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We theoretically study the electromagnetic response of type-I and type-II centrosymmetric Weyl metals. We
derive an anisotropic permittivity tensor with off-diagonal elements to describe such gyrotropic media. Our
findings reveal that for appropriate Weyl cones tilts, the real part of the transverse component of the permittivity
can exhibit an epsilon-near-zero response. The tilt parameter can also control the amount of loss in the medium,
ranging from lossless to dissipative when transitioning from type-I to type-II. Similarly, by tuning either the fre-
quency of the electromagnetic field or the chemical potential in the system, an epsilon-near-zero response can
appear as the permittivity of the Weyl semimetal transitions between positive and negative values. Employing
the obtained permittivity tensor, we consider a setup where the Weyl semimetal is deposited on a perfect con-
ductive substrate and study the refection and absorption characteristics of this layered configuration. We show
that by choosing the proper geometrical and material parameters, devices can be created that perfectly absorb
electromagnetic energy over a wide angular range of incident electromagnetic waves.

I. INTRODUCTION

Since the advent of metamaterials, efforts to design materi-
als that can be used to control electromagnetic (EM) fields
has flourished. One prominent route involves developing
anisotropic structures whose EM response is described by a
permittivity tensor ε that has components with extreme val-
ues, including epsilon-near-zero (ENZ)1 media, where the
real part of a component of ε vanishes along a given coor-
dinate axis. Within the ENZ regime, the phase of the enter-
ing EM wave can be uniform, and the wavefront conforms
to the shape of the exit side of the ENZ medium.2 A num-
ber of ENZ-based architectures have been fabricated, includ-
ing sub-wavelength dielectric coatings that control the reso-
nant coupling of light with ENZ regions.3 Experimental work
with microwave waveguides4,5 demonstrated how a narrow
ENZ channel can lead to enhanced electromagnetic coupling.
A nanoparticle mixture containing dielectric and metal con-
stituents with an effective ENZ response exhibited an increase
in the superconducting critical temperature.6 The propagation
of a transverse magnetic optical beam through a subwave-
length slit demonstrated a transmission enhancement7 when
the InAsSb semiconductor substrate was tuned to its ENZ fre-
quency.

Many pathways have been studied that lead to the creation
of ENZ materials, including intricate combinations of metal-
dielectric multilayers and arrays of rods, or transparent con-
ducting oxides. Other approaches involve the use of more
exotic materials like graphene8 with its intrinsic two dimen-
sionality and linear dispersion around the Dirac point. Re-
cently, Weyl semimetals9–16 have been added to the ever ex-
panding class of materials that have useful EM properties.
The band structure of a Weyl semimetal (WS) is character-
ized by a conical energy spectrum with an even number of
Weyl nodes that are topologically protected. The chiralities
of Weyl nodes correspond to topological charges that result
in monopoles and anti-monopoles in the Berry curvature11,12.
Indeed, the Weyl semimetal phase manifests itself in unusual
surface states with Fermi arcs and chiral anomalies10–13,16.

Weyl semimetals are topologically nontrivial materials that
are predicted for the magnetic compounds Y2IrO7, Eu2IrO7,
and HgCr2Se4

17,18, and in some nonmagnetic samples, in-
cluding TaAs, TaP, NbAs, and NbP19–23. The WS TaAs was
shown to have a wide spectral range as a room temperature
photodetector.24

The synthesis of different alloys into Weyl semimetal crys-
tals can result in a novel type of Weyl semimetal that is char-
acterized by titled Weyl nodes and an open Fermi surface.
This class of Weyl semimetals is identified as type-II if the
tilt of the Weyl cone exceeds the Fermi velocity.25–32 Since
condensed matter systems do not require Lorentz invariance,
Weyl semimetals are not restricted to closed point-like Fermi
surfaces, and support type-II Weyl fermions25,30. This new
type of Weyl fermion appears at the boundary between elec-
tron and hole pockets25,30. The experimental signatures of this
new phase were recently reported in Refs. 27 and 28. The
effects of Weyl cone tilt on the optical conductivity and polar-
ization was recently studied.33 The effect of a tilt on the ab-
sorption of circular polarized light was studied for both type-I
and type-II cases and it was shown that reversing the tilting di-
rection of Weyl nodes the right-hand and left-hand responses
of Weyl semimetal becomes reversed.34 Also, It was found
that chirality or the tilt-sign in Weyl semimetals with tilted
cones in the absence of time-reversal and inversion symme-
tries can change the sign of the Weyl contribution to the ab-
sorptive Hall conductivity35.

Tunable metamaterial absorbers with active materials have
been explored with a variety of different materials.36–39

The broad tunability of the chemical potential in a WS
makes it a promising material for photonics and plasmonics
applications40–50. The chiral anomaly in a WS can alter sur-
face plasmons and the EM response40,45–50. It has been shown
theoretically49 that measurements of the optical conductivity
and the temperature dependence of the free carrier response in
pyrochlore Eu2Ir2O7 is consistent with the WS phase. Also,
the interband optical conductivity reduces to zero in a contin-
uous fashion at low frequencies as predicted for a WS. The
analysis of experimental data resulted in a Fermi velocity on
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the order of vF ≈ 4 × 107 cm/s45,49. The surface magneto-
plasmons of a Weyl semimetal can turn to low-loss localized
guided modes when two crystals of the WSs with different
magnetization orientations are connected40.

In this paper, we study the anisotropic electromagnetic re-
sponse of both type-I and type-II Weyl semimetals. Our study
includes both analytic and numerical results that reveal the
behavior of each component of the dielectric tensor as a func-
tion of the Weyl cone tilt, chemical potential, and EM wave
frequency. We show that by appropriately tailoring these sys-
tem parameters, the real part of the transverse component of
the permittivity can achieve an ENZ response. In parallel, we
also demonstrate how the dissipative effects in the medium
can be controlled. Utilizing the derived permittivity tensor
and its subsequent numerical analysis, we consider a Weyl
semimetal (both type-I and type-II) on top of a perfectly con-
ducting substrate, and study the absorptance of an incident
electromagnetic wave from vacuum into the Weyl semimetal
surface. Solving Maxwell’s equations, we derive the reflec-
tion and absorption coefficients, and show that by properly
choosing material and geometric parameters, tunable coher-
ent perfect absorption is feasible over a wide range of incident
angles.

The paper is organized as follows. In Sec. II, we present
the derived permittivity tensor applicable to both type-I and
type-II WSs. We apply various approximations, and discuss
the EM response of type-I and type-II WSs in Subsec. II B
and II C, respectively. In Subsec. II D, we numerically illus-
trate and analyze various features of both types of WSs. In
Sec. III, we present a practical application of the analyses
given in Sec. II. Particularly, we study the electromagnetic re-
sponse of a WS grounded by a perfect conductor. Starting
from Maxwell’s equations, we derive analytical expressions
for the reflection and absorption coefficients of this struc-
ture as a function of incident electromagnetic wave angle and
thickness of the WS. Furthermore, we numerically analyze
various aspects of the absorption characteristics of this sys-
tem. Finally, we give concluding remarks in Sec. IV.

II. APPROACH AND RESULTS

In this section, we outline the model Hamiltonian, and cal-
culate the permittivity tensor for both a type-I and type-II
WS. General expressions are given for determining each of
the permittivity components, and analytic results are derived
for various limiting cases. Results are then presented for the
susceptibility and epsilon-near-zero response as a function of
frequency ω, chemical potential µ, and tilt parameter β.

