
the (u, g) parameter space. Importantly, for all droplets,
the DW transition does not take place, i.e. the nematic
and DW quantum phase transitions are naturally split
inside a finite-size droplet.

IV. AVERAGE OVER DROPLETS

To assess the impact of the nematically ordered
droplets on the thermodynamic properties of the system,
we need to average over the different possible droplets.
The key quantity is thus the probability P (V ) of a
impurity-free droplet of volume V ≡ L2 being realized
in the system, which is determined by the disorder dis-
tribution. For concreteness, we consider random dilu-
tions that kill DW and nematic order at a given site with
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probability 1 − p, such that p = 0 (p = 1) corresponds
to the completely dirty (clean) system. Using results of
percolation theory40, we can write down the approximate
expression (see Appendix C for details):

P (V ) =
pc V

1−τ exp (−V/V0)∑
V 1−τ exp (−V/V0)

(5)

Here, τ = 187/91 is a critical exponent, V0 is the typi-
cal volume of an impurity-free droplet for a given p, and
pc is the percolation threshold for clean sites. Because
V0 changes from 0 to ∞ from p = 0, 1 to the percolation
threshold p = pc, we treat V0 as our disorder “tuning
parameter,” instead of p.

We consider here the case where dilution is moder-
ate, and the system is above the percolating threshold
for clean sites, p > pc. In this case, in addition to the
finite-size droplets described above, there is a single in-
finite percolating droplet devoid of impurities, which be-
haves similarly to the clean bulk system (see schematic
Fig. 1). Because the infinite droplet has less sites than
the bulk system, the DW-nematic first-order transition
inside of it is expected to happen for r∗0,dirty < r∗0,clean.
Thus, for r0 > r∗0,dirty, the average Ising-nematic order
parameter is given solely by the contributions from the
finite-size droplets, φ̄ =

∑
P (V )φ (V ) dV . We tacitly

assume that there is a very weak inter-droplet interac-
tion – for instance mediated by the lattice – that align
the Ising-nematic order parameters of different droplets.

The results for φ̄ are show in Fig. 4 for different values
of V0. Because the first droplets to order have moderate
sizes and undergo a second-order transition, φ̄ seems to
evolve continuously as function of r0. Our numerical re-
sult suggest a kink of φ̄ at r∗0,clean, although a small jump
might also be possible. This behavior is a consequence of
the fact that most of the large droplets order very close
to r∗0,clean (see inset of Fig. 3). At r∗0,dirty, φ̄ acquires the
additional contribution from the infinite droplet. At this
point, the resulting nematic order parameter can then
either undergo a meta-nematic transition, in which it
jumps between two non-zero values, or display another
kink in a continuous fashion. The ultimate behavior is
determined by details of the disorder distribution beyond
the scope of our model.

The proliferation of moderate-size droplets sustaining
long-range nematic order upon approaching the clean
DW-nematic quantum phase transition at r∗0,clean signals
the emergence of an inhomogeneously ordered nematic
state separated from the DW transition. The resulting
phase transition is thus a smeared quantum phase tran-
sition. The smeared nematic quantum phase transition
discovered here is very different than the smeared transi-
tions discussed previously in other contexts21,35,38 (for a
review, see Ref. 41? ). First, in our case, many finite-size
droplets order even before the clean system. Second, the
droplets that order first are not the largest ones, but the
droplets of intermediate size. This ensures the existence
of a well-defined critical point, regardless of whether the

Figure 4. Average nematic order parameter of all droplets,
φ̄ (in units of Λ2), as function of the control parameter, r0
(in units of r∗0,clean). Different curves correspond to different
“critical” droplet volumes V0 associated with the probability
distribution (5).

disorder distribution is bounded or not. Finally, the size
of the droplets determines not only when they order, but
also the character of the corresponding phase transition
(i.e. second- or first-order). As for the DW order, it
only onsets at r∗0,dirty, since finite-size droplets cannot
sustain DW long-range order. However, in the regime
r∗0,dirty < r0 < r∗0,clean, following the arguments of Ref.
36, exponentially large droplets have an exponentially
large correlation length, which promote quantum Grif-
fiths behavior. Thus, the regime of inhomogeneous ne-
matic order is followed by a quantum Griffiths DW phase,
as shown schematically in Fig. 2. The latter is char-
acterized by power-law singularities of thermodynamic
and DW-related quantities, with non-universal exponents
that depend on r0

36. Note that, although our analysis
has been restricted to T = 0, we expect the smeared
transition behavior to persist for small enough tempera-
tures, as the moderate sizes of the relevant droplets can
still be smaller than the nematic correlation length.

