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Physical systems evolve from one state to another along paths of least energy barrier. Without
a priori knowledge of the energy landscape, multidimensional search methods aim to find such
minimum energy pathways between the initial and final states of a kinetic process. However in
many cases, the user has to repeatedly provide initial guess paths, thus ensuring that the reliability
of the final result is heavily user-dependent. Recently, the idea of “distortion symmetry groups”
as a complete description of the symmetry of a path has been introduced. Through this, a new
framework is enabled that provides a powerful means of classifying the infinite collection of possible
pathways into a finite number of symmetry equivalent subsets, and then exploring each of these
subsets systematically using rigorous group theoretical methods. The method, which we name the
distortion symmetry method (DSM), is shown to lead to the discovery of new, previously hidden
pathways for the case studies of bulk ferroelectric switching and domain wall motion in proper and
improper ferroelectrics, as well as in multiferroic switching. These provide novel physical insights into
the nucleation of switching pathways at experimentally observed domain walls in Ca3Ti2O7, as well
as how polarization switching can proceed without reversing magnetization in BiFeO3. Furthermore,
we demonstrate how symmetry-breaking from a highly symmetric pathway can be used to probe the
non-Ising (Bloch and Néel) polarization components integral to transient states involved in switching
in PbTiO3. The distortion symmetry method is applicable to a wide variety of physical phenomena
ranging from structural, electronic and magnetic distortions, diffusion, and phase transitions in
materials.

I. INTRODUCTION

Minimum energy paths (MEPs)1 are of utmost impor-
tance in physical sciences where they are used to study
any arbitrary distortion in a material, such as changes in
molecular confirmations and chemical reactions2–4, struc-
tural or electronic phase transitions5–7, diffusion4,8,9,
ferroelectric and magnetic switching10–14, surface re-
constructions and the motion of interfaces such as
dislocations15,16 and domain walls17,18. All of these pro-
cesses require knowledge of the underlying atomic mo-
tion provided by the MEPs. Finding MEPs can however
be difficult due to the lack of a priori knowledge of the
potential energy landscape, given the prohibitive compu-
tational cost in determining it for processes involving a
large number of atoms. The goal is then, given a start-
ing and ending point in the landscape, to find the path
connecting them that provides the lowest energy barrier,
such that the forces perpendicular to the path are at a
minimum; this defines an MEP.

Among chain-of-states methods for determining
MEPs19, a commonly used approach is with nudged elas-
tic band (NEB) calculations20. However, the applica-
tion of this method raises a major difficulty; the relaxed
path depends necessarily on the initial conditions, and
repeated multiple starting points are required to explore

additional pathways that may exist along the potential
energy surface. Traditionally, this initialization is per-
formed stochastically, or by altering one or several images
to construct new paths via physical intuition or geometry
optimization21–24. While this is effective in many situa-
tions given sufficient computational attempts, it does not
treat the path as a singular unit, and as will be shown,
can lead to the omission of lower energy paths. Further,
this approach cannot ensure that the path found is indeed
the one of lowest energy.

These limitations of the NEB algorithm have recently
been formally described by VanLeeuwen and Gopalan,
using the language of symmetry25. They show that the
symmetry of a distortion pathway in a material is en-
tirely described by one of the 17,803 double antisymme-
try space groups26, and that this symmetry is only con-
served or raised by the NEB algorithm, but never low-
ered. It is this fundamental fact that restricts access to
MEPs with lower path symmetry without a symmetry-
breaking perturbation of the initial path. In contrast to
stochastic methods of breaking path symmetry in which
only one or a few intermediate images are perturbed, as is
currently practiced, group theory offers a systematic way
to perturb an entire path (including all the images) us-
ing modes obtained from irreducible representations (ir-
reps). By perturbing with these modes, the symmetry
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FIG. 1. Illustration of distortion symmetry and path perturbation. (a) & (b) The potential energy landscape and images
of atoms representing atomic motion on the surface of a material. The initial linear path has a path symmetry of m∗

xm
∗
y2∗

z.
Perturbing the initial path with the symmetry-adapted perturbation associated with the Γ2 irrep brings the path down to m∗

x

symmetry, and produces the lowest energy path once an NEB calculation is run. Both the initial linear path and the final
relaxed path resulting from the NEB algorithm are shown. (c) The energy relative to the initial and final state as a function of
reaction coordinate for both the high (initial) and low energy paths. (d) The symmetry adapted components projected out of
an arbitrary perturbation to the initial path. The mode shown along the axis is used to perturb the initial high-energy path.

of the path can then be systematically lowered. This
symmetry-based approach which we call the distortion
symmetry method (DSM) thus provides a more compre-
hensive and efficient stepwise procedure for classifying
all of the infinite paths into a finite number of symme-
try equivalent subsets, and then exploring each of these
using group theoretical tools.

