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We introduce the method of stochastic lists to deal with a multi-variable positive function, defined
by a self-consistent equation, typical for certain problems in physics and mathematics. In this
approach, the function’s properties are represented statistically by lists containing a large collection
of sets of coordinates (or “walkers”) that are distributed according to the function’s value. The
coordinates are generated stochastically by the Metropolis algorithm and may replace older entries
according to some protocol. While stochastic lists offer a solution to the impossibility of efficiently
computing and storing multi-variable functions without a systematic bias, extrapolation in the
inverse of the number of walkers is usually difficult, even though in practice very good results are
found already for short lists. This situation is reminiscent of diffusion Monte Carlo, and is hence
generic for all population-based methods. We illustrate the method by computing the lowest-order
vertex corrections in Hedin’s scheme for the Fröhlich polaron and the ground state energy and
wavefunction of the Heisenberg model in two dimensions.

PACS numbers: 03.75.Hh, 67.85.-d, 64.70.Tg, 05.30.Jp

I. INTRODUCTION

We are interested in the solution F (x) of equations of
the type

F (x) = F0(x) +K[F (x)], (1)

where the coordinate x is high-dimensional. The (gener-
ically nonlinear) functional K can involve a number of
integrations, multiplications and summations, but we do
not consider differentiations. Ultimately, the solution of
(1) is often used to compute integrals involving F and
some other, more simple, functions. A straightforward
approach to solve Eq. (1) is by fixed point iterations:
Starting from a guess F (0), one computes the right-hand
side, plugs the newly obtained F (1) into the right-hand
side, and continues this iteration until, ideally, conver-
gence is reached. However, as soon as the dimension is
higher than three it becomes very difficult to efficiently
compute and store the function F .

Equations of the above type typically occur in the self-
consistent formulation of quantum field theory, such as
the Hedin equations,1 the Schwinger-Dyson equations,2,3

parquet equations,4,5 etc. They can also occur in the
presence of spontaneous symmetry breaking, such as
the Bardeen-Cooper-Schrieffer theory, when the order-
ing field has to be determined self-consistently. Whereas

the Green function, the self-energy, the polarization, and
the effective interaction are typically two-dimensional in
case of rotational and translational symmetry [i.e., there
is one spatial (or momentum) coordinate and one time
(or frequency) coordinate] and can be stored efficiently
with standard grids, the irreducible three-point vertex
is already five-dimensional in 3D. Studies attempting to
solve the Hedin equations therefore often treat the ver-
tex function as just a bare vertex, leading to the GW -
approximation. Alternatively, the full function is repre-
sented by an infinite number of contributions that only
involve relatively simple integrals [cf. the expansion of
the Luttinger-Ward functional6 in the Baym-Kadanoff ef-
fective action7,8 (or its generalization to bosons9,10) pop-
ular in the context of electronic structure calculations].

This problem—sometimes referred to as the curse of
dimensions—is among the most prominent ones faced by
diagrammatic Monte Carlo (DiagMC) methods. This is
unsatisfactory, because the premise of the DiagMC sim-
ulation is precisely to deal with high dimensions while
maintaining the central limit theorem. In this work, we
introduce stochastic lists, a method in which the high-
dimensional function F (x) is represented by a stochastic
list of coordinates x1,x2, . . . ,xP , with P the length of the
list. Specifically, a positive F is considered as a probabil-
ity function with norm N and faithfully represented as
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N

∫
F (x)dx ↔ 1

P

P∑
j=1

δ(x− xj). (2)

The entries in the stochastic list are obtained by some
Markov process (to be discussed later; the key property
is that the values of F (x) do not explicitly enter into the
equation used for generation of the list entries), and can
be refreshed by some protocol, which is non-Markovian.
The list provides a faithful statistical representation of
F (x): any quantity of interest which can be written as
some integral over F can be computed. In this work we
assume that F is positive.

We benchmark the approach by considering two differ-
ent systems. First, we study the Hedin equations for the
Fröhlich polaron by computing the lowest order vertex
corrections self-consistently. Second, we formulate the
power method to find the ground state of a Hamiltonian
in the language of stochastic lists and study the ground-
state energy and wavefunction of the two-dimensional
Heisenberg model. We find that, in practice, short lists
give already remarkably accurate results. Typically, a
power law extrapolation can be attempted over several
decades in 1/P . However, we found deviations for longer
lists (in our examples when P � 106), which makes any
extrapolation difficult (unless the stochastic error domi-
nates at this point).

As is clear from the power method example, stochas-
tic lists share a number of properties with the diffusion
Monte Carlo method. An exponential scaling for diffu-
sion Monte Carlo was reported previously in the litera-
ture and was related to the correlation within the popula-
tion of walkers as a consequence of the population control
mechanisms.11. It seems therefore that all population-
based methods ultimately scale exponentially, implying
that for sufficiently large (and hard) systems the extrapo-
lation cannot be done reliably to eliminate the systematic
bias. This outcome also questions the practicality of the
method for arbitrary (bosonic) problems. Nevertheless,
for many realistic cases this scaling will not be seen (due
to the dominance of the stochastic error), and by suffi-
cient insight into the problem (such as choosing a very
good guiding wavefunction) the prefactor can be substan-
tially reduced such that the scaling is not an issue. This
we can also demonstrate for stochastic lists.