V. CONCLUDING REMARKS

We showed that even weak disorder fundamentally al-
ters the properties of the Ising-nematic quantum phase
transition associated with a mother charge or spin
density-wave quantum phase transition. The simultane-
ous first-order transition of the clean, itinerant system is
replaced by an interesting regime that displays inhomoge-
neous (but long-range) smeared nematic order accompa-
nied by a DW quantum Griffiths phase. The extent and
relevance of this regime is controlled by the likelihood of
finding isolated droplets of moderate (rather than very
large) sizes, which in turn is controlled by the strength
of disorder.

These results have important implications for the
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understanding of the phase diagrams of copper-based
and iron-based superconductors, where an Ising-nematic
phase has been argued to emerge from charge and/or spin
density-waves. In the case of the iron pnictides, where the
Ising-nematic and DW transition lines follow each other
closely, these effects are expected to be more pronounced
and less ambiguous. Interestingly, elasto-resistance mea-
surements of the nematic susceptibility upon approach-
ing the putative nematic-DW quantum phase transition
from high temperatures revealed a weakening of fluctu-
ations and deviation from Curie-Weiss behavior at low
temperatures30. This behavior was observed only in com-
pounds with sufficient degree of disorder. We argue that
it could be attributed, at least in part, to the onset of
long-range nematic order in finite-size droplets. This phe-
nomenon may also help understand the appearance of lo-
cal inhomogeneous nematic order in NQR measurements
in the nominally tetragonal state43,44. Finally, magnetic
measurements in Mn-doped BaFe2As2, which is signifi-
cantly less homogeneous than other doped compounds,
have been interpreted in terms of a magnetic Griffiths
phase45,46. It would be interesting to probe whether lo-
cal nematic order also emerges in these compounds, si-
multaneously to the appearance of the reported Griffiths
behavior.
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Appendix A: Derivation of the saddle-point
equations for a droplet

We start by rewriting the effective large-N rescaled
action for a droplet with linear size L, as given in the
main text:

Seff [ψ, φ] =
1

L2

∑
q

ˆ
dω

2π

{
φ2

2g
− ψ2

2u

+
1

2
ln
[(
χ−1
q,ω + ψ

)2 − φ2
]}

(A1)

where φ is the Ising-nematic order parameter and ψ is the
DW fluctuation field. Here, χq,ω =

(
r0 + q2 + γ |ω|

)−1 is
the bare DW susceptibility with Landau damping γ and
q = 2π

L n is the discretized momentum with n = (nx, ny)
and nx, ny ∈ Z. The saddle-point of the effective action
is given by setting δSeff

δψ = δSeff
δφ = 0, which corresponds

to the following coupled equations,

r − r0

u
=

1

2L2

∑
q

ˆ
dω

2π

(
1

r + q2 + γ |ω| − φ

+
1

r + q2 + γ |ω|+ φ

)
(A2)

φ

g
=

1

2L2

∑
q

ˆ
dω

2π

(
1

r + q2 + γ |ω| − φ
(A3)

− 1

r + q2 + γ |ω|+ φ

)
(A4)

where r ≡ r0 + ψ. To tackle the discrete momentum
summation, we apply the Poisson summation formula36:

1

Ld

∑
q

f (q) =

ˆ
ddq

(2π)
d
f (q) +

∑
n6=0

ˆ
ddq

(2π)
d
f (q) eiq·nL

(A5)
The integrals appearing in the equations above can be

evaluated analytically:

ˆ
d2qdω

(2π)
3

1

A+ q2 + γ |ω|
=

ˆ
d2qdω

(2π)
3

1

q2 + γ |ω|

− A

4π2γ

[
ln

(
Λ2

A

)
+ 1

]
(A6)

and:

ˆ
d2qdω

(2π)
3

eiq·nL

A+ q2 + γ |ω|
=

2
√
A

L |n|
K1

(√
AL |n|

)
(A7)

where we used the fact that the momentum cutoff is such
that Λ2 � r ± φ. We verified that this condition is
met for the parameters u and g used in the main text.
Defining r̃0 = r0 + u

´
d2qdω
(2π)3

1
q2+γ|ω| , ũ = u/

(
4π2γ

)
, and

g̃ = g/
(
4π2γ

)
, we arrive at the equations displayed in

the main text:

r = r̃0 − ũr

(
ln

Λ2√
r2 − φ2

+ 1− φ

r
tanh−1 φ

r

)

+
2πũ

L2

(
F
[
(r − φ)L2

]
+ F

[
(r + φ)L2

])
(A8)

φ = φg̃

(
ln

Λ2√
r2 − φ2

+ 1− r

φ
tanh−1 φ

r

)

+
2πg̃

L2

(
F
[
(r − φ)L2

]
−F

[
(r + φ)L2

])
(A9)

where we defined the function:

F (y) ≡ 1

π

∑
n6=0

√
y

|n|
K1 (|n|√y) (A10)
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Figure 5. Function F (y) defined in Eq. (A10).

Note that, for φ = 0, we recover the self-consistent
equations of Ref. 36 for an itinerant antiferromagnet.
Using the fact that:

√
y

|n|
K1 (|n|√y) =

1

4

ˆ ∞
0

duu−2e−yu−
|n|2
4u (A11)

we can evaluate the sum and express the function as an
integral:

F (y) =
1

4π

ˆ ∞
0

duu−2e−yu
[
θ2

3

(
0, e−

1
4u

)
− 1
]

(A12)

where θ3 (a, b) is the elliptic theta function. The asymp-
totic behavior of F (y) follows from Eqs. (A10) and
(A12). For y � 1, the sum in Eq. (A10) is dominated
by the |n| = 1 contribution, and we obtain:

F (y � 1) ' 2y1/4 e−
√
y

√
2π

(A13)

For y � 1, it is more convenient to use the integral rep-
resentation (A12). Following the same steps as Ref. 36,
it follows that the function has a logarithmic divergence:

F (y � 1) ' − ln

(
y eγ+1

4π

)
(A14)

where γ is the Euler number. Equations (A8) and (A9)
are solved numerically to yield φ (r0, L). In the numerical
calculation, we use an interpolation function for F (y)
that interpolates between Eq. (A10) with 80× 80 terms
in the sum and the asymptotic behavior in Eq. (A14).
The resulting function is shown in Fig. 5. We checked
that the error with respect to the exact function F is no
more than 2%.

Before proceeding, we rederive the solutions of the self-
consistent equations in the clean limit (i.e. L → ∞,

which makes F (y) → 0). In this case, the solution of
Eqs. (A8) and (A9) shows that r0 is maximum for φ = r.
However, φ = r implies a DW transition, since the renor-
malized DW susceptibility is (r − φ)

−1. Thus, one has to
go back to the action (A1) and consider the possibility
of a finite DW order parameter ∆. In the large-N limit,
this corresponds to adding the term ∆2 (r − φ) in the ac-
tion (see for instance6). Minimizing with respect to ∆,
it is clear that only when φ = r is that we obtain ∆ 6= 0.
In this case, the self-consistent equations become:

φ = r0 − φu
(

ln
Λ2

2φ
+ 1

)
+ u∆2 (A15)

φ = φg

(
ln

Λ2

2φ
+ 1

)
+ g∆2 (A16)

where unimportant constants have been absorbed in ∆.
We can now eliminate ∆ to find r0 as function of φ:

r0

u
= φ

(
1

u
− 1

g

)
+ 2φ

(
ln

Λ2

2φ
+ 1

)
(A17)