To motivate the need for symmetry-adapted perturba-
tions, consider the potential energy landscape shown in
Figures 1(a) and 1(b) to which we apply the DSM. (For
the sake of illustration, the landscape here is given a pri-
ori, but the conclusions of the analysis are general.) If
this system is taken to represent the motion of an atom
on the surface of a material, a symmetry analysis of the
path can be performed using only the information pro-
vided by the potential energy landscape. In this example,
the reaction coordinate, λ, is naturally taken as the hor-
izontal coordinate which varies between the two states,
renormalized from −1 (the initial state) to +1 (the final
state). To describe path symmetry, a new antisymmetry

operation called distortion reversal symmetry (1∗) was
introduced by VanLeeuwen and Gopalan25.

Distortion symmetry groups are the product of con-
ventional spatial symmetry groups and the distortion re-
versal operation 1∗. A distortion can be described by a

set of atomic positions written as ~r′i = ~ri + λ~di, where
~r′i and ~ri are the final and initial positions of atom i, λ
is the reaction coordinate varying between λ = −1 and

λ = +1, and ~di is the displacement vector for atom i (see
Figure 2). The 1∗ operation reverses the distortion as
follows: 1∗(λ) = −λ. In order to find the distortion sym-
metry group of of a path, the following procedure can be
employed: First, the intersection group (H) of the con-
ventional spatial symmetry operations of all the images
in a path is obtained. Then possible “starred” operations
(A∗) that map the structure at the reaction coordinate
λ to the ones at −λ are identified. These operations can
then be written as A∗ = A1∗, where A would be a sym-
metry operation of the structure at λ = 0. The distortion
group can then be obtained as H ∪A∗H.
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Taking the initial path as the linear interpolation of
images between the two end points, the resulting distor-
tion symmetry is m∗xmy2∗z. The notation my for example
represents a mirror perpendicular to the y-axis, and 2z
represents a 2-fold rotation axis parallel to the z-axis as
shown in Figure 1. The three non-trivial operations in
this group are m∗x, my, and 2∗z, which leave the initial
path shown in Figure 1 invariant when applied to all of
the images that compose it. Operations marked with
an asterisk that are referred to as “starred” operations
can be physically interpreted as conventional spatial op-
erations that also require reversing the direction of the
path in order to leave it invariant. It should be noted
that the DSM described in this paper can always be ap-
plied, irrespective of whether starred symmetry opera-
tions are present or not. Furthermore, even if the MEP
lacks any significant symmetry, it is sometimes possible
to construct a highly symmetrized initial starting path
that allows us to discover the MEP using the proposed
group theoretical methods.

Running an NEB calculation on the initial linear path
with distortion group m∗xmy2∗z produces the energy pro-
file shown in blue in Figure 1(c). However, in this exam-
ple, an alternate path with a lower energy barrier exists
that is initially inaccessible due to the balanced forces
arising from path symmetry conservation in the NEB al-
gorithm. To obtain this lower energy path, the initial
linear path needs to be perturbed. Group theory shows
that any arbitrary perturbation of this initial path can
be decomposed into a linear combination of exactly three
non-trivial symmetry-adapted perturbative components
(Figure 1(d)) that transform as the three irreps, Γ2, Γ3,
and Γ4 shown in Supplementary Table 127. These three
irreps have kernel symmetry groups of m∗x, my, and 2∗z
respectively. Modifying the initial path with symmetry
lowering perturbations such that the new path trans-
forms as one of these kernel symmetry groups, results
in three new initial paths that conserve only these sym-
metries. The new initial path with my symmetry simply
returns to the original linearly interpolated path once
the NEB algorithm is employed. It is only the m∗x and
2∗z perturbations that produce new paths after NEB op-
timization, with only the m∗x path providing a path with
a lower overall energy barrier. Thus, the MEP in this
example has a path symmetry group of m∗x.

It should be noted that there are additional methods
commonly employed to try and obtain MEPs that are not
of the chain-of-states type mentioned. In general, these
can be categorized into two types: those involving poten-
tial energy “surface-walking”21,22,28, and others involv-
ing Monte Carlo sampling29–33. In walking algorithms,
such as those based on restricted-step Newton Raphson
methods34–36, saddle points are searched for by starting
with a reference structure which sits in a local minima,
and then moving it within the potential energy landscape
according to a system dependent reaction coordinate. Of-
ten, this is chosen through gradient and Hessian infor-
mation. It should also be mentioned that these kinds of

system specific reaction coordinates can be used to gener-
ate starting paths for chain-of-states approaches such as
the NEB method. A recent example of this includes the
Normal-Mode Transition Approximation37, which aims
to construct approximate pathways of reactions that can
be used as starting paths for NEB calculations through
reaction coordinates obtained via phonon mode calcula-
tions. For many techniques involving a sampling proce-
dure such as transition30–32 and discrete path38,39 sam-
pling, and minima hopping guided pathway searching33,
a Monte Carlo sampling procedure for structures or paths
is performed in conjunction with other calculations such
as those involving molecular dynamics or geometry opti-
mization.