A. Permittivity tensor

Throughout this paper we focus on a model Hamiltonian
with broken time reversal symmetry and only two Weyl nodes.
This model can be achieved through the stacking of multiple
thin films involving a topological insulator and ferromagnet

blocks, as first proposed theoretically10. The Hamiltonian de-
scribing the low energy physics around the two Weyl nodes,
defined by “s = ±”, is given by:

Hs(p) = vF [βs(pz − sQ) + sσ(p− sQez)]. (1)

Here ez is the unit vector along the z direction, and we take
the Fermi velocity vF to be positive. The separation between
two Weyl points in the z direction in momentum space is de-
fined by 2|Q|, where the sign of Q depends on the sign of the
magnetization. The quantities β± are tilting parameters that
control the transition between the type-I and type-II phases.
For centrosymmetric materials with broken time reversal sym-
metry, we apply the condition β+ = −β−. The corresponding
electron Green functions are given by

Gs(εn,p) =
1

2

∑
t=±1

1 + stσp(s)/|p(s)|
iεn + µ− vF [βsp

(s)
z + t|p(s)|]

, (2)

where the index t identifies each of the two subbands, p(s) =
p − sQez , and µ is the chemical potential, in which we set
µ ≥ 0 without loss of generality. The fermionic Matsubara
frequency is εn = πT (2n+1), in which T represents temper-
ature and n is an integer. The dielectric function εab(ω) (where
a, b ≡ x, y, z) is defined through the optical conductivity σab
via:

σab(ω) =
i

ω
lim
|q|→0

[Πab(ω,q)−Πab(0,q)],

εab(ω) = δab + i
σab(ω)

ε0ω
, (3)

where ε0 is the permittivity of free space and the current-
current correlation function reads:

Πab(ω,q) = e2T
∑
n

∑
s=±

Tr
∫

d3p

(2π)3
Ja,sGs(εn + ωk,p + q)

×Jb,sGs(εn,p)
}∣∣∣
iωk→ω+iδ

, (4)

where Js = vF (βsez + sσ), ωk = 2πTk is the bosonic Mat-
subara frequency, and k is an integer. Thus, the permittivity
tensor ε takes the following gyrotropic form that is valid for
both type-I and type-II Weyl semimetal phases:

ε =

 εxx(ω) εxy(ω) 0
εyx(ω) εyy(ω) 0

0 0 εzz(ω)

 , (5a)

where the off-diagonal components are given by εxy(ω) =
−εyx(ω) = iγ(ω). These terms can lead to modified polariza-
tion rotations via the Kerr and Faraday effects.51,52 Variations
in the gyrotropic term can also cause shifts in the surface plas-
mon frequency.53 The εxx,yy(ω) components are equal and
can be written analytically as,

εxx,yy(ω) = 1 +
α

3π

[
ln
∣∣∣∣ 4Γ2

4µ2 − ω2

∣∣∣∣− 4µ2

ω2
+ iπΘ(ω−2µ)

]
,

(5b)
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in which α = e2/(4πε0~vF ) and Γ ∼ vF |Q|, such that
Γ � (ω, µ) is the high-energy cut-off where applicability of
the linear model no longer holds. Here Θ(X) represents the

usual step function. The remaining components involve inte-
grals, which for Γ � (ω, µ), are written in the limit of zero
temperature:

εzz(ω) = 1− πα

ω2

∑
t=±1

∑
s=±

∫
d3p

(2π)3

{
− p2

⊥tω
2
k/4

p3(p2 + ω2
k/4)

Θ(µ− ζs,t) +

(
βs + t

pz
p

)2

δ(µ− ζs,t)

}∣∣∣
iωk→ω+iδ

. (5c)

It is convenient to separate Fermi surface and vacuum contributions to γ(ω) =
∑
s=±[γ

(s)
FS(ω) + γ

(s)
0 (ω)], where

γ
(s)
FS(ω) =

sα

ω2

∫ ∞
0

p⊥dp⊥
2π

∫ Γ−svFQ

−Γ−svFQ
dpz

pz
p

iωk
p2 + ω2

k/4
[Θ(µ− ζs,+)−Θ(µ− ζs,−)− 1]

∣∣∣
iωk→ω+iδ

, (5d)

γ
(s)
0 (ω) =

sα

ω2

∫ ∞
0

p⊥dp⊥
2π

∫ Γ0−svFQ

−Γ0−svFQ
dpz

pz
p

iωk
p2 + ω2

k/4

∣∣∣
iωk→ω+iδ

, (5e)

in which we have defined ζs,t ≡ tp + pzβs, p =
√
p2
z + p2

⊥,
and a momentum cutoff along the z axis, Γ. Generally, the
cut-off Γ is a function of the tilt parameter. Nevertheless, in
our calculations, we choose a large enough cut-off and neglect
the contribution of β to Γ. The cut-off Γ0 > vF |Q| is intro-
duced for the correct definition of the vacuum contribution.

B. Zero tilt phase: β = 0

It is evident that εxx,yy(ω) are independent of the tilting
parameters βs. To reduce ε to the situation where the Weyl
nodes experience no tilt, it suffices to set |β+| = |β−| = 0. In
this case, εzz(ω) = εxx,yy(ω), and the off-diagonal frequency
dependent component γ(ω) reduces to,

γ(ω) =
2α

π

vFQ

ω
, (6)

The gyrotropic parameter γ(ω) can play an important role in
changing the polarization state of electromagnetic waves in-
teracting with the WS via Faraday and Kerr rotations.52 The
imaginary term in Eq. (5b) describes the interband contribu-
tion to the optical conductivity, which exists only when the
frequency ω of the EM wave satisfies ω > 2µ. The interval of
frequencies in which εxx,yy is real and positive correspond to,

2µ > ω > 2µ

√
α

3π(1 + 2α
3π ln

∣∣Γ
µ

∣∣) . (7)

Thus, for frequencies around the chemical potential, 2µ >
ω & µ, the diagonal components εxx,yy do not contribute to
dissipation in the medium. On the other hand, if ω > 2µ,
εxx,yy acquires an imaginary part, leading to dissipation.

C. Finite tilt phase: β 6= 0

We now examine some limiting cases for the integrals in
Eqs. (5c) and (5d) when the tilting parameter is nonzero. At

the charge neutrality point, µ = 0, the off-diagonal gyrotropic
component γ(ω) reduces to

γ(ω) =
α

π

vFQ

ω

[
min(1, |β+|−1) + min(1, |β−|−1)

]
. (8)

It is seen that γ(ω) is independent of the tilt parameter if
|βs| < 1, while inversely proportional to it when |βs| > 1.
The εzz component of the dielectric tensor in the limit of zero
chemical potential, µ = 0, can be calculated exactly as well.
For |βs| < 1, we find,

εzz = 1 +
α

3π

[
ln

∣∣∣∣4Γ2

ω2

∣∣∣∣+ iπΘ(ω)
]
, (9)

and when the tilt parameter satisfies |βs| > 1, we arrive at

εzz = 1 +
α

3π

[
ln

∣∣∣∣4Γ2

ω2

∣∣∣∣+ iπΘ(ω)
]∑
s=±

1

4|βs|

(
3− 1

β2
s

)
− αΓ2

πω2

∑
s=±

∣∣βs∣∣(1− 1

β2
s

)2

. (10)

Here the last term describes the contribution from the Fermi
pocket, which is bounded by Γ/v along the z axis in mo-
mentum space. Thus demonstrating that the real part of εzz
is always positive, and independent of the tilt parameters if
|βs| < 1. Only when the conical tilt parameters exceed
unity (|βs| > 1) can the real part of εzz become negative or
zero, thus allowing for the possibility of an ENZ response.
Note that the amplitude of the imaginary component declines
monotonically with increasing the tilt parameter β.

