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Kondo insulators are emerging as a simplified setting to study both magnetic and insulator-to-
metal quantum phase transitions. Here, we study the half-filled Anderson lattice model defined on a
magnetically frustrated Shastry-Sutherland geometry. We determine a “global” phase diagram that
applies to both the local-moment and intermediate-valence regimes. This provides the theoretical
basis for understanding how tuning a Kondo insulator by external parameters can close its hybridiza-
tion gap, liberate the local-moment spins from the conduction electrons, and lead to a magnetically
correlated metal. We also calculate the momentum distribution of the single-particle excitations
in the Kondo insulating state, and show how Fermi-surface-like features emerge as a precursor to
the actual Fermi surfaces of the Kondo-destroyed metals. The implications for an incipient Fermi
surface and quantum phase transitions of Kondo insulators including SmB6 are discussed.

PACS numbers: 71.10.Hf, 71.27.+a, 75.20.Hr

Quantum criticality in the vicinity of antiferromag-
netic order is of interest to a variety of strongly corre-
lated electron systems [1]. Heavy fermion systems oc-
cupy a special place in this context [2, 3]. These sys-
tems are typically described by a Kondo lattice model,
which contains a lattice of local-moment spins coupled
to a band of conduction electrons. Antiferromagnetic
(AF) quantum critical points (QCPs) have been iden-
tified in a host of heavy fermion metals. Experimental
studies at such QCPs [4–7] have provided evidence for
a Kondo-destruction local QCP [8–10], across which the
Fermi surface jumps from “large” (incorporating the f -
electrons) to “small” (excluding the f -electrons). Exper-
imental efforts have also been devoted to heavy fermion
metals that allow a systematic tuning of inherent quan-
tum fluctuations, through magnetic frustration [11–15],
dimensionality [16], or other means [17–19], which shed
new light on the emergence of novel phases. Theoreti-
cal considerations of such effects have advanced a global
phase diagram [20–23].

Such developments in heavy fermion metals naturally
lead one to ask whether and how novel phases and their
transitions can be realized in Kondo insulators [24]. Such
insulating states arise when the filling is commensurate
and the chemical potential falls in the middle of a hy-
bridization gap [25, 26]. If, by analogy with the case
of the heavy fermion metals, an external parameter such
as pressure, magnetic field, or doping tunes the system
across a Kondo-destruction transition, the gap of the
Kondo insulator will close. At the same time, the local-
moment spins will be liberated from the conduction elec-

trons, thereby yielding magnetic states in which the spin-
rotational invariance is either spontaneously broken (e.g.,
an AF order) or preserved (a valence-bond solid or a spin
liquid). While these types of qualitative considerations
have led to a proposed global phase diagram for Kondo
insulators [27], systematic theoretical studies have yet to
be performed. In addition, the case of mixed valency that
is thought to be relevant for many Kondo insulators has
never been considered in this context.

Studies along this direction are also important to un-
derstand the on-going experiments on Kondo insula-
tors [24], which in recent years have been particularly
fueled by the search for topological Kondo insulating
states [28] in SmB6 and related systems. Several devel-
opments have in particular motivated the present work.
First, recent experiments [29] in pressurized SmB6 have
provided evidence for quantum criticality of a transition
from a Kondo insulator to an antiferromagnetic metal
[30, 31]. Second, torque magnetometry measurements
have observed a de Haas-van Alphen signal in SmB6 [32–
34], raising the exciting possibility that the Kondo in-
sulator state harbors an incipient Fermi surface of the
same size as the (small) Fermi surface of LaB6 [33, 34].
Third, there is growing experimental evidence that dop-
ing drives a Kondo insulator through a quantum critical
regime into an AF metal, as in CeNiSn (doped with Pt,
Pd, and Cu) [35]. Finally, there are emerging signatures
for quantum criticality in several Kondo insulating com-
pounds, including CeM2Al10 (where M=Fe, Ru, Os) [36]
and tentatively CeRu4Sn6 [37], suggesting that they are
already in proximity to a QCP. These developments have
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made quantum phase transitions in Kondo insulators to
be of both fundamental and topical interest. Thus it is
important to construct a generic theory for how Kondo
insulator systems are tuned across various phase transi-
tions, and how such transitions influence the electronic
properties of the Kondo insulating state.
In this Letter, we study the periodic Anderson model