Using the distortion symmetry method (DSM) de-
scribed in this study has significant advantages compared
to many of these other methods. Firstly, the intrinsic
advantages of the NEB algorithm are able to be effec-
tively utilized. These include robustness and a relatively
reasonable computational cost which allow for the ac-
commodation of large material systems. Furthermore,
the calculated path perturbations used to break the con-
served symmetries and induce instabilities only take up to
tens of seconds of CPU time on a single core for systems
similar in size to the examples shown in this study. Al-
though other methods involving surface-walking or path
sampling may be able to reproduce paths obtained by
this method, costly calculations associated with obtain-
ing Hessian information, or running many first-principles
molecular dynamics or geometry optimization calcula-
tions are completely avoided.

Next, we illustrate the power of the DSM using three
examples of ferroelectric polarization switching, two in-
volving bulk switching, and one involving a domain wall
motion. Understanding the minimum energy pathway
for polarization reversal is of practical interest to a broad
range of technologies such as optical communications, ul-
trasound imaging and sensing, precision actuation, in-
frared imaging and nonvolatile memory. While bulk fer-
roelectric switching provides a simplistic picture of the
polarization reversal process that often involves defects
and grain boundaries, it is computationally less intensive,
and still provides important insights into the atomic be-
havior in an ideal lattice. Further, the symmetry method
described below can also be used for larger molecular
dynamics simulations of domain wall motion using sym-
metrized supercells40.

II. METHODS

Nudged elastic band (NEB) calculations20 were used
in this study. The Vienna Ab initio Simulation
Package41–44 was used for all structural optimization
and NEB calculations. The ability to generate sym-
metry adapted perturbations was implemented into a
standalone piece of Python code and the open-source
Quantum-ESPRESSO45 software package. This is dis-
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FIG. 2. Distortion of a water molecule described by atomic

displacement vectors ~di. Applying the 1∗ operation reverses
the distortion by reversing the individual displacements of
the atoms. By parameterizing the distortion with a reaction
coordinate λ that varies between λ = −1 and λ = +1, we can
write: 1∗(λ) = −λ.

cussed in more detail in the implementation section of
the supplementary material. VESTA46 was used for the
visualization of all of the structures.

To generate the symmetry-adapted perturbations, a
random perturbation to the path was first generated.
Then, projection operators47 were constructed using the
matrix representations of the elements in the path’s dis-
tortion group, as well as the matrices of its physically
irreducible representations. The former was obtained us-
ing the SPGLIB48 library, and the latter with the listing
by Stokes and coworkers49. The operators were then ap-
plied to a vector representing the arbitrary path pertur-
bation to project out its symmetry-adapted components.
The projection operators are defined as follows:

P̂Γn

kk =
ln
h

∑
R

[
DΓn

kk (R)
]∗
R̂ (1)

Where ln is the dimension of the irrep Γn, h is the or-
der of the distortion group, R̂ is a symmetry operation
from the distortion group, and DΓn

kk (R) is the kth diago-
nal matrix entry of the matrix representation of element
R in the physically irreducible representation Γn. For ir-
reps of dimension greater than one, multiple perturbative
modes are obtained for each k = 1, ..., ln. These form a
representation space, where their linear combination is
taken to produce the final perturbation.

A. Ca3Ti2O7 calculations

A Z = 4 orthorhombic cell was used for the ini-
tial and final states. All first-principles calcula-
tions, including initial structural optimizations of the
NEB end-points, were completed using the revised
Perdew-Burke-Ernzerhof generalized-gradient approxi-
mation functional50 (PBEsol) that has been shown to im-
prove properties of densely-packed solids, and has been
used effectively with Ca3Ti2O7

14,51. A 6x6x2 k-point
mesh, 600 eV plane-wave cutoff, and 1× 10−4 eV energy
error threshold were used. The projector augmented
wave method was used to represent the ionic cores. There
were 10 electrons for Ca (3s23p64s2), 12 electrons for Ti

(3s23p64s23d2), and 6 electrons for O (2s22p4) treated
explicitly. The Methfessel-Paxton smearing scheme52

was used with a smearing width of 0.2 eV. NEB calcu-
lations were run using the G-SSNEB algorithm53, until

forces were below 0.02 eV Å
−1

. The path perturbations
were normalized such that the maximum displacement of
any one atom was set to 0.1 Å.