We now turn our attention to the tilted case when the chem-
ical potential is finite. In general, the integral in Eq. (5c) for
εzz is highly complicated, and solutions must be obtained nu-
merically. Nonetheless, when |βs| < 1, it is possible to ap-
proximate εzz as follows:



4

FIG. 1. (Color online). Representative behavior of the permittivity εzz as a function of frequency. The top row corresponds to the normalized
susceptibility χzz , while the bottom row is the imaginary component ε′′zz/α. The dashed line identifies points where an ENZ response arises.
The tilting of the Weyl cones are seen to have a significant effect in creating an ENZ response. The corresponding β are depicted in the
legends. The effects of altering the chemical potential is also shown, where each column depicts one of the three different µ considered. In
(a)-(b) µ/(vF |Q|) = 0, (c)-(d) µ/(vF |Q|) = 0.2, and (e)-(f) µ/(vF |Q|) = 0.4.

ε′zz = 1 +
αµ2

πω2

∑
s=±

1

β3
s

{
8

3
βs − 4 arctanhβs + ln

∣∣∣∣4µ2 − ω2(1 + βs)
2

4µ2 − ω2(1− βs)2

∣∣∣∣
+

ω2

12µ2

∑
t=±1

[
t
(

1 + 2tβs

)(
1− tβs

)2

ln

∣∣∣∣ 4Γ2(1− tβs)2

4µ2 − ω2(1− tβs)2

∣∣∣∣− 2µ

ω

(4µ2

ω2
+ 3− 3β2

s ) ln

∣∣∣∣2µ− tω(1 + tβs)

2µ+ tω(1 + tβs)

∣∣∣∣
]}

, (11a)

ε′′zz =
α

6

∑
s=±

Θ
(
ω − 2µ

1 + |βs|

){
1− 1

2

[
1 +

3

2|βs|

(2µ

ω
− 1
)(

1− 1

3β2
s

{2µ

ω
− 1
}2)]

Θ
( 2µ

1− |βs|
− ω

)}
, (11b)

where we have decomposed the permittivity into its real and
imaginary components: εzz = ε′zz + iε′′zz . If |β−| = |β+| ≡
|β|, the imaginary part of εzz is zero when ω < 2µ/(1 +
|β|) and increases as a function of ω in the interval 2µ/(1 +
|β|) < ω < 2µ/(1 − |β|). This expression is independent of
frequency if ω > 2µ/(1− |β|). Next, if we consider the limit
|4µ2 − ω2|1/2 � µ|βs|, we find that εzz takes the following
form:

εzz = 1 +
α

3π

[
ln
∣∣∣ 4Γ2

4µ2 − ω2

∣∣∣− 4µ2

ω2
+ iπΘ(ω − 2µ)

− 8µ4

ω2

12µ2 − 5ω2

5(4µ2 − ω2)2
(β2
− + β2

+)
]
, (12)

where the last term can be viewed as a correction arising from
the tilt of the Weyl cones. Finally, in the limit ω → 0, the

off-diagonal component has the form

γ =
α

πω

[
2vFQ−

∑
s=±

sµ

2βs

(
1

βs
ln

∣∣∣∣1 + βs
1− βs

∣∣∣∣− 2

)]
, |βs| � 1

(13a)

γ =
α

πω

∑
s=±

[
vFQ

|βs|
− sµ

2βs
ln

∣∣∣∣β2
s

Γ

µ

∣∣∣∣], |βs| � 1. (13b)

Thus, for fixed β, these expressions show that for small values
of the tilt parameter, γ is linear function of µ, declining as the
chemical potential increases. For β � 1, γ strongly dimin-
ishes with µ, eventually changing sign. If on the other hand,
we have a set chemical potential, increasing the tilt also re-
duces the gyrotropic effect by weakening γ, and more rapidly
for larger µ. In both regimes, at a vanishing chemical poten-
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tial µ→ 0, we recover our previously discussed results at the
charge neutrality point.

D. Susceptibility and epsilon-near-zero responses

When characterizing the nontrivial behavior of ε in the WS,
there are several relevant parameters to consider, including the
chemical potential, frequency of the EM wave, tilt of the Weyl
cones, and the node separation parameter Q, which is taken to
be positive. Although it may be possible to generate a mixture
of type-I and type-II Weyl points,54 we consider here the sim-
pler configuration where β+ = −β− = β. In presenting the
results, we write ω in units of energy, and the complex com-
ponent εzz , is written in terms of its real and imaginary parts:
εzz = ε′zz + iε′′zz . When presenting results, we plot the nor-
malized susceptibility χzz , defined as χzz ≡ (ε′zz − 1)3π/α.
Therefore the ENZ regime corresponds to χzz = −3π/α. We
also normalize the dissipative component by α. One of the
primary aims is to locate in parameter space, the particular
ω, µ, and β that result in the real part of εzz ∼ 0. There-
fore, when varying the chemical potential in the WS, we con-
sider a dimensionless µ ranging from the charge neutrality
point, µ = 0, up to µ/(vF |Q|) = 0.5. Similarly, in order
to have as complete a picture as possible, a wide spectrum
of dimensionless frequencies is considered corresponding to
0.05 ≤ ω/(vF |Q|) ≤ 1. When the frequency is not varying,
we set it to its dimensionless value of ω/(vF |Q|) = 0.3. Of
particular importance is the tilt of the Weyl cones, which de-
termines the corresponding µ and ω that lead to a vanishing of
the real part of εzz . A broad range of cone inclinations cov-
ering both type-I and type-II scenarios is therefore examined.
When computing the integrals, it is necessary to specify an en-
ergy cutoff Γ. Here we set Γ/(vF |Q|) ∼ 8, recalling that the
linearized model breaks down when Γ > vF |Q|, and which
is consistent with the requirement Γ � (ω, µ) discussed in
conjunction with Eq. (5b). Since the linear model is most
suitable away from the Lifshitz transition between type-I and
type-II Weyl semimetals, a qualitatively correct description of
the system can still be obtained with the linearized model near
the transition by simply taking either larger cut-offs, or by in-
corporating higher order momenta into the linear model.

To begin, in Fig. 1, we examine the frequency response of
the normalized susceptibility χzz and ε′′zz over a broad range
of β. The other diagonal components can be compared by
examining the β = 0 cases, whereby εxx,yy = εzz . When
µ = 0, we calculate εzz using Eq. (9) for β < 1 and Eq. (10)
for β > 1. For finite µ and β < 1, we utilize the expressions
in Eq. (11a) and Eq. (11b). If however the WS is type-II with
β > 1, we must resort to the general integral in Eq. (5c) and
solve for εzz numerically. The results are separated into three
columns, where each column represents a different chemi-
cal potential, as labeled. Figures 1(a)-1(b) show χzz and εzz
when µ/(vF |Q|) = 0, 1(c)-1(d) µ/(vF |Q|) = 0.2, and 1(e)-
1(f) when µ/(vF |Q|) = 0.4. Beginning with the charge neu-
trality point, µ/(vF |Q|) = 0, we see in Figs. 1(a)-1(b) that for
β ≤ 1, χzz remains positive over the given frequency range,
similar to a conventional dielectric. As β increases, and the

system transitions towards a type-II WS (β > 1), the sus-
ceptibility gets shifted down overall, leading to regions where
ε′zz < 0. Indeed, within the type-II regime and β � 1, the
ENZ frequency can be found from Eq. (10), to be approxi-
mately written as,

ω2
ENZ ≈

2α

π
|β|Γ2. (14)

The dissipative component does not depend on frequency, and
for β � 1, declines towards zero.