The first-order transition therefore takes place at:

r∗0,clean

Λ2
= u exp

(
1

2u
− 1

2g

)
(A18)

and the jump in φ is given by:

φ∗clean =
r∗0,clean

2u
(A19)

For the parameters used in the main text, u = 0.9

and g = 0.25u, we find r∗0,clean
Λ2 ≈ 0.17 and φ∗clean

Λ2 ≈ 0.09.
Note that, inside the finite size droplets, r > φ always.
Therefore, we do not need to add the DW field ∆ in the
self-consistent equations.

Appendix B: Properties of the Ising-nematic order
as function of the size of the droplets

Here we discuss how two properties of the Ising-
nematic order depend on the size L of the droplet: the
character of the transition and the value of the tuning
parameter r0 for which the quantum transition takes
place. We consider here the two self-consistent equa-
tions (A8) and (A9) with reduced variables (r0, r, φ) →
(r0, r, φ) /Λ2. Furthermore, the size L of the droplet is
measured in units of 1/Λ ≈ a, where a is the lattice con-
stant. For convenience, we drop the tilde notation of Eqs.
(A8) and (A9) in this section.

The condition for a droplet of size L to undergo a con-
tinuous Ising-nematic quantum phase transition is that

dr0

dφ

∣∣∣∣
φ→0

≤ 0 (B1)
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where r0 is the tuning parameter. Taking derivatives with respect to φ for the self-consistent equations (A8)
and (A9), we find:

1

u

dr0

dφ
=

(
1

u
+ ln

1√
r2 − φ2

)
dr

dφ
− u tanh−1 φ

r
− 2π

{
F ′
[
(r + φ)L2

](
1 +

dr

dφ

)
−F ′

[
(r − φ)L2

](
1− dr

dφ

)}
(B2)

dr

dφ
=
− 1
g + ln 1√

r2−φ2
− 2π

(
F ′
[
(r + φ)L2

]
+ F ′

[
(r − φ)L2

])
tanh−1

(
φ
r

)
+ 2π (F ′ [(r + φ)L2]−F ′ [(r − φ)L2])

(B3)

We can eliminate the logarithms by noting that the
second self-consistent equation gives:

1

g
= ln

1√
r2 − φ2

+ 1− r

φ
tanh−1

(
φ

r

)
− 2π

φL2

(
F
[
(r + φ)L2

]
−F

[
(r − φ)L2

])
(B4)

Substituting Eq. (B4) in Eqs. (B2)-(B3), and then
expanding for small φ, we find:

dr0

dφ

∣∣∣∣
φ→0

=
u

λ

φ

3r(0)

1− 4πζ2F ′′′ (ζ)− 3λ [1 + 4πζF ′′ (ζ)]
2

1 + 4πζF ′′ (ζ)

(B5)
where we defined, for convenience, ζ = r(0)L2 and 1

λ =
1
u + 1

g . From (B5), the condition for a droplet to undergo
a continuous Ising-nematic quantum phase transition is:

(1− 3λ)− 4πζ2F
′′′

(ζ)

− 24πλζF ′′ (ζ)− 48π2λζ2 [F ′′ (ζ)]
2 ≤ 0 (B6)

Note that, here, r(0) is a shorthand notation for r(0) ≡
r (φ = 0). Thus, its value, as well as the corresponding
r0, are determined by taking the limit φ = 0 in the self-
consistent equations (A8) and (A9):

r0 = ur(0)

[
1

u
+ 1− ln r(0) − 4π

ζ
F (ζ)

]
(B7)

1

g
= − ln r(0) − 4πF ′ (ζ) (B8)

Therefore, for given g and u, we can find the criti-
cal size of the droplet Lc1 beyond which it undergoes a
first-order transition by solving Eqs. (B6) and (B8) si-
multaneously:

L2
c1 = ζc1 exp

[
1

g
+ 4πF ′ (ζc1)

]
(B9)

where ζc1 is the value for which Eq. (B6) satisfies the
identity. For the parameters used in the main text, u =
0.9 and g/u = 0.25, we find L2

c1 ≈ 58 .
Next, we analyze which of the droplets undergoing a

second-order phase transition orders at the highest value
of the tuning parameter r0, i.e. we look for the critical
droplet area L2

c2 for which: dr0
dL2 = 0.