(PAM) at half filling. In order to concretely study the ef-
fect of tuning quantum fluctuations of the local-moment
magnetism, we focus on the model defined on the geo-
metrically frustrated Shastry-Sutherland lattice. We are
able to, for the first time, i) map out the global phase
diagram from concrete theoretical calculations in well-
defined models; ii) assess the robustness of the global
phase diagram against non-integer f -electron valence
(as are relevant for SmB6); and iii) determine Fermi-
surface-like features in the single-particle excitations of
the Kondo insulating state for both mixed and integer
valences.
The PAM model is written as

H =
∑

(i,j),σ

tij(c
†
iσcjσ + h.c.) +

∑

(i,j)

JijSi · Sj +Hmix (1)

where c†iσ creates a conduction electron of spin σ at site i,
(i, j) denotes neighboring bonds, tij is a hopping strength
, and Jij is an RKKY interaction between the f -electron

moments, and Si = d†iα(σαβ/2)diβ . Hmix is given by

HA = ǫd
∑

i,σ

nd
i,σ+U

∑

i

nd
i,↑n

d
i,↓+V

∑

i,σ

(

c†iσdiσ +H.c.
)

.

(2)

We have introduced na
i,σ = a†iσaiσ , and we focus on the

U → ∞ limit, which allows for a representation, diσ =
fiσb

†
i , in terms of a spinon (fiσ) and a slave boson (bi)

that are subject to the constraint b†ibi +
∑

σ f
†
iσfiσ = 1

[38]. The condition for half filling is nd + nc = 2, where
nd = 1

Nsite

∑

i,σ〈n
d
iσ〉 and nc = 1

Nsite

∑

i,σ〈n
c
iσ〉 are the

fillings of the f - and conduction electrons, respectively.
The on-site energy ǫd is variable to cover both the inter-
mediate valence (nd < 1) and local moment (nd → 1)
regimes. The Kondo lattice model (KLM) is similarly
defined and represented (see the Supplementary Mate-
rial [39]).
For the Kondo lattice case away from half-filling, the

global phase diagram of heavy fermion metals have been
studied [23, 40, 41]. In this work, we consider the PAM
away from integer valence.
Global phase diagram: We consider the two-

dimensional (2D) PAM on the SSL geometry. It contains
J1 and J2, the nearest neighbor (NN) and next nearest
neighbor (NNN) RKKY interactions, respectively, and t1
and t2, the corresponding hoppings.
An important advantage of our treatment is that the

large-N limit (where N corresponds to the generaliza-
tion of spin degeneracy from SU(2) to SU(N)) prop-
erly captures the valence bond solid (VBS) phase of the
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FIG. 1. Global phase diagram of Kondo insulators: Zero tem-
perature phase diagram as a function of frustration (J2/J1)
and hybridization strength (V/t1) for the PAM, for half filling
nd + nc = 2.0, t2/t1 = 0.25 and ǫd/t1 = −0.5. The phases
and their transitions are described in the main text.