Next, in Figs. 1(c)-1(d), the normalized chemical poten-
tial is increased to µ/(vF |Q|) = 0.2, so that now the fre-
quency range of interest is shifted accordingly. The top panel
shows that for the case β = 0, a peak in χzz arises. This
peak emerges due to the inter-band transition, which leads to
the singularity arising from the logarithmic term at ω = 2µ
in Eq. (5b). For most β, we again find at the lowest frequen-
cies, ε′zz < 0, similar to the behavior of some metals at opti-
cal frequencies. Upon increasing ω, ε′zz increases until arriv-
ing at the ENZ frequency where ε′zz = 0. The bottom panel
(d) exhibits the dissipation characteristics of this WS. There
are now several distinct features that ε′′zz has compared to the
µ = 0 case. In particular, for β = 0, the imaginary compo-
nent abruptly changes from lossless to lossy at the frequency
ω = 2µ. Increasing β causes the dissipation at the transition
point to broaden, until β = 1, after which the imaginary com-
ponent becomes independent of the tilt parameter. Note that
for β < 1, ε′′zz vanishes for ω . 2µ/(1 + β), and increases as
a function of ω in the interval 2µ/(1 + β) < ω < 2µ/(1− β)
[See Eq. (11b)]. Lastly, in panels (c) and (d), a larger chem-
ical potential corresponding to the dimensionless value of
µ/(vF |Q|) = 0.4 is considered. It is observed that when
increasing µ, there is a widening of the frequency window
in which the ENZ response occurs. There is also a broaden-
ing off the imaginary component resulting in finite dissipation
over more frequencies.

One of the salient features of Weyl semimetals is the ability
to systematically change their chemical potential. It is possi-
ble to shift µ about the charge neutrality point through doping,
varying the temperature, or altering the lattice constant of the
material through pressure variations.23,41,42 For instance, upon
increasing the temperature, the number of thermally excited
charged carriers increases near the Weyl points that increases
the chemical potential41. The injection of various dopants
into the Weyl semimetal also can increase the number of free
charged carriers, depending on the dopant type42,43,45. To ex-
amine how changes in µ can alter the EM response of a WS,
we examine in Fig. 2(a) χzz , and 2(b) the dimensionless ε′′zz as
functions of µ. Figure 2(a) shows that for β ≤ 1 and µ = 0, all
curves originate at χzz = ln(4Γ2/ω2) ≈ 7.85 [see Eq. (9)].
For Weyl cones that are tilted with β ≤ 1, increasing µ causes
a splitting of the curves which then monotonically decline.
Further increases in β causes χzz to shift downward, becom-
ing negative for all µ. Figure 2(b) exhibits how the normal-
ized dissipation ε′′zz/α can be drastically manipulated through
changes in µ. The type-I case at µ = ω/2 has an abrupt tran-
sition at β = 0. By increasing the tilt angle of the Weyl cones,
the dissipative response broadens and ε′′zz is finite over a larger
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FIG. 2. (Color online). (a) Illustration of how the susceptibility χzz

is affected by changing the chemical potential in a Weyl semimetal.
Increasing the tilt of the Weyl cones is seen to require a smaller µ
for an ENZ response, corresponding to the intersection of the curves
with the dashed line. (b) The normalized dissipative response ε′′zz/α.
In both case, the normalized frequency corresponds to ω/(vF |Q|) =
0.3.

interval of chemical potentials. This can be of significance in
anisotropic ENZ systems with dielectric losses and system pa-
rameters are tuned to control beam directivity58 or EM wave
absorption.59,60

Next, in Fig. 3 we investigate how tilting of the Weyl cones
influences the normalized susceptibility, 3(a), and dissipation
3(b). Each curve represents different equally spaced µ, nor-
malized as shown in the legend. Starting with µ = 0 and
β < 1, we observe that the permittivity is independent of
the tilt, in agreement with Eq. (9). As β increases however,
χzz rapidly drops. The same type of behavior is seen in the
other curves with small µ, where regions of relatively con-
stant χzz diminish as µ increases. Thus, when the chemical
potential is in the vicinity of the charge neutrality point, only
a type-II WS, with β > 1, can exhibit ENZ behavior. As
µ increases, each corresponding curve gets shifted down to-
wards the ENZ line, so that smaller β can lead to a transition
to a metallic-like state. Eventually, for the largest chemical
potential shown, χzz cannot exhibit an ENZ response for any
value of tilt. The observed peak at ω/µ = 2 (corresponding to

FIG. 3. (Color online). Generation of an ENZ state through tilting
of the Weyl cones: Through variation in β, panel (a) shows that χzz

can transition to an ENZ state as represented by the dashed horizontal
line. Panel (b) displays the imaginary component ε′′zz/α, where it is
seen that β strongly affects the dissipation nature of the WS. The
same µ values are used in both panels.

µ/(vF |Q|) = 0.15) becomes diminished for other values of
µ. For relatively weak chemical potentials, µ/(vF |Q|) ≤ 0.2,
an ENZ response is seen to be induced only when the WS
is type-II. For β ≤ 1, the ENZ regime arises only for larger
µ. For example, the ENZ state is reached at β ≈ 0.4, and
µ/(vF |Q|) = 0.45. Thus, if the Weyl semimetal is to demon-
strate an ENZ response, it should be type-I with sufficiently
large µ, or it can be type-II with smaller µ. In either case,
the dissipative component will be strongly affected, as panel
(b) illustrates how cone tilt inclinations strongly influence ε′′zz .
The normalized ε′′zz component is shown to not exceed 1/3.
When µ/(vF |Q|) = 0.15 (or equivalently ω/µ = 2), the di-
mensionless ε′′zz is constant and has the value 1/6. Above
this value of the chemical potential, the dissipative response
tends to decline as β increases, while below it, the dissipation
increases as β increases. At the charge neutrality point ε′′zz ,
is unaffected by changes in the tilt for type-I, but for type-II
(β & 1), there is a weak decline, according to Eq. (10). Com-
paring with (a), it is evident that for µ/(vF |Q|) & 0.3, an ENZ
response with zero effective loss can be achieved for a type-I
WS. This situation could be relevant to waveguide structures,
where localized electromagnetic waves propagate over long
distances near the surface of the WS.

To estimate the feasibility of achieving an ENZ response in
a type-II WS, we consider55,61 Q = 1 nm−1, µ = 0.08 eV,
β = 1.02, and ω = 0.2 eV, to give ε′zz ∼ 0, and ε′′zz ∼



7

θ
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k0

E0

d

z = 0

Weyl		
Semimetal	

H0

PEC	
z

ε0, µ0

ε , µ0
=

FIG. 4. (Color online). Schematic of the configuration involving a
Weyl semimetal in region 1 with width d atop a perfectly conduct-
ing substrate. The Weyl semimetal layer is exposed to an electromag-
netic wave from the vacuum region 0 . The incident electric field is
polarized in the x -z plane, and the magnetic field is polarized along
y. The incident wavevector k0 makes an angle θ with the z axis. The
separation of the Weyl nodes is taken to be along the z-axis

0.5. Although this estimate corresponds to a pair of points, to
relate to a material such as TaAs, which has 12 pairs of Weyl
cones, including 8 nodes with Fermi energy µ ≈ 1 meV, and
16 nodes with µ ≈ 15 meV, α should be multiplied by 4 and
8 respectively, to account for the additional nodes.

III. PERFECT ABSORPTION IN WEYL SEMIMETAL
STRUCTURES

In this section, we make use of the results for ε presented
in the previous section to demonstrate how a WS structure in
the ENZ regime can be tuned to exhibit perfect absorption of
EM waves over a broad range of incident angles and system
parameters, thus revealing a practical platform for the control
of EM radiation.

A. Maxwell’s equations and theory

We investigate the reflection and absorption of EM waves
from the layered configuration shown in Fig. 4, which con-
sists of a planar Weyl semimetal (region 1 ) adjacent to a
metallic substrate with perfect conductivity (PEC). The elec-
tric field of the incident wave is polarized in the x -z plane,
so that the permittivity component εzz plays a significant role
in the overall EM response. The plane wave is incident from
vacuum (region 0 ) with wavevector k0 also in the x -z plane:
k0 = x̂k0x+ẑk0z . If the incident wave was propagating in the
x -y plane, the TE and TM modes would become decoupled,
and the reflectivity characteristics for the TM modes would
not depend on the εzz component of the permittivity tensor.
For propagation in the x -z plane, the TE and TM modes can
no longer be separated, and the EM response of the WS struc-
ture is governed mainly by εzz .