B. BiFeO3 calculations

A Z = 8 pseudocubic cell was used for the ini-
tial and final states (Supplementary Figure 227). All
first-principles calculations, including initial structural
optimizations of the NEB end-points, were com-
pleted with the GGA+U approximation54,55 to density-
functional theory which has been used effectively with
BiFeO3

13,56,57. A Ueff = 4 eV value was used to bet-
ter treat the 3d electrons in Fe which has previously
been benchmarked and utilized13,58,59. Repeating the
calculations after altering the Ueff value by 1 eV only
changed the magnitude of the net magnetization, and
did not alter the direction. This can be seen in mag-
netization data for Ueff = 3 eV in Supplementary Fig-
ure 627. A 4x4x4 k-point mesh, 500 eV plane-wave cut-
off, and 1× 10−6 eV energy error threshold were used for
the NEB calculations. The same parameters were used
for the magnetization calculations, but with a slightly
smaller energy error threshold of 1× 10−7 eV. The pro-
jector augmented wave method was used to represent the
ionic cores. There were 15 electrons for Bi (5d106s26p3),
14 electrons for Fe (3p63d64s2), and 6 electrons for O
(2s22p4) treated explicitly. The tetrahedron smearing
scheme with Blöchl corrections60 was used with a smear-
ing width of 0.05 eV. NEB calculations were run us-
ing the G-SSNEB algorithm53, until forces were below

0.02 eV Å
−1

. The path perturbations were normalized
such that the maximum displacement of any one atom
was set to 0.1 Å.

C. PbTiO3 calculations

All first-principles calculations, including initial
structural optimizations of the NEB end-points, were
completed using the revised Perdew-Burke-Ernzerhof
generalized-gradient approximation functional50

(PBEsol) that has been shown to improve properties of
densely-packed solids, and has been used effectively with
PbTiO3

61. A 1x6x6 k-point mesh, 400 eV plane-wave
cutoff, and 1× 10−7 eV energy error threshold were
used. The projector augmented wave method was used
to represent the ionic cores. There were 4 electrons
for Pb (6s26p2), 4 electrons for Ti (3d34s1), and 6
electrons for O (2s22p4) treated explicitly. The Gaussian
smearing scheme was used with a smearing width of
0.01 eV. NEB calculations were run using the regular
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NEB algorithm, until forces were below 0.01 eV Å
−1

.
The path perturbations were normalized such that the
maximum displacement of any one atom was set to
0.1 Å.

III. RESULTS AND DISCUSSION

A. Application to domain switching in improper
ferroelectric Ca3Ti2O7

The first example involves the bulk switching of a re-
cently discovered ferroelectric crystal Ca3Ti2O7. This
example illustrates how the commonly employed method
of altering the initial path through physical considera-
tions of the kinetic process may fail to discover hidden
MEPs, especially when the images altered are shared by
the new MEP. The example will also illustrate how to
systematically explore distortions of the initial path con-
structed with both k = (0, 0, 0) and k 6= (0, 0, 0) irreps
using group theory, where k indicates a reciprocal lattice
vector in the first Brillouin zone.

Inversion symmetry breaking in Ca3Ti2O7 arises from
a trilinear coupling between a polar mode and two other
oxygen octahedral rotation modes that transform as the
X3− and X2+ irreps of the high symmetry I4/mmm
structure62. Nowadnick and Fennie14 employed various
group theory methods in conjunction with physical intu-
ition supported by density-functional theory (DFT) cal-
culations to identify the switching pathway between a
polarization “up” and a polarization “down” state, each
with a structural symmetry of Cmc21 (see Figure 3(a)).
These were obtained by reversing the X2+ mode associ-
ated with octahedral rotations about the z-axis. Three
low energy paths were identified that pass through inter-
mediate structures of Pnma, Pbcn, and C2/c symmetry.

The DSM can be applied to this problem with sig-
nificant results. First, a linearly interpolated path is
constructed with a distortion symmetry of Cmcm∗ that
passes through a high-symmetry paraelectric structure
Cmcm. Using the NEB algorithm, the high-energy pro-
file shown in blue in Figure 3(b) is revealed. From here,
path perturbations are constructed using the non-trivial
irreps of the group Cmcm∗ at the Γ point k = (0, 0, 0),
and at the high symmetry Y point k = (1, 0, 0) (Sup-
plementary Table 227). This latter point was chosen for
this particular example, as the isotropy subgroups of the
irreps appear to match the distortion groups of the previ-
ously reported low energy two-step paths (Figure 3(b)).
In general, this knowledge would not be present, and per-
turbations would be generated and applied using irreps
at all high symmetry k-points of the distortion group.
It is important to note that perturbations constructed
with these require a sufficiently large supercell in order
to accommodate a loss of translational symmetry. Af-
ter applying the perturbations, NEB calculations are run
with three paths of lower energy being produced from the
initial paths associated with irreps Y4+, Y2−, and Γ4+.

These have Pn∗ma, Pbcn∗, and C2∗/c (Figure 3(c)) sym-
metry respectively, and match the low energy two-step
paths reported by Nowadnick and Fennie14. The curves
fitted to much of the data in this study, such as those
in Figure 3(b), have been made symmetric about λ = 0
when the paths contains “starred” symmetry. The asym-
metries that are present in the data itself are as a result of
numerical errors, which can commonly be seen in many
reported MEPs (see Supplementary Table 1 in Ref. 25).