This paper is structured as follows. In Section II,
we study the non-crossing approximation and the low-
est non-trivial order vertex corrections for the Fröhlich
polaron problem. In Section III, we proceed with the
ground state energy of the two-dimensional Heisenberg
model, with a special emphasis on the numerical con-
vergence of the stochastic process. We conclude in Sec-
tion IV.

II. THE HEDIN EQUATIONS FOR THE
FRÖHLICH POLARON PROBLEM

As a first application, we consider the Hedin equa-
tions for the Fröhlich polaron. This system has a positive
expansion, and is known to be convergent at any finite
temperature. It is hence free from the most important re-
striction on the DiagMC method, which is the series con-
vergence. (Since the DiagMC algorithms work by itera-
tion, they typically require a finite region of convergence.)
Sign-positive representation also implies that there is no
need to take special care of the diagram topologies, and
one can proceed with standard Metropolis-Hastings sam-
pling techniques.12,13 Therefore, the study of the Fröhlich
polaron provides an ideal opportunity to benchmark the
idea of stochastic lists in the context of vertex corrections.

A. Model

The Fröhlich polaron model describes the interaction
between an itinerant electron and longitudinal optical
phonons in insulators. Historically, it was the first prob-
lem to which the DiagMC method was applied14–16 and
for which it was able to provide definite answers regard-
ing the polaron spectrum and arbitrarily precise polaron
energies for any coupling strength. The Hamiltonian in
the thermodynamic limit is given by (h̄ = 1)

H = Hel +Hph +Hel−ph (3)

Hel =

∫
d3k

(2π)3
k2

2m
a†kak ,

Hph =

∫
d3q

(2π)3
ωqb
†
qbq = ωph

∫
d3q

(2π)3
b†qbq ,

Hel−ph =

∫
d3k d3q

(2π)6
V (q)(b†q − bq)a†k−qak ,

V (q) =
iωph

q (2mωph)1/4

(
4πα

V

)1/2

=
iα̃

q
.

The operators ak and bq are annihilation operators for
electrons of mass m with momentum k and phonons
with momentum q, respectively. The phonon frequency
ωq ≡ ωph can be taken momentum-independent for op-
tical, longitudinal phonons. The dimensionless coupling
constant is α. Typical values for α vary from 0.023 for
InSb over 0.29 for CdTe to 1.84 for AgCl.17

Here we focus on the T = 0 case. In the
imaginary-time representation, the bare propagator

reads G0(k, τ) = −θ(τ) exp
[
−( k

2

2m − µ)τ
]
. The phonon

propagator D(q, τ) = (α̃/q)2 exp(−ωphτ) remains un-
renormalized and is dispersionless. We absorbed the
modulus squared of the electron-phonon interaction po-
tential into the phonon propagator for convenience (the
two factors always enter the technique as a product).
The method of stochastic lists can not deal with momen-
tum or frequency conservation because all coordinates of
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FIG. 1. (Color online.) Comparison of the Green func-
tion dependence on imaginary time at zero momentum,
−G(p = 0, τ), obtained in the NCA approximation between
the stochastic list method (stoch. list) and an explicit evalu-
ation. Data are shown for α̃ = 5, µ = −4 and the list length
P = 106.

the vertex function are generated by the list without re-
strictions. We therefore need to work in the imaginary-
time, real-space representation, where the propagators

for phonons and electrons readD(r, τ) = α̃2

4πr exp(−ωphτ)

and G0(r, τ) = −θ(τ)
(
m
2πτ

)3/2
exp(−mr

2

2τ + µτ), respec-
tively.

B. The Non-Crossing Approximation

As a first application to set the ideas, we solve the
Fröhlich polaron problem in the non-crossing approxima-
tion (NCA), which corresponds to the first-order skeleton
diagram. The coupled set of NCA equations reads [we
employ both (k, ωn) and (r, τ) representations to simplify
these equations]

Σ(1)(r, τ) = D(r, τ)G(1)(r, τ) ,

G(1)(k, ωn) =
1

G−10 (k, ωn)− Σ(1)(k, ωn)
. (4)

Reference NCA data can be found in the lecture notes
Ref. 18.

In order to solve these equations with stochastic lists,
we cast the entire setup as a single self-consistent non-
linear integral equation of the form (1):

G(1)(X) = G0(X) +

∫
I d4X1 d

4X2, (5)

I = G0(X1)G(1)(X2−X1)D(X2−X1)G(1)(X−X2),

where we introduced the 4-dimensional space-time posi-
tion vectors X = (r, τ), X1 = (r1, τ1), and X2 = (r2, τ2).
We then pretend that G(1)(X) cannot be evaluated and
stored as a function, but its properties can be repre-
sented by a collection—the list—of X-coordinates gen-
erated stochastically by sampling the r.h.s. of (5) using

standard DiagMC techniques. There is no gain in us-
ing rotational symmetry for the coordinates in the list,
since symmetrized elements will just be called more often
from the list in order to sample the space possessing this
symmetry.