SSL Heisenberg model [42, 43]. To study the mag-
netic state in the physical case of N = 2, we follow
the general procedure of Hubbard-Stratonovich decou-
plings [44]: with guidance by the quantum magnetism
effect of the SSL Heisenberg model, we introduce a pa-
rameter x to weight the decoupling of the Heisenberg
interaction into the bond spin-singlet and AF channels,
Dij =

∑

σ f
†
iσfjσ and Si = f †

iα(σαβ/2)fiβ, respectively.
The criterion is that the AF order is accompanied by
nonzero singlet correlations, and this happens in the
range 0.6 < x < 0.8125 [23].
This procedure leads to

HMF = Cmix −
∑

i

[

(b∗i c
†
iσfiσ + h.c.) + λ̃if

†
iσfiσ

]

(3)

+
∑

(i,j)

[

(tijc
†
iσcjσ −Q∗

ijf
†
iσfjσ + h.c.) + J̃ij2Mi · Sj

]

where the sum over σ is implied, and we have de-
fined J̃ij = (1 − x)Jij . We have Cmix = CA +
∑

(i,j)(2|Qij |
2/(xJij) − J̃ijMi · Mj), where CA =

∑

i λi

(

|bi|
2 − 1

)

, λ̃i = λi + ǫd and the hybridization is

bi = V 〈
∑

σ c
†
iσfiσ〉/λi. The Hubbard-Stratonovich pa-

rameters in the resonating valence bond singlet channel
are Qij = xJij〈Dij〉/2 and the AF order parameter is
Mi = 〈Si〉 [with an ordering wave vector Q = (π, π)].
For definiteness, we show the results for x = 0.7; we have
checked that our results are robust for x in the aforemen-
tioned range. The procedure for the KLM is similar [39].
In Fig. 1, we show the phase diagram for t2/t1 = 0.25,

which reveals the three relevant phases. For small V/t1
and J2/J1 the model is in the AF phase, defined by 0 <
|M| < 1/2. Here, Qij is only non-zero along the vertical
and horizontal bonds and bX = 0. As this phase has
no Kondo screening and is antiferromagnetic, we dub it
AFS , where the S denotes a small Fermi surface. In the
limit of large frustration and small V/t1, the model gives
rise to the expected SSL-VBS, where Qx+y and Qx−y are
the only non-zero singlet parameters. In the limit of large
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FIG. 2. (Color online). Effects of the underlying Fermi sur-
face on the band gap in the KI phase at mixed valence. The
band gap ∆Ek is plotted in momentum space for V/t = 2.0 in
the KI phase. The minimum of the direct band gap is along
the underlying small Fermi surface (the same as for kF with
a filling nc ≈ 1.42), marked in red.

hybridization, all the Qij and bX are non-zero, and they
preserve the symmetry of the Shastry-Sutherland lattice.
The results for the KLM are similar [39].

We find direct transitions between AFS and KI, as well
as between SSL-VBS and KI. Importantly, the notion of
Kondo destruction survives the valence fluctuations in-
herent in the PAM [45]. While our approach yields first
order transitions (see the Supplementary Material [39]),
it is important to see how the fluctuation effects beyond
our approach affect the nature of the transitions. Based
on the studies on the quantum fluctuations in pertinent
quantum impurity models [46] and Kondo lattice mod-
els [47] in the context of extended dynamical mean field
approach [8, 10], we expect the transitions to be contin-
uous.

Two remarks are in order. First, the phase diagram
we have found is strikingly similar to the global phase
diagram of Kondo insulators in the integer valence case
proposed on qualitative grounds [27]. More generally, we
can think of J2/J1 as a measure of the strength of quan-
tum fluctuations in the system, and the phase diagram
we have derived is representative of other means of tun-
ing, by either frustration or dimensionality. The overall
topology of the global phase diagram, consisting of two
paramagnetic phases (one being KI and the other with a
small Fermi surface [48]) and one AF metal phase with
a small Fermi surface, is expected to be robust. Sec-
ond, each type of phase transition between the KI phase
and either the AFS or the SSL-VBS is actually a metal

to insulator transition. Thus, there should be signifi-
cant effects on Fermi surface probes as the transition is
approached from the metallic side as well as from the
insulating side, which we now turn to.