With previously reported paths having been recreated,
further perturbations can be generated using the irreps
of their distortion groups (Pbcn∗, Pn∗ma, and C2∗/c).
These are then applied to each respective path, and new
NEB calculations are run, resulting in six new four-step
paths of lower energy that were not previously reported.
Paths obtained from the Pbcn∗ and Pn∗ma two-step
paths have very similar barriers, with the P2∗1/c and
Pn∗a2∗1 paths from perturbation of the Pn∗ma being
slightly lower (22 meV/Ti) as illustrated in Figure 3(b).
The four-step paths obtained from C2∗/c are lower in en-
ergy than the two-step parent, but have barriers similar
in energy to the two-step Pbcn∗ and Pn∗ma paths.

The six new four-step paths obtained have similar char-
acter, with each pair of paths passing through the same
structure at λ = 0 as the two-step path they are from.
For paths obtained from the Pn∗ma, Pbcn∗, and C2∗/c
paths, these structures are Pnma, Pbcn, and C2/c re-
spectively, as shown in Figure 4(a). Figure 4 also displays
snapshots of the Ca3Ti2O7 supercell for one of the four-
step paths from each pair, as well as plots of displacive
mode amplitudes as a function of reaction coordinate.
These are obtained by decomposing the distorted struc-
tures along each the paths into modes of atomic displace-
ments that transform as the irreps of the high-symmetry
parent structure with I4/mmm symmetry63.

In all of the two-step paths, the switching process in-
volves the simultaneous rotation of two pairs of oxygen
octahedra in each step. For the Pn∗ma path, both pairs
are within one of the perovskite layers of the structure,
and for the Pbcn∗ and C2∗/c paths, there is one pair
in each layer. In all of the four-step paths, each step
instead consists of the simultaneous rotation of a single
pair of octahedra in one of the layers, with the differ-
ence between all six paths being the order of the transi-
tion of all four pairs in the unit cell. This is illustrated
with the snapshots in Figure 4a, as well as the plotted
mode amplitudes in Figure 4b. For all four-step-paths,
the distorted structures at λ = −0.5 and λ = 0.5 show
non-zero amplitudes of similar magnitude for displacive
modes that transform as the Γ5+, M5+, M5−, X1−, and
X2+ irreps of I4/mmm. The paths then involve two of
these increasing in magnitude, and three decreasing to
zero at λ = 0. It is different combinations of these two
sets of increasing and decreasing modes that produce the
Pnma, Pbcn, and C2/c transition structures.

The prediction and experimental observation of a va-
riety of polar domains in Ca3Ti2O7 points to the exis-
tence of 180◦ domain walls with a local antipolar Pnma
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FIG. 3. Ferroelectric switching pathways in Ca3Ti2O7 obtained with the symmetry-based method. (a) The initial and final
states of bulk polarization switching in the Ca3Ti2O7 Ruddlesden-Popper (n = 2) structure. Arrows indicating the direction
of the octahedral rotations in the z-direction are shown, as well as the polarization vectors for each of the perovskite slabs. Ca,
Ti, and O are indicated by the grey, blue, and red atoms respectively. (b) The energy relative to the initial and final state as a
function of reaction coordinate for both the two-step and four-step paths from the NEB method. The upper plot corresponds
to perturbations illustrated by the left half of the tree in panel c, and the bottom with the right half. (c) Tree of distortion
symmetry groups of resulting paths after perturbation.

structure14,64,65. Pathways that pass through this Pnma
structure, such as the four-step paths with Pn∗a2∗1 and
P2∗1/c symmetry obtained from perturbing the Pn∗ma
path, characterize switching at this interface. However,
the nucleation of other previously reported switching
pathways with similarly low energy barriers that pass
through Pbcn and C2/c structures has not been clear.
The new four-step paths reported might also provide in-
sight into this problem due to the commonalities between
them – each of the steps in all of the pathways involve
the rotation of a single pair of oxygen octahedra in one
of the perovskite layers of the structure. Consequently,
the switching process may begin with a single pair of oc-
tahedra transitioning at the antipolar wall, with Pnma,
Pbcn, and C2/c structures at the λ = 0 point of the path-
way enabled by the specific order in which other pairs
transition. Further study on how this order could be se-
lectively controlled may be of interest as the presence of
specific ferroelectric switching pathways can be depen-
dent on many factors including local stress, domain size,

and applied electric field. Furthermore, this selective con-
trol of specific ferroelectric switching pathways being re-
cently demonstrated experimentally66,67. It should be
noted that strain specifically may be able to play a role
as the Pbcn structure of Ca3Ti2O7 has recently been sta-
bilized theoretically using epitaxial strain68. Overall, this
practical example illustrates the importance of the holis-
tic treatment of NEB paths and their perturbations. By
only considering different paths defined by alteration of
the original transition image at λ = 0, additional lower
energy paths may be missed such as in this example.