Taking the derivative with respect to L2 on Eqs. (B7)
and (B8), we find:

1

u

dr0

dL2
=
dr(0)

dL2

[
1

λ
+ 4πF ′

(
r(0)L2

)]
+

4π

L4
F
(
r(0)L2

)
− 4π

L2
F ′
(
r(0)L2

)(
r(0) + L2 dr

(0)

dL2

)
(B10)

0 = − 1

r(0)

dr(0)

dL2
− 4πF ′′

(
r(0)L2

)(
r(0) + L2 dr

(0)

dL2

)
(B11)

Solving for dr0
dL2 , we obtain

dr0

dL2
=
u

λ

4π exp
(
− 2
g − 8πF ′ (ζ)

)
ζ + 4πζ2F ′′ (ζ)

×
{
λ [F (ζ)− ζF ′ (ζ)]

[
1

ζ
+ 4πF ′′ (ζ)

]
− ζF ′′ (ζ)

}
(B12)

Therefore, the first droplet that undergoes a continu-
ous Ising-nematic quantum phase transition satisfies

[F (ζc2)− ζc2F ′ (ζc2)]

[
1

ζc2
+ 4πF ′′ (ζc2)

]
=

1

λ
ζc2F ′′ (ζc2)

(B13)
and its area is given by:

L2
c2 = ζc2 exp

[
1

g
+ 4πF ′ (ζc2)

]
(B14)

Using Eqs. (B7) and (B8), we can find the correspond-
ing value of the control parameter r∗0 (Lc2) at which this
happens:
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Figure 6. Region in the (u, g) parameter space in which the
droplet that orders first does so before the transition of the
clean system, i.e, r∗0 (Lc2) > r∗0,clean.

r∗0 (Lc2) =u exp

(
−1

g
− 4πF ′ (ζc2)

)
×
[

1

λ
+ 1 + 4πF ′ (ζc2)− 4π

ζc2
F (ζc2)

]
(B15)

It is instructive to compare it with the value r∗0,clean for
which the first-order transition of the clean system takes
place, see Eq. (A18):

r∗0 (Lc2)

r∗0,clean

= exp

(
− 1

2λ
− 4πF ′ (ζc2)

)
×
[

1

λ
+ 1 + 4πF ′ (ζc2)− 4π

ζc2
F (ζc2)

]
(B16)

For the parameters used in the main text, u = 0.9

and g = 0.25u, we find L2
c2 ≈ 40 and r∗0 (Lc2)

r∗0,clean
≈ 1.08.

More generally, as a function of the two parameters u
and g, there is a wide region in parameter space in which
r∗0 (Lc2)
r∗0,clean

> 1, shown as the shaded area in Fig. 6.

Appendix C: Derivation of the probability
distribution for the droplets sizes

In this section, we use results from percolation the-
ory to derive the approximate probability distribution
function P (V ) of finding a finite droplet with “volume”
V = L2 that is devoid of impurities. We consider that a
local site-impurity completely suppresses both DW and
nematic orders. The concentration of impurities is 1− p,
i.e. the concentration of clean sites is p. From perco-
lation theory, the number of finite-size “clean” clusters
(droplets) containing s sites, denoted ns, satisfies the
scaling relation40:

ns = N0s
−τf (s/s0) (C1)

where s0, the typical cluster size, diverges at the perco-
lation threshold pc, τ is a critical exponent, and N0 is a
normalization constant. The precise form of the scaling
function f(x) can only be obtained numerically. How-
ever, an often used approximation is an exponential de-
cay:

ns = N0s
−τ exp (−s/s0) (C2)