Single-particle excitations and precursor of the small

Fermi surface in the KI phase: We focus on the KI
phase at mixed valence. We are primarily interested in
what effects the underlying Fermi surface of the conduc-

tion electrons have “imprinted” on the properties of the
insulating state. For definiteness, we will denote such
small Fermi momenta by kF , and the large Fermi mo-
menta that incorporate the f -electrons (see below) by
k∗
F . Note that in the mixed valence regime kF is de-

fined as the Fermi wave vector corresponding to the fill-
ing of the conduction electrons at a specific hybridization
strength. To make concrete connections, we now restrict
ourselves to a model defined on a 2D square lattice with
NN couplings only, and therefore consider one site per
unit cell. The results for integer valence in the Kondo lat-
tice model in two and three dimensions are similar [39].
In addition, for the KI phase where the magnetic order
parameter vanishes, we no longer consider the effects of
the Heisenberg term in Eq. (1) and set J1 = J2 = 0;
this still keeps the salient properties of the momentum
distribution in this phase. Note that in the following we
only have one hopping parameter t.
We first consider the hybridization gap ∆Ek as a func-

tion of momentum in the mixed valence regime with
V/t = 2.0, which yields a valence nc ≈ 1.42. Solving
for the band structure in the square lattice case yields

two bands Ek± = 1
2 (ǫk − λ̃) ±

√

(

ǫk+λ̃
2

)2

+ b2, where

ǫk = −2t(cos kx + cos ky) − µ is the dispersion with a
bandwidth W = 8t and chemical potential µ. A Kondo
insulator of course has no Fermi surface. However, plot-
ting the direct hybridization gap ∆Ek ≡ Ek+−Ek− as a
function of k reveals a special surface (line) in the Bril-
louin zone. As shown in Fig. 2, ∆Ek is minimized along
the Fermi surface of the conduction electrons marked in
red, which corresponds to the small Fermi surface. We
therefore reach one of our main results, namely ∆Ek is
minimized on the small Fermi momenta, kF . The magni-
tude of the direct and indirect gap in the integer valence
limit is discussed in the Supplementary Material [39].
In addition, we consider the dispersion of the sin-

gle particle excitations and momentum evolution of
the conduction-electron spectral function A(k, ω) =
−ImGc(k, ω)/π [39] as shown in Fig. 3. Along the cut
kx = ky [Fig. 3(a)], we find the quasiparticle states
dispersing towards the small Fermi momentum kF ≈
(0.6π, 0.6π) as the Fermi energy is approached, although
they are eventually gapped out by the hybridization when
k gets too close to kF . This point is also illustrated in the
energy dispersion curves, shown in Fig. 3(c). The same
trend is also observed for the momentum cut ky = 0,
Figs. 3 (b) and (d), for which the small Fermi momen-
tum is never crossed.
To appreciate the above observations, we note that the

small Fermi momenta kF are special because, for V = 0
(but with nc ≈ 1.42), the momentum distribution of the

c electrons, nk =
∑

σ〈c
†
k,σck,σ〉, has a jump of exactly

1 across such momenta. A non-zero hybridization will
smear this jump [38], but this smearing occurs gradu-
ally. Indeed, as shown in Fig. 4 (a), near the small Fermi
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FIG. 3. (Color online). The spectral function for V/t1 = 2.0
along the momentum cuts (a) k = ky = kx and (b) k = kx,
ky = 0. The red lines mark the location of the small Fermi
momentum kF . Energy dispersion curves of the spectral func-
tion are shown along the momentum cuts (c) k = ky = kx and
(d) k = kx, ky = 0. Here, each curve is shifted vertically by an
integer corresponding to the wavenumber index, and we have
broadened the delta function by a Gaussian of width 0.1t.
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FIG. 4. (Color online). Momentum distribution of the c elec-
trons nk, for k = kx = ky . nk versus k for V/t = 2.0 in the
KI phase (a) and the metallic phase with nc = 1.25 (b). The
overall shape across kF in both cases is discussed in the text,
while for the metal there is a small jump at the large Fermi
wave-vector k∗

F (dashed line) of the size of the quasiparticle
residue.

momentum kF , for V/t = 2.0 in the KI phase, we see
a step function for V = 0 develop into an “S-shape”
pinned at kF . (Without a loss of generality, we focus on
0 < kx = ky < π.) This smeared jump in the momentum
distribution of the occupation number at kF is caused by
the same physics that induces the small excitation gap
at kF illustrated in Figs. 2 and 3.