The minimal set of updates consists of switching be-
tween the two sectors corresponding to the first and sec-
ond terms in the r.h.s. of (5). The known integral
over the first term, N0 =

∫
|G0(X)|d4X = 1/|µ|, is

used for normalization: the Monte Carlo statistics for
any property is properly normalized once multiplied by
the factor N0/Z1, where Z1 is the number of samples
that belong to the first term. For example, the nor-
malization integral NG =

∫
|G(1)(X)|d4X is obtained as

NG = N0(Z/Z1), where Z is the total number of samples
(no matter whether they belong to the first or the second
term).

In order to go from the first to the second term, we
draw a random variable τ1 according to an exponential
distribution ∝ |µ|e−|µ|τ1dτ1 and then generate three ran-
dom numbers (x1, y1, z1) according to a gaussian distri-
bution with zero mean and variance τ1/m; the corre-
sponding probability density is based on the G0 func-
tion. Next, we choose coordinates X3 and X4 uni-
formly from the existing list; they define X2 = X1 +X3

and X = X2 + X4, by translation invariance. The
probability 1/P 2 for selecting these two variables from
the list is a faithful representation of the probability
G(1)(X2−X1)G(1)(X−X2) d4X2 d

4X/N 2
G, as follows from

Eq. 2. In the reverse update taking the simulation from
the second to the first term, the coordinates of the free
propagator are again determined by the probability den-
sity based on G0: an exponential random number for the
time and three gaussian random numbers for the space.

The key property behind the list technique is that
all the values of the unknown function G(1) cancel in
the acceptance ratio: The unknown full Green functions
appear in both the proposed configuration weight and
the probability density used to generate new variables.
For the same reason all exponential and gaussian fac-
tors cancel G0(X1). This results in an acceptance ratio
R = D(X2−X1)N 2

G (and 1/R for the reverse update).
The update is then accepted with probability min(1, R),
according to the Metropolis-Hastings algorithm. One
thus arrives at a protocol of dealing with a function with-
out knowing/revealing its explicit form.

In this implementation, we work with an existing list
from which we draw random coordinates, while simulta-
neously preparing a new list which we consecutively fill
after each Monte Carlo update by recording the current
value of X (in both sectors). When the new list is full,
it replaces the existing one and the new list is reset to
zero. To initialize the procedure, we start with a short
list based on random coordinates that we draw from the
G0 distribution, which we let grow by a small factor of the
order of 1.001÷ 1.01 till the maximum length is reached.

The results for a moderate coupling α̃ = 5 are shown
in Fig. 1. Within the level of resolution of the plot, there
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FIG. 2. (Color online.) Upper pane: Lowest-order contribu-
tions to the three-point vertex in the (imaginary-time, real-
space) representation. Lower pane: Self-energy in terms of the
three-point vertex in the (imaginary-time, real-space) repre-
sentation.
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FIG. 3. (Color online.) Comparison of the Green function
dependence on imaginary time at zero momentum, −G(p =
0, τ), obtained by the stochastic list method applied to the
scheme illustrated in Fig. 2 with a list of length P = 106

(“P=1M”) versus the result obtained by a conventional Di-
agMC simulation restricted to sample the same set of dia-
grams from the bare series (see text).

is no difference between the exact NCA result and the
one obtained by stochastic lists of the length P = 106.
We postpone the discussion of convergence properties till
Sec. III. Here we simply note that for P = 106 any sys-
tematic bias was subdominant to the statistical noise.
Also, there is no need for fast Fourier transforms (cf.
Ref. 18) when employing lists and thus no need to take
care of the asymptotic behavior of the Green function for
large frequencies.

C. First-order vertex corrections

We now consider the Hedin scheme1 where the ver-
tex function takes into account both the zeroth-order

term and the first-order corrections. The system to solve
consists of three equations, the two of which are shown
graphically in Fig. 2, and the third one is the Dyson equa-
tion for the Green function. Our implementation involves
two stochastic lists: one for the Green function G(X),
as before, and the other one for the three-point vertex
Γ(X1, X2), the latter containing 6 spatial and 2 tempo-
ral coordinates. (As before, there is no gain in exploiting
symmetries to reduce the number of spatial coordinates.)
We set up one stochastic Markov-chain process to sample
both quantities. The algorithm itself is a straightforward
extension of the one discussed above, and we will not
elaborate here on minute technical details.

Reference data were obtained from the algorithms dis-
cussed in Ref. 18, where we used the bare-series code
with the updates “insert-remove” and “dress-undress”
switched on and the “swap” update switched off. Start-
ing from an arbitrary Green function diagram, the “in-
sert” update attempts to insert a new D-propagator
without dressing any of the existing vertices; i.e., none
of the vertices covered by the new D-propagator remains
unlinked on the updated time interval. “Remove” is the
complementary update. The “dress” update attempts to
insert a new D-propagator that covers precisely one ver-