Now, the total number of clusters of size s is given by
Nns, where N is the total number of sites. This implies
that the total number of sites that belong to a cluster of
size s is Nsns. Therefore, the probability P (s) that a
given site belong to a cluster of size s is:

P (s) ≡ Nsns
N

= N0s
1−τ exp (−s/s0) (C3)

The constant N0 is given by the normalization condi-
tion on ns:

∑
s

sns = p− P (p) (C4)

where P (p) is the number of sites belonging to the infinite
cluster (divided by the total number of sites). Thus, we
obtain:

N0 =
p− P (p)∑

s
s1−τe−s/s0

(C5)

Importantly, p−P (p) vanishes for both p = 0 and p =
1, and has a maximum near the percolation threshold pc.
If we are not too far from the percolation threshold, we
can then approximate p−P (p) by pc, as the quantity that
changes more strongly upon approaching the percolation
threshold is s0, which diverges at pc. We then obtain:

P (s) ≈ pc s
1−τe−s/s0∑

s
s1−τe−s/s0

(C6)

The fact that P (s) is not necessarily normalized to 1 is
due to the fact that not all sites belong to a finite cluster.

The relationship between s and the linear size L of the
cluster that enters the self-consistent equations (A8) and
(A9) is s = L2/a2, where a is the lattice constant. In
our problem, as explained above, L is given in units of
the inverse momentum cutoff, L = L̃/Λ. Thus, we arrive
at L̃2 = s (Λa)

2, with integer s. For concreteness, in our
calculations we set Λ = 1/a.



9

1 S. A. Kivelson, E. Fradkin, and V. J. Emery, Nature 393,
550 (1998).

2 M. Vojta, Advances in Physics 58, 699 (2009).
3 R. M. Fernandes, a. V. Chubukov, and J. Schmalian, Na-
ture Physics 10, 97 (2014).

4 C. Xu, M. Müller, and S. Sachdev, Phys. Rev. B 78,
020501 (2008).

5 C. Fang, H. Yao, W.-F. Tsai, J.-P. Hu, and S. A. Kivelson,
Phys. Rev. B 77, 224509 (2008).

6 R. M. Fernandes, A. V. Chubukov, J. Knolle, I. Eremin,
and J. Schmalian, Phys. Rev. B 85, 024534 (2012).

7 Y. Wang and A. Chubukov, Phys. Rev. B 90, 035149
(2014).

8 M. Schütt and R. M. Fernandes, Phys. Rev. Lett. 115,
027005 (2015).

9 L. Nie, A. V. Maharaj, E. Fradkin, and S. A. Kivelson,
Phys. Rev. B 96, 085142 (2017).

10 K. Hashimoto, K. Cho, T. Shibauchi, S. Kasahara,
Y. Mizukami, R. Katsumata, Y. Tsuruhara, T. Terashima,
H. Ikeda, M. A. Tanatar, H. Kitano, N. Salovich, R. W.
Giannetta, P. Walmsley, A. Carrington, R. Prozorov, and
Y. Matsuda, Science 336, 1554 (2012).

11 B. J. Ramshaw, S. E. Sebastian, R. D. McDonald, J. Day,
B. S. Tan, Z. Zhu, J. B. Betts, R. Liang, D. A. Bonn, W. N.
Hardy, and N. Harrison, Science 348, 317 (2015).

12 I. M. Hayes, R. D. McDonald, N. P. Breznay, T. Helm,
P. J. W. Moll, M. Wartenbe, A. Shekhter, and J. G. An-
alytis, Nature Physics 12, 916 EP (2016).

13 Y. Schattner, S. Lederer, S. A. Kivelson, and E. Berg,
Phys. Rev. X 6, 031028 (2016).

14 Y. Qi and C. Xu, Phys. Rev. B 80, 094402 (2009).
15 A. J. Millis, Phys. Rev. B 81, 035117 (2010).
16 Y. Kamiya, N. Kawashima, and C. D. Batista, Phys. Rev.

B 84, 214429 (2011).
17 A. H. Castro Neto, G. Castilla, and B. A. Jones, Phys.