The simplicity of the Kondo insulator is that the
large Fermi momenta, k∗

F , are located at the Brillouin
zone boundary. This is to be contrasted with the
incommensurate-filling case, as illustrated in Fig. 4(b)
for nc = 1.25 (corresponding to nc + nd = 2.25). In
this case, the features at the small Fermi momenta, kF ,
remain similar to the Kondo insulator case. However,
now, k∗

F occurs in the middle of the Brillouin zone. As is

T

δ

TK
0

Pressure or doping

FIG. 5. (Color online). Schematic finite temperature phase
diagram as a function of the control parameter δ. T 0

K is the
bare Kondo temperature.)

characteristics of a heavy fermion metal [38], nk display
a tiny but sharp drop at k∗

F .
Discussion and outlook: Several remarks are in or-

der. Firstly, the global phase diagrams shown in Fig. 1
have a number of consequences. Tuning Kondo insulat-
ing compounds (e.g. under pressure or chemical doping,
which varies the ratio of the RKKY to Kondo interac-
tions) along some tuning-parameter trajectory opens up
the exciting possibility of realizing new types of quantum
phase transitions. Such a tuning can suppress the insu-
lating gap by destroying the Kondo effect, liberate the
local-moment spins, and lead to either an AF or para-
magnetic metallic phase. In these metallic phases, the
Fermi surface is small as defined earlier. With a con-
tinuous closure of the gap, the QCP is of the Kondo-
destruction (local) type and will be interacting (instead
of Gaussian).
Taking a cut in the global phase diagram leads to

a schematic finite temperature phase diagram, as illus-
trated in Fig. 5 corresponding to the Kondo-destroyed
phase nearby to the Kondo insulator being AFS ;
here, both the Néel temperature TN and the Kondo-
destruction energy scale T ∗ go to zero at the QCP. This
provides the theoretical basis to understand why pressure
induces a Kondo insulator to antiferromagnetic metal
transition [29–31] and why signatures of an interacting
QCP such as E/T scaling will accompany such a transi-
tion.
Secondly, we have demonstrated that a precursor

Fermi surface appears in a Kondo insulator, which has
the form of a small Fermi surface without incorporating
the f -electrons. The implications of this are significant.
For example, our results imply that a Kondo insulator
such as SmB6 will have an incipient Fermi surface taking
the form of the actual Fermi surface of LaB6. Quan-
tum oscillations have recently been extensively studied
in SmB6 [32–34], and there is evidence that the oscilla-
tion frequencies are similar to those of LaB6 [33, 34].
In conclusion, we have determined the global phase di-

agram of Kondo insulators in both the periodic Anderson
and Kondo-lattice models. Our result allows the under-
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standing that the pressure tuning of Kondo insulators
induces magnetic metal phases. Our study also under-
scores the simplification of the Kondo insulators com-
pared to the heavy fermion metals, namely the absence
of a (conventional) large Fermi surface. Correspond-
ingly, our results hold the potential to open up an ex-
citing and new direction, viz. to study antiferromagnetic
and insulator-metal quantum phase transitions in Kondo
insulators with varying geometrical frustration, or with
varying dimensionality through thin films or heterostruc-
tures. Finally, we have studied the momentum distribu-
tion of the single-electron excitations in the Kondo in-
sulator phase. We have demonstrated the imprints of a
small Fermi surface in this distribution, which elucidate
the recent dHvA experiments in SmB6.
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