The incident electric and magnetic fields thus have the fol-
lowing forms: E = (Ex0x̂ + Ez0ẑ)ei(k0xx+k0zz−ωt), and
H = Hy0ŷe

i(k0xx+k0zz−ωt). Here k0x is invariant across
each layer, with k0x = k0 sin θ, k0z = k0 cos θ, and k0 =
ω/c. For both regions 0 and 1 , we implement Maxwell’s
equations for time harmonic fields,

∇×Ei = iωµ0Hi, (15a)
∇×Hi = −iωDi, (15b)

where i = 0 or 1. Within the WS, the propagation vector k1

replaces the spatial derivatives, transforming Maxwell’s equa-
tions into the forms, k1 × E1 = ωµ0H1 and k1 × H1 =
−ωεε0E1. These two equations together result in the follow-
ing expression for the E1 field in k-space:

k1 × (k1 ×E1) = −k2
0εE1. (16)

Using k1 = k0xx̂+ k1zẑ, and the identity k1× (k1×E1) =
k1(k1E1)− k2

1E1, permits expansion of Eq. (16),k2
0εxx − k2

1z ik2
0γ k1zk0x

ik2
0γ k2

⊥ − k2
0εyy 0

k0xk1z 0 k2
0εzz − k2

0x

Ex1

Ey1

Ez1

 = 0,

(17)

where k⊥ =
√
k2

1z + k2
0x, and k1x = k0x due to translational

invariance. The coupling of all three components of the E
fields in Eq. (17) illustrates that although the electric field of
the incident beam is polarized in the x -z plane, it can now ac-
quire an additional y component when entering the gyrotropic
medium. Similarly, despite having an initial polarization state
along the x direction, the incidentH field can also in general
become polarized in all three directions once entering the WS.
Thus, the EM wave exiting the WS structure can have a differ-
ent overall polarization state that depends on the WS material
and geometrical parameters.

B. Results and discussions

Since the incident beam propagates in the x -z plane with
wavevector k = x̂k0x+ ẑk0z (see Fig. 4), each component of
εmust be accounted for in the EM response of the WS. Taking
the determinant of the matrix in Eq. (17) and setting it equal
to zero, gives the dispersion equation for the WS that can be
solved for k1z:

(εxxk
2
0 − k2

⊥)(εxxεzzk
2
0 − εxxk2

0x − εzzk2
1z)

+ k2
0(k2

0x − εzzk2
0)γ2 = 0. (18)

Solving for the roots in Eq. (18) results in two types of solu-
tions to k1z , denoted by k+ and k−. We have,

k2
± =

k2
0

2εzz

[
2εzzε‖ − (ε‖ + εzz) sin2 θ

±
√

4ε2zzγ
2 − 4εzzγ2 sin2 θ + (ε‖ − εzz)2 sin4 θ

]
,

(19)
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where ε‖ represents the components of ε parallel to the inter-
faces: εxx = εyy = ε‖. The dispersion equation (18) can now
be compactly written in terms of the two types of waves:

k2
0εzz(k

2
1z − k2

+)(k2
1z − k2

−) = 0. (20)

For the configuration shown in Fig. 4, where the x -y plane
is translationally invariant, the magnetic field components in
the vacuum region, H0, are written in terms of incident and
reflected waves:

Hx0 = r3e
−ik0zzeik0xx, (21a)

Hy0 = (eik0zz + r1e
−ik0zz)eik0xx, (21b)

Hz0 = r2e
−ik0zzeik0xx, (21c)

where the x and z components represent the change of the
incident polarization state upon reflecting from the Weyl
semimetal. The coefficients r2 and r3 take into account the
generation of additional polarization components upon in-
teracting with the gyrotropic WS layer. Note that from the
Maxwell’s equation ∇·H0 = 0, there exists a simple relation
between the coefficients r2 and r3:

r3 =
k0z

k0x
r2. (22)

From the magnetic field components above, we can use
Eq. (15b) to easily deduce the electric field components for
region 0 .

For region 1 , when using Maxwell’s equations, we need
to take into account the anisotropic nature of the WS. The
general solution to the E field in the WS region is thus a lin-
ear combination of the four wavevector components k1z =

{k+,−k+, k−,−k−}:

Ey1 = (a1e
ik+z + a2e

−ik+z + a3e
ik−z + a4e

−ik−z)eik0xx.
(23)

To determine the coefficients {a1, a2, a3, a4}, it is necessary
to invoke matching interface conditions and boundary condi-
tions. But first we must construct the remaining E and H
fields. This is achieved via the two Maxwell’s equations,
Eqs. (15a) and (15b). First, using (15b) gives the following
relations:

∂Hy1

∂z
= iωε0(ε‖Ex1 + iγEy1), (24a)

∂Hx1

∂z
− ik0xHz1 = iωε0(iγEx1 − ε‖Ey1), (24b)

k0xHy1 = −ωε0εzzEz1. (24c)

While, from Eq. (15a) we have,

∂Ey1

∂z
= −iωµ0Hx1, (25a)

∂Ex1

∂z
− ik0xEz1 = iωµ0Hy1, (25b)

k0xEy1 = ωµ0Hz1, (25c)
where we have used the fact that x component is invariant,
i.e., ∂x → ik0x. Inserting Eq. (23), into the equations above,
it is now possible to write all components of the EM field in
terms of the coefficients {a1, a2, a3, a4}. For example, Hx1

and Hz1 are easily found from Eqs. (25a) and (25c) respec-
tively. From that, one can solve Eq. (24b) for Ex1, and so
on.

Upon matching the tangential electric and magnetic fields at
the vacuum/WS interface, and using the boundary conditions
of vanishing tangential electric fields at the ground plane, it
is straightforward to determine the unknown coefficients. The
first reflection coefficient r1 is defined as r1 = 1− r0, where

r0 =
2k2
z [k+q

2
− cos(k+d) sin(k−d)− [k−q

2
+ cos(k−d) + ik0z(k

2
+ − k2

−) sin(k−d)] sin(k+d)]

k− cos(k−d)[f2 sin(k+d) + iεzzk0zk+(k2
+ − k2

−) cos(k+d)] + sin(k−d)[f1k+ cos(k+d)− ik0zk2
z(k2

+ − k2
−) sin(k+d)]

,

(26)

kz = k0

√
εzz − sin2 θ, q± =

√
ε‖k

2
0 − k2

0x − k2
±,

f1 = k2
zq

2
− − εzzk2

0zq
2
+, f2 = −k2

zq
2
+ + εzzk

2
0zq

2
−.

The r2 coefficient is expressed compactly in terms of r1 and
r0:

r2 =
k0xγ[k2

z(r1 + 1) sin(k−d)− iεzzk0zk−r0 cos(k−d)]

εzzq2
+[ik0z sin(k−d)− k− cos(k−d)]

.

(27)

In the absence of gyrotropy, γ = 0, r2 = r3 = 0, and the

corresponding reflection coefficient r1 reduces to

r1 = 1− 2k−
k− + ik0zε‖ cot(k−d)

, (28)

in which k− =
√
ε‖(k

2
0 − k2

0x/εzz). Thus, when γ = 0, the
reflection coefficient reverts to that of a diagonally anisotropic
medium60, as it should. When the gyrotropic parameter van-
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FIG. 5. (Color online). Color map demonstrating how the absorp-
tance A varies as a function of the incident angle θ and dissipation
ε′′zz . The system is in the ENZ regime, whereby ε′zz = 0. The nor-
malized frequency is set to ω/(vF |Q|) = 0.3, and d/λ = 1/100.
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FIG. 6. (Color online). The absorptance A as a function of normal-
ized chemical potential µ/(vF |Q|) for a type-II WS structure having
an ENZ response. Three different orientations θ of the incident beam
are shown. The tilting parameter corresponds to β = 1.01, the nor-
malized frequency is ω/(vF |Q|) = 0.3, and d/λ = 1/100.

ishes, the incident electric field that is polarized in the x -z
plane, remains in that plane after interacting with the WS.