B. Application to multiferroic switching in BiFeO3

The second example of the DSM involves a well-studied
multiferroic, BiFeO3, and illustrates how distortion sym-
metry can help access and manipulate functional proper-
ties of materials such as coupling of polarization and mag-
netization. BiFeO3 is of interest for its well-known room
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FIG. 4. Lowest energy four-step ferroelectric switching pathways obtained for Ca3Ti2O7. (a) A visual illustration of one of
the four-step paths from each pair in Figure 3(b) showing which sections of the perovskite slabs have transitioned from the
initial to the final state. The spatial symmetry of each structure is shown above it. Labels of the distortion symmetry group
of each path is shown on the left side with the symmetry of the parent two-step path above it. All six-four step paths involve
the stepwise rotation of individual pairs of oxygen octahedra, with each one differing by the order in which all four pairs in
the cell transition. (b) Amplitudes of modes of atomic displacements that transform as irreps of the high symmetry I4/mmm
structure of Ca3Ti2O7 as a function of reaction coordinate for the paths shown in panel a. Structures at λ = −0.5 and λ = 0.5
for all six four-step paths show non-zero amplitudes of similar value that transform as the Γ5+, M5+, M5−, X1−, and X2+

irreps of I4/mmm. Differing structures at λ = 0 are then caused by different combinations of three of these decreasing to zero,
with the remaining two increasing.

temperature magnetoelectric coupling69. It exhibits a
large ferroelectric polarization, P (∼100 µC cm−2)58 and
a weak ferromagnetic moment, M (∼ 0.1 − 1.0 µB/Fe)
arising from the canting of the antiferromagnetically
aligned spins through an antisymmetric Dzyaloshinskii-
Moriya (DM) interaction70. This system holds great
promise for the deterministic control of the magnetiza-
tion M using an electric field to control the polarization,

P, as recently reported in literature13. Should we ex-
pect a deterministic control of M with controlling P?
By systematically breaking the distortion symmetries as-
sociated with bulk ferroelectric switching in BiFeO3, we
discover two competing pathways that prevent such de-
terminism. We also find that the symmetry breaking
results in transient states with unconventional coupling
between M and P.
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FIG. 5. Ferroelectric switching pathways in BiFeO3 with and without the reversal of the net magnetization (M ). (a) Data for
the switching pathway without reversal of the octahedral rotations where P is switched, and M is not. Shown on the left is
the energy relative to the initial and final states from NEB calculations as a function of reaction coordinate for all of the paths
obtained from perturbation of the initial path. Initial, middle, and final snapshots of P and M overlaid on a high-symmetry
pseudocubic unit cell of BiFeO3 is also displayed for the lowest energy P1 path. The purple, grey and red atoms represent Bi,
Fe, and O respectively. Shown on the right are projections of P and M on various planes in the pseudocubic coordinate system
for each image along the lowest energy path. (b) Data for the switching pathway with reversal of the octahedral rotations where
both P and M are switched. Shown on the left is the energy relative to the initial and final states from NEB calculations as
a function of reaction coordinate for all of the paths obtained from perturbation of the initial path. Snapshots of P and M
overlaid on a high-symmetry pseudocubic unit cell of BiFeO3 are also displayed for the four lowest energy images in the path.
Shown on the right are projections of P and M on various planes in the pseudocubic coordinate system for each image along
the lowest energy path.

To study this interaction, we start by considering two
possible pathways to switch P - a nondeterministic path
without octahedral rotations switching between the ini-
tial and final states (Figure 5a), and a deterministic path
with such switching of octahedral rotations (Figure 5b).
By doing so, we are able to specify whether M is also

switched in the process, since a reversal of the oxygen oc-
tahedra necessitates a switching of the DM vector, and
hence M as well13. For the path in panel a, only the
polarization is reversed (nondeterministic), whereas for
the path in panel b, the octahedral rotations and DM
vector are both reversed (deterministic). Constructing
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both paths using a linear interpolation between the end
states shown in Supplementary Figure 227 results in path
symmetries of R3̄∗c. By performing NEB calculations,
the black energy profiles shown in Figures 5(a) and 5(b)
are produced. At this stage of exploration, additional
NEB calculations can be performed after applying sym-
metry adapted perturbations constructed from the irreps
of R3̄∗c shown in Supplementary Table 327. What is ul-
timately obtained is a set of two paths with much lower
overall energy barriers than the original, resulting from
perturbations that transform as the Γ3− irrep. It should
be noted that in the case of the lowest energy path in
panel b, the final path symmetry is C2∗ and not P1.
While this is not the direct kernel of the irrep, it is one
of its epikernels, and thus the NEB algorithm raising
path symmetry to it is not surprising (see Supplemen-
tary Note 1 in Ref. 25). For the deterministic path in b,
the MEP has an energy barrier of 90 meV/f.u. and con-
sists of three 71◦ switching steps for P as it transitions
from [1̄1̄1̄]ps to [111]ps, while passing through [11̄1̄]ps and
[11̄1]ps. For the nondeterministic path in a, the energy
barrier is 120 meV/f.u., and the resulting path exhibits
two-step coordinated sequential motion of half of the
Bi atoms and oxygen octahedra, producing the notable
polarization and magnetization vectors along the path
shown in Figure 5. In the first step of the nondeter-
ministic path, half of the Bi atoms move along [110]ps,
while half of the octahedra rotate, causing all of them
to be in phase about [001]ps. In Glazer notation, this
corresponds to a transition from an a−a−a− to a−a−a+