Rev. Lett. 81, 3531 (1998).
18 S. Sachdev, C. Buragohain, and M. Vojta, Science 286,

2479 (1999).
19 A. J. Millis, D. K. Morr, and J. Schmalian, Phys. Rev.

Lett. 87, 167202 (2001).
20 H. Maebashi, K. Miyake, and C. M. Varma, Phys. Rev.

Lett. 88, 226403 (2002).
21 T. Vojta, Phys. Rev. Lett. 90, 107202 (2003).
22 V. Dobrosavljević and E. Miranda, Phys. Rev. Lett. 94,

187203 (2005).
23 T. Vojta and J. Schmalian, Phys. Rev. Lett. 95, 237206

(2005).

24 H. Alloul, J. Bobroff, M. Gabay, and P. J. Hirschfeld, Rev.
Mod. Phys. 81, 45 (2009).

25 B. M. Andersen, S. Graser, and P. J. Hirschfeld, Phys.
Rev. Lett. 105, 147002 (2010).

26 E. C. Andrade, E. Miranda, and V. Dobrosavljević, Phys.
Rev. Lett. 104, 236401 (2010).

27 E. W. Carlson, K. A. Dahmen, E. Fradkin, and S. A.
Kivelson, Phys. Rev. Lett. 96, 097003 (2006).

28 K. Lee, S. A. Kivelson, and E.-A. Kim, Phys. Rev. B 94,
014204 (2016).

29 V. Mishra and P. J. Hirschfeld, New Journal of Physics 18,
103001 (2016).

30 H.-H. Kuo, J.-H. Chu, J. C. Palmstrom, S. A. Kivelson,
and I. R. Fisher, Science 352, 958 (2016).

31 L. Nie, G. Tarjus, and S. A. Kivelson, Proceedings of the
National Academy of Sciences 111, 7980 (2014).

32 M. Hoyer, R. M. Fernandes, A. Levchenko, and
J. Schmalian, Phys. Rev. B 93, 144414 (2016).

33 B. M. McCoy and T. T. Wu, Phys. Rev. 176, 631 (1968).
34 R. B. Griffiths, Phys. Rev. Lett. 23, 17 (1969).
35 R. Sknepnek and T. Vojta, Phys. Rev. B 69, 174410 (2004).
36 T. Vojta and J. Schmalian, Phys. Rev. B 72, 045438

(2005).
37 J. A. Hoyos and T. Vojta, Phys. Rev. B 74, 140401 (2006).
38 J. A. Hoyos and T. Vojta, Phys. Rev. Lett. 100, 240601

(2008).
39 M. Al-Ali, J. A. Hoyos, and T. Vojta, Phys. Rev. B 86,

075119 (2012).
40 A. Aharony and D. Stauffer, Introduction to percolation

theory (Taylor & Francis, 2003).
41 T. Vojta, Journal of Physics A: Mathematical and General

39, R143 (2006).
42 T. Vojta, Journal of Low Temperature Physics 161, 299

(2010).
43 G. Lang, H.-J. Grafe, D. Paar, F. Hammerath, K. Man-

they, G. Behr, J. Werner, and B. Büchner, Phys. Rev.
Lett. 104, 097001 (2010).

44 A. P. Dioguardi, T. Kissikov, C. H. Lin, K. R. Shirer, M. M.
Lawson, H.-J. Grafe, J.-H. Chu, I. R. Fisher, R. M. Fer-
nandes, and N. J. Curro, Phys. Rev. Lett. 116, 107202
(2016).

45 D. S. Inosov, G. Friemel, J. T. Park, A. C. Walters, Y. Tex-
ier, Y. Laplace, J. Bobroff, V. Hinkov, D. L. Sun, Y. Liu,
R. Khasanov, K. Sedlak, P. Bourges, Y. Sidis, A. Ivanov,
C. T. Lin, T. Keller, and B. Keimer, Phys. Rev. B 87,
224425 (2013).

46 M. N. Gastiasoro and B. M. Andersen, Phys. Rev. Lett.
113, 067002 (2014).