In determining the absorptance A of the WS system, it is
beneficial to study the energy flow in the vacuum region. To
this end, we consider the time-averaged Poynting vector in
the direction perpendicular to the interfaces (the z direction),
Sz0 = <{Ex0H

∗
y0 − Ey0H

∗
x0}/2. Inserting the electric and

magnetic fields calculated for region 0 above, we find,

A = 1− |r1|2 − |r2|2 − |r3|2 . (29)

Here A is defined as Sz0/S0, where S0 ≡ k0z/(2ε0ω) is the
time-averaged Poynting vector for a plane wave traveling in
the z direction.

Having established the methods for determining the absorp-
tion and reflection coefficients, we now consider a range of
material and geometrical parameters that lead to perfect ab-
sorption in the ENZ regime where ε′zz ≈ 0. The dissipative
component ε′′zz on the other hand can vary, as it plays a crucial
role in how electromagnetic energy is absorbed by the sys-

� �� �� �� ��
���

���

���
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θ

�

μ/(��|�|)

����

����

����

����
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FIG. 7. (Color online). The absorptance A as a function of inci-
dent angle θ. A broad range of normalized chemical potentials are
considered (see legend). For µ/(vF |Q|) = 0.29, 0.28, 0.27, 0.25,
and 0.2, the Weyl semimetal should be type-I, with β ∼
0.94, 0.96, 0.97, 0.98, and 0.99, respectively. To achieve perfect ab-
sorption for larger incident angles that more closely approach graz-
ing (θ → 90◦), the µ/(vF |Q|) = 0.15 case requires a type-II WS,
with β ∼ 1.01. In all cases the normalized frequency is set to
ω/(vF |Q|) = 0.3, and d/λ = 1/100.

tem. For a given WS width d, frequency ω of the incident
wave, and orientation θ, the absorption [Eq. (29)] can be cal-
culated by incorporating the results of Sec. II, which gives the
various µ and β that lead to an ENZ response, and allows the
remaining components of the tensor ε to be determined via
Eqs. (5b)-(5d).

The results from Sec. II offer clear guides for identifying
ENZ regions of the parameter space. For example, it was ob-
served in Fig. 1, that for the range of frequencies considered,
it is necessary for the chemical potential to be nonzero for
the dissipative component ε′′zz to have significant variations.
We show below that ε′′zz plays a crucial role in determining
how much of the incident beam is perfectly absorbed59, and
that strong absorption can arise over a broader range of θ not
only when ε′′zz corresponds to moderate loss, but also when it
is very small. Thus, we focus on the more interesting cases
when µ is away from the charge neutrality point (µ = 0).
Indeed, Figs. 1(c)-1(f) showed that by having a finite µ, ε′′zz
can be continuously tuned from zero to a situation having ap-
preciable dissipation. If the dissipation vanishes entirely, the
type of perfect absorption studied here does not arise since all
incoming waves are reflected back from the ground plane. In-
creasing the loss makes it possible at appropriate frequencies
and orientations of the incident beam, for the waves in the WS
to destructively interact and ultimately dissipate through Joule
heating. For most of the frequencies of interest here, which
satisfy ω/(vF |Q|) < 2µ/(vF |Q|), the component of the per-
mittivity parallel to the interfaces ε‖ [Eq. (5b)], is purely real,
as it has no interband contribution to the optical conductivity.

To illustrate how ε′′zz directly impacts the absorption char-
acteristics of the WS structure shown in Fig. 4, we present in
Fig. 5, a color map that depicts the absorptance A as a func-
tion of the incident angle θ and the loss ε′′zz . We consider the
scenario where the WS is assumed to have an ENZ response,
ε′zz = 0, so that εzz is described entirely by its imaginary com-
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FIG. 8. (Color online). Color maps illustrating the perfect absorption regions for various normalized widths d/λ and incident angles θ. In
(a) β ∼ 1.01, and µ/(vF |Q|) = 0.15, In panel (b) β ∼ 0.96, and µ/(vF |Q|) = 0.28. In both panels the normalized frequency is set to
ω/(vF |Q|) = 0.3,

ponent. As was extensively discussed in Sec. II, ε′′zz generally
depends on several system parameters. Here however, in order
to isolate the effects of dissipation and its relation to angles of
high absorption, ε′′zz varies independently. In this example, we
have µ/(vF |Q|) = 0.2, and γ = 3. As Fig. 5 shows, depend-
ing on ε′′zz , perfect absorption can be achieved for virtually any
incident angle. Thus, for example, to determine the WS pa-
rameters needed to achieve perfect absorption around normal
incidence (θ ∼ 0◦), it is only necessary to identify configu-
rations where ε′zz ≈ 0 for small ε′′zz . The fact that for angles
near normal incidence, the loss must be extremely weak for
perfect absorption is consistent with the response of isotropic
ENZ slabs1. On the other hand, to have the entire incident
wave’s energy absorbed at broader angles (θ ∼ 90◦), the ENZ
structure must exhibit greater dissipation, with ε′′zz ' 0.3. The
occurrence of perfect absorption in thin, anisotropic ENZ lay-
ers is one of the hallmarks of coherent perfect absorption59,
which couples light to a fast wave propagating along the WS
interface. A main feature of coherent perfect absorption is
the intricate dependence on the real and imaginary parts of
εzz which can lead to the formation of localized waves inside
very narrow regions. The perfect conductive substrate serves
as the reflecting surface that results in the destructive interfer-
ence of incoming waves, so that under the proper conditions,
the incident beam becomes completely absorbed.

Previously, in Fig. 2, we found that by tuning the chemical
potential, not only can an ENZ response be achieved, but also
that the loss in the WS can be highly sensitive to changes in
µ. To study the effects that variations in µ have on the EM re-
sponse of the WS, in Fig. 6, we present the absorptance of the
WS structure as a function of the normalized µ. Three differ-
ent orientations of the incident wave are considered, as shown
in the legend. We consider a representative value for a type-II
case, β = 1.01, which according to Fig. 2, puts the system in
the ENZ regime at µ/(vF |Q|) ≈ 0.17. For this value of the
chemical potential, the loss corresponds to ε′′zz ≈ 0.3. The re-
maining components of the permittivity tensor are calculated
from Eqs. (5b) and (5d), resulting in ε‖ ≈ 2.8, and γ ≈ 2.9.
Note that while conventional absorbers are often restricted by

their relatively large thicknesses, remarkably the WS layer ex-
hibited here has an extremely subwavelength thickness, corre-
sponding to d/λ = 1/100. Thus, for an incident wavelength
of λ ∼ 10µm, this implies d ∼ 100 nm. We note that the re-
sults are relatively insensitive to ε‖. Moreover, for the narrow
WS widths considered here, the off-diagonal gyrotropic com-
ponent γ has a limited effect on the results, so that Eq. (28) is
often suitable for describing the reflection characteristics over
a broad range of parameters. Overall, we find that the phe-
nomenon presented here are dictated mainly by εzz . This is
consistent with the results of Fig. 6, where weak absorption
occurs for smaller θ, but when θ = 80◦, there is complete
absorption. As Fig. 5 showed, increases in the dissipative
component ε′′zz require that the incident waves approach the
interface at larger θ in order to be absorbed perfectly.