structure. In the second half of the path, the octahedra
return to their initial state, as all Bi atoms in the struc-
ture shift. This sequential motion of the A cations is of
note, as recently this kind of behavior has been shown to
lower bulk ferroelectric switching energies in corundum
structured materials71.

Thus, two distinct MEPs are presented for ferroelectric
switching one which results in deterministic switching of
M (90 meV/f.u.), and one that does not (120 meV/f.u.).
With these pathways having comparable energy barriers,
one would expect a competition between the two switch-
ing pathways at room temperature (300 K ∼ 25 meV).
This is indeed what is observed experimentally (see sup-
plementary data in Ref. 13), with switching proceeding
through both pathways in strained thin films. Previous
first-principles studies on strained BiFeO3 have missed
the latter path, resulting in an incomplete description
of this process13. The fact that these pathways differ
primarily in the behavior of the octahedral rotations in-
dicates that strain could be used as a knob to energeti-
cally favor one pathway over the other, thus controlling
the deterministic switching. Given the complex potential
energy landscape associated with switching in transition
metal oxide ferroelectrics, one would expect such compet-
ing pathways to be the norm rather than the exception.
In this context, a systematic exploration of the switch-
ing pathways using distortion symmetry could provide a
compelling platform to inform materials design.

In addition to the competing switching pathways, we
discover that the nondeterministic switching pathway
proceeds through the formation of a transient metastable
state in which P and M and parallel to each other. This
is noteworthy, since these order parameters usually as-
sume mutually orthogonal directions in BiFeO3. In gen-
eral, the direction of M is restricted by the condition
that its emergence through spin canting must not break
the magnetic symmetry of the parent antiferromagnetic
phase72–76. If this condition is satisfied, a structure with
finite M may be stabilized through the DM antisymmet-
ric exchange interaction. In the ground state of BiFeO3,
the polarization is in the [111]ps direction, and spins lie
within the (111)ps plane in the parent antiferromagnetic
structure, resulting in a magnetic space group symmetry
of either Cc or Cc′. In both these cases, the only symme-
try allowed direction for spin canting is within the (111)ps
plane, so that M always remains perpendicular to P.
These results are consistent with previous work70. Note
that this should also be true of all transient structures
in the parent switching pathways with symmetry R3̄∗c,
and this is confirmed by our calculations (see supplemen-
tary material). However, for the intermediate metastable
structure in the P1 nondeterministic switching pathway,
the polarization is along [001]ps, and the spins are ori-
ented along [11̄0]ps in the parent antiferromagnetic struc-
ture, with a resultant magnetic space group symmetry
of Pn′a′21. For this structure, M ‖ [001]ps is the only
symmetry allowed direction for canting. Finally, our non-
collinear spin-polarized calculations show that this state
exhibits a finite M along the [001]ps direction, indicating
that this configuration with M ‖ P is not only symmetry
allowed, but is also stabilized by the DM interaction. The
emergence of this unconventional transient state in our
calculations is a direct consequence of systematic sym-
metry breaking of the switching pathways.

C. Application to domain wall motion in
ferroelectric PbTiO3

The third example of the DSM illustrates the possi-
bility for exploration of the potential energy landscape
by choosing an initial highly symmetrized path for the
motion of a domain-wall in PbTiO3 (Figure 6(a)).

180◦ ferroelectric domain-walls in PbTiO3 have been
studied extensively using a variety of first-principles
techniques77–83. Although the PbTiO3 supercell with
Pb-centered domain walls used to construct the initial
and final states in this study (Figure 6(a)) was relaxed,
the true ground state structure was not initially obtained
due to the constraining symmetry of the static structure.
While this may result in paths with images that are lower
in energy relative to the end points, it will be shown that
this allows for an exploration of some of the neighboring
energy landscape, and in turn, some of the many ways in
which the different components of the polarization can
behave during domain-wall motion.
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FIG. 6. Pathways obtained for 180◦ ferroelectric domain wall motion in PbTiO3. (a) The structure of the supercells of the
initial and final states used to construct the initial path for 180◦ domain-wall motion. Each box indicates a PbTiO3 unit
cell, with the red and blue arrows indicating polarization direction. (b) The energy relative to the initial and final states as a
function of reaction coordinate for the final paths obtained from NEB calculations. The colors indicate the distortion group
of the final path shown in the tree in panel c. (c) The tree of distortion symmetry groups resulting from path perturbations.
(d) The Ising, Bloch, and Néel components of the Ti displacement for the first unit cell in the structures shown in panel a as
a function of reaction coordinate. The energy of the complete structure is indicated by the color of the line, with the colored
labels indicating which paths are present in the data.