We now proceed to show that for certain µ and tilting β,
both type-I and type-II WS systems can completely absorb the
incident EM radiation over a relatively wide range of incident
wave orientations θ. In Fig. 7, the absorptance is shown as a
function of θ for a few normalized µ (see legend). For chemi-
cal potentials outside of this range, the imaginary component
ε′′zz is either too small or too large to achieve perfect absorp-
tion (see Fig. 2). The subwavelength slab width is again fixed
at d/λ = 1/100, and the incident wave has a frequency cor-
responding to ω/(vF |Q|) = 0.3. Beginning with the largest
chemical potential, µ/(vF |Q|) = 0.29, we find that perfect
absorption occurs at close to normal incidence. This is be-
cause as Fig. 2(b) showed, when µ/(vF |Q|) = 0.29, a very
small amount of loss is present. Therefore, from Fig. 5, θ
must be small in order for the incident beam to couple to the
EM modes responsible for perfect absorption. Besides having
loss, it is also necessary for ε′zz ≈ 0, which as in Fig. 2(a)
shows, only small β < 1 in this case results in an ENZ re-
sponse. By decreasing the chemical potential, the WS be-
comes more dissipative. Thus we find that each of the per-
fect absorption peaks in Fig. 7 gets shifted towards grazing
incidence (θ → 90◦). This however requires greater tilting of
the Weyl cones to achieve ε′zz = 0, which in some instances,
corresponds to a type-II situation where β exceeds unity (see
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Fig. 2).
Finally, to show the importance of using subwavelength WS

structures in the ENZ regime to achieve perfect absorption, we
investigate how changes in the width d of the WS (see Fig. 4)
affects the absorption properties of the system. In Fig. 8, the
color maps depict the absorptance as a function of the nor-
malized width d/λ and incident angle θ. Both types of WS
are considered: (a) type-II with β = 1.01, and (b) type-I with
β = 0.96. In panel (a) µ/(vF |Q|) = 0.15, which corresponds
to εzz ≈ 0.12+0.37i, and a gyrotropic parameter of γ ≈ 3. In
(b) the chemical potential is increased to µ/(vF |Q|) = 0.28,
so that the WS still has εzz in the ENZ regime, but with
very little loss, corresponding to a small imaginary compo-
nent ε′′zz ≈ 0.005. The gyrotropic parameter is relatively un-
changed from the previous case, with now γ ≈ 3.1. For both
panels, the normalized frequency is set at ω/(vF |Q|) = 0.3.
It is evident that the type-II WS in (a) admits perfect absorp-
tion over larger angles, and that the normalized width should
satisfy d/λ / 1/10 for appreciable absorption. As the inci-
dent beam is directed more towards grazing angles (θ → 90◦),
it is apparent that d must be continuously reduced in order for
the system to remain a perfect absorber. For widths that are
larger than the range shown here, coupling between the inci-
dent beam and the WS system becomes substantially dimin-
ished as additional reflections are introduced that destroy the
previous coherent effects. For the type-I case (b), the widths
again need to be subwavelength, satisfying d/λ / 1/10, and
as mentioned above, perfect absorption arises at small inclina-
tions of the incident beam due to the weakly dissipative nature
of εzz for these system parameters. We also see a trend similar
to the type-II case in (a), where increases in θ require thinner
WS widths to achieve A ≈ 1.

IV. CONCLUSIONS

In this paper, we studied the dielectric response of
anisotropic type-I and type-II tilted Weyl semimetals. We pre-
sented both analytic and numerical results that characterized
each component of the permittivity tensor. We showed that
depending on the Weyl cone tilt, chemical potential and elec-
tromagnetic wave frequency, the component of the permittiv-
ity tensor normal to the interfaces can achieve an epsilon-
near-zero (ENZ) response. At the charge neutrality point,
we showed that only type-II Weyl semimetals can exhibit
an ENZ response. We also discussed how losses near the
ENZ frequency can be controlled and effectively eliminated
by properly adjusting the Weyl cone tilt and chemical poten-
tial. Making use of the calculated permittivity tensor for the
Weyl semimetal, we also investigated the electromagnetic re-
sponse of a Weyl semimetal structure consisting of a planar
Weyl semimetal adjacent to a perfect conductor in vacuum.
Our findings showed that thin Weyl semimetals with an ENZ
response can be employed as coherent perfect absorbers for
nearly any incident angle, by choosing the proper geometrical
and material parameters.
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4 B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, Phys. Rev. Lett.100, 033903 (2008).
5 R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, Phys. Rev. Lett. 100, 023903 (2008).
6 V. N. Smolyaninova, B. Yost, K. Zander, M. S. Osofsky, H. Kim, S. Saha, R. L. Greene, I. I. Smolyaninov, Scientific Reports 4, 7321

(2014).
7 D. Slocum, S. Inampudi, D. C. Adams, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, D. Wasserman, Phys. Rev. Lett. 107

133901 (2011).
8 M. Mattheakis, C. A. Valagiannopoulos, and E. Kaxiras, Phys. Rev. B 94, 201404(R) (2016).
9 Z. Wang, Y. Sun, X.-Q. Chen, C. Franchini, G. Xu, H. Weng, X. Dai, and Z. Fang, Phys. Rev. B 85, 195320 (2012).

10 A. A. Burkov and L. Balents, Phys. Rev. Lett. 107, 127205 (2011).
11 S.-M. Huang, S.-Y. Xu, I. Belopolski, C.-C. Lee, G. Chang, B. Wang, N. Alidoust, G. Bian, M. Neupane, C. Zhang, S. Jia, A. Bansil, H.

Lin, and M. Z. Hasan, Nat. Comm. 6, 7373 (2015).
12 B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian,

and H. Ding, Phys. Rev. X 5, 031013 (2015).
13 I. Z. Phys. 56, 330 (1929).
14 M. Z. Hasan and C. L. Kane Rev. Mod. Phys. 82, 3045 (2010).
15 X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
16 A. A. Zyuzin and A. A. Burkov, Phys. Rev. B 86, 115133 (2012).
17 X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Phys. Rev. B 83, 205101 (2011).
18 G. Xu, H. Weng, Z. Wang, X. Dai, and Z. Fang, Phys. Rev. Lett. 107, 186806 (2011).
19 S.-M. Huang, S.-Y. Xu, I. Belopolski, C.-C. Lee, G. Chang, B. Wang, N. Alidoust, G. Bian, M. Neupane, C. Zhang, S. Jia, A. Bansil, H.

Lin, and M. Z. Hasan, Nat. Commun. 6, 7373 (2015).



12

20 H. Weng, C. Fang, Z. Fang, B. A. Bernevig, and X. Dai, Phys. Rev. X 5, 011029 (2015).
21 C. Shekhar, A. K. Nayak, Y. Sun, M. Schmidt, M. Nicklas, I. Leermakers, U. Zeitler, Y. Skourski, J. Wosnitza, Z. Liu, Y. Chen, W. Schnelle,

H. Borrmann, Y. Grin, C. Felser, and B. Yan, Nat. Phys. 11, 645 (2015).
22 S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, S.-M. Huang, H. Zheng, J.

Ma, D. S. Sanchez, B. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia, and M. Z. Hasan, Science 349, 613 (2015).
23 B. Xu, Y. M. Dai, L. X. Zhao, K. Wang, R. Yang, W. Zhang, J. Y. Liu, H. Xiao, G. F. Chen, A. J. Taylor, D. A. Yarotski, R. P. Prasankumar,

and X. G. Qiu, Phys. Rev. B 93, 121110 (2016).
24 S. Chi, Z. Li, Y. Xie, Y. Zhao, Z. Wang, L. Li, H. Yu, G. Wang, H. Weng, H. Zhang, J. Wang, arXiv:1705.05086 (2017).
25 A. A. Soluyanov, D. Gresch, Z. Wang, Q. Wu, M. Troyer, X. Dai, B. A. Bernevig, Nature 527, 495 (2015).
26 Y. Sun, S.-C. Wu, M. N. Ali, C. Felser, B. Yan, Phys. Rev. B 92, 161107 (2015).
27 A. Liang, J. Huang, S. Nie, Y. Ding, Q. Gao, C. Hu, S. He, Y. Zhang, C. Wang, B. Shen, J. Liu, P. Ai, L. Yu, X. Sun, W. Zhao, S. Lv, D.