First, an initial NEB calculation was carried out using
the linearly interpolated path between the initial and fi-
nal states. This has a path symmetry of Pm∗ma, and the
resulting energy profile is shown in Figure 6(b). By con-
structing new initial paths for the NEB algorithm with
symmetry-adapted perturbations, eight different final re-
laxed paths are obtained, as shown in Figures 6(b) and
6(c). By plotting the Ising, Bloch, and Néel components
of the Ti displacement of one of the unit cells in the su-
percell through which the domain wall travels (i.e., the
first cell in the structures in Figure 6(a)) as a function of
reaction coordinate (λ), we can examine differences be-
tween the paths. The initial path shows the simultaneous
movement of both walls in the supercell via a reduction
of the Ising component of the polarization. For the Γ2−
path, the pathway consists of the same type of polariza-
tion behavior, but with a sequential movement of each
wall. For the other paths obtained, Bloch and Néel com-
ponents arise in the pathways, as shown in Figure 6(d).
Although many of these paths share similar magnitudes
of these, each path with a different symmetry exhibits
different underlying atomic motion. The actual ground
state structure and the MEP are close to the relaxed low-
est energy structures and the path between them seen in
Figure 6(b); see Supplementary Figure 727 for details.

Symmetry breaking at static ferroelectric domain walls

is an important phenomena that has been shown to lead
to a variety of novel properties localized about these re-
gions. Some examples of these include an enhanced con-
ductivity and photovoltaic effect84–86. Consequently, an
understanding of the local structure of these interfaces is
important, and has been a topic of great interest. Spe-
cific to PbTiO3, previous work has illustrated an unex-
pected mixed Bloch-Néel-Ising character of static ferro-
electric domain walls, similar to what can be observed
at walls between magnetic domains77,78. In this work,
we break symmetries associated with switching dynam-
ics, and in turn, discover low energy pathways involving
transient states that necessarily have non-zero Néel and
Bloch components of the polarization as well. This re-
sult demonstrates how a selective breaking of distortion
symmetry may be able to be used as a tool to help in the
discovery of unique and previously inaccessible functional
properties that may be intertwined with the dynamics of
switching.

IV. CONCLUSION

In this work, we have illustrated a powerful new
symmetry-based approach to discovering new MEPs
which we call the distortion symmetry method (DSM).
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By utilizing group theoretic tools, paths can be cat-
egorized according to their symmetry, and symmetry-
adapted perturbations can be generated to allow this
symmetry to be broken in a systematic manner. Using
this approach within the NEB method, subsets of paths
can be defined, each of which is explored for new MEPs.
By applying this technique to a variety of systems involv-
ing bulk ferroelectric switching and domain-wall motion,
new insights were gained. First, four-step bulk switching
pathways were discovered for the improper ferroelectric
Ca3Ti2O7 with a large unit cell and a complex domain
pattern. These provide new physical insights into the
kinds of switching pathways that may be nucleated at ex-
perimentally observed domain walls in the material. Sec-
ond, a new competing pathway was discovered for mul-
tiferroic switching in BiFeO3 that allows for switching of
polarization without switching canted magnetism. This
low energy path exhibits parallel alignment of the net
magnetization and polarization, and results in an inde-
terministic multiferroic switching process that competes
with a deterministic path. This result informs studies
where deterministic switching is sought13. Finally, a rich
range of domain wall motion paths in the energy land-
scape of PbTiO3 were discovered starting from a highly
symmetrized initial path; walls with mixed Ising, Bloch,
and Néel character were observed during the switching
process. This demonstrates how breaking distortion sym-
metries may be able to be used to help probe unique func-
tional properties associated with switching dynamics.

In order to complete calculations for the examples in
the study, the distortion symmetry method was imple-
mented to interface with standard NEB codes. This has
resulted in an observed speedup of NEB calculations on
paths containing starred symmetry of up to two times

(see Supplementary Figures 9 and 1027). Furthermore,
as demonstrated in this work, even in cases when the
final MEP may have low symmetry, one can often start
with a highly symmetrized initial pathway that allows
the user to exploit the power of this method. In the
future, we envision the possibility for further extensions
to the distortion symmetry framework, by incorpo-
rating other kinds of symmetry groups, such as those
involving distortion translation87,88. We foresee that the
newly proposed distortion symmetry method could be-
come an integral part of the discovery of new transition
states in many problems of relevance to materials science.
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