Liu, C. Li, Y. Zhang, Y. Hu, Y. Xu, L. Zhao, G. Liu, Z. Mao, X. Jia, F. Zhang, S. Zhang, F. Yang, Z. Wang, Q. Peng, H. Weng, X. Dai, Z.
Fang, Z. Xu, C. Chen, and X. J. Zhou, arXiv:1604.01706.

28 S.-Y. Xu, N. Alidoust, G. Chang, H. Lu, B. Singh, I. Belopolski, D. Sanchez, X. Zhang, G. Bian, H. Zheng, M.-A. Husanu, Y. Bian, S.-M.
Huang, C.-H. Hsu, T.-R. Chang, H.-T. Jeng, A. Bansil, V. N. Strocov, H. Lin, S. Jia, M. Z. Hasan, arXiv:1603.07318.

29 G. Autès, D. Gresch, M. Troyer, A. A. Soluyanov, and O. V. Yazyev, Phys. Rev. Lett. 117, 066402 (2016).
30 Z. Wang, Y. Sun, X.-Q. Chen, C. Franchini, G. Xu, H. Weng, X. Dai, and Z. Fang, Phys. Rev. B 85, 195320 (2012).
31 I. Belopolski, S.-Y. Xu, Y. Ishida, X. Pan, P. Yu, D. S. Sanchez, M. Neupane, N. Alidoust, G. Chang, T.-R. Chang, Y. Wu, G. Bian, H.

Zheng, S.-M. Huang, C.-C. Lee, D. Mou, L. Huang, Y. Song, B. Wang, G. Wang, Y.-W. Yeh, N. Yao, J. Rault, P. Lefevre, F. Bertran, H.-T.
Jeng, T. Kondo, A. Kaminski, H. Lin, Z. Liu, F. Song, S. Shin, and M. Z. Hasan, arXiv:1512.09099.

32 Y. Wu, N. Hyun Jo, D. Mou, L. Huang, S. L. Bud’ko, P. C. Canfield, A. Kaminski, arXiv:1604.05176.
33 F. Detassis, L. Fritz, and S. Grubinskas, arXiv:1703.02425 (2017).
34 S. P. Mukherjee and J. P. Carbotte, Phys. Rev. B 96, 085114 (2017).
35 S. P. Mukherjee and J. P. Carbotte, Phys. Rev. B 97, 035144 (2018).
36 M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, Appl.

Phys. Lett. 101, 221101 (2012).
37 J. Zhao, Q. Cheng, J. Chen, M. Q. Qi, W. X. Jiang, and T. J. Cui, New J. Phys. 15, 043049 (2013).
38 D. Shrekenhamer, W. Chen, and W. J. Padilla, Phys. Rev. Lett. 110, 177403 (2013).
39 Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, Nano Lett. 14, 6526 (2014).
40 A.A. Zyuzin and V.A. Zyuzin, Phys. Rev. B 92, 115310 (2015).
41 M. Chinotti, A. Pal, W. J. Ren, C. Petrovic, and L. Degiorgi, Phys. Rev. B 94, 245101 (2016)
42 E. Haubold, K. Koepernik, D. Efremov, S. Khim, A. Fedorov, Y. Kushnirenko, J. van den Brink, S. Wurmehl, B. Buchner, T. K.Kim, M.

Hoesch, K. Sumida, K. Taguchi, T. Yoshikawa, A. Kimura, T. Okuda, S. V. Borisenko, arXiv:1609.09549.
43 T. Timusk, J. P. Carbotte, C. C. Homes, D. N. Basov, and S. G. Sharapov, Phys. Rev. B 87, 235121 (2013).
44 Q. Li, D. E. Kharzeev, C. Zhang, Y. Huang, I. Pletikosic, A. V. Fedorov, R. D. Zhong, J. A. Schneeloch, G. D. Gu, and T. Valla, Nat. Phys.

12, 550 (2016).
45 R. Y. Chen, S. J. Zhang, J. A. Schneeloch, C. Zhang, Q. Li, G. D. Gu, and N. L. Wang, Phys. Rev. B 92, 075107 (2015).
46 C.-X. Liu, P. Ye, and X.-L. Qi, Phys. Rev. B 87, 235306 (2013).
47 J. Zhou, H.-R. Chang, and D. Xiao, Phys. Rev. B 91, 035114 (2015).
48 D. E. Kharzeev, R. D. Pisarski, and H.-U. Yee, Phys. Rev. Lett. 115, 236402 (2015).
49 A. B. Sushkov, J. B. Hofmann, G. S. Jenkins, J. Ishikawa, S. Nakatsuji, S. Das Sarma, and H. D. Drew, Phys. Rev. B 92, 241108 (2015).
50 J. Hofmann and S. Das Sarma, Phys. Rev. B 91, 241108 (2015).
51 O. V. Kotov and Yu. E. Lozovik, Phys. Rev. B 93, 235417 (2016).
52 M. Kargarian, M. Randeria, and N. Trivedi, Sci. Rep. 5, 12683 (2015).
53 D. J. Bergman and Y. M. Strelniker, Phys. Rev. Lett., 80, 857 (1998).
54 R.W. Bomantara and J. Gong, Phys. Rev. B94, 235447 (2016).
55 S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, S.-M. Huang, H. Zheng, J.

Ma, D. S. Sanchez, B. Wang, A. Bansil, F. Chou, P. P. Shibayev, H. Lin, S. Jia, and M. Z. Hasan, Science 349, 613 (2015).
56 S.-Y. Xu, N. Alidoust, I. Belopolski, Z. Yuan, G. Bian, T.-R. Chang, H. Zheng, V. N. Strocov, D. S. Sanchez, G. Chang, C. Zhang, D. Mou,

Y. Wu, L. Huang, C.- C. Lee, S.-M. Huang, B. Wang, A. Bansil, H.-T. Jeng, T. Neupert, A. Kaminski, H. Lin, S. Jia, and M. Zahid Hasan,
Nat Phys 11, 748 (2015).

57 I. Belopolski, S.-Y. Xu, D. S. Sanchez, G. Chang, C. Guo, M. Neupane, H. Zheng, C.-C. Lee, S.-M. Huang, G. Bian, N. Alidoust, T.-R.
Chang, B. Wang, X. Zhang, A. Bansil, H.-T. Jeng, H. Lin, S. Jia, and M. Z. Hasan, Phys. Rev. Lett. 116, 066802 (2016).

58 K. Halterman, S. Feng, and V. C. Nguyen, Phys. Rev. B 84, 075162 (2011).
59 S. Feng and K. Halterman, Phys. Rev. B 86, 165103 (2012).
60 K. Halterman and J. M. Elson, Opt. Express 22, 7337 (2014).
61 Q. Ma, S.-Y. Xu, C.-K. Chan, C.-L. Zhang, G. Chang, Y. Lin, W. Xie, T. Palacios, H. Lin, S. Jia, P. A. Lee, P. Jarillo-Herrero and N. Gedik,

Nat. Phys. 13, 842 (2017).


	Epsilon-Near-Zero Response and Tunable Perfect Absorption in Weyl Semimetals
	Abstract
	Introduction
	 approach and results
	Permittivity tensor
	 Zero tilt phase: =0
	Finite tilt phase: =0
	Susceptibility and epsilon-near-zero responses

	Perfect Absorption in Weyl Semimetal Structures
	Maxwell's equations and theory
	Results and discussions

	Conclusions
	Acknowledgments
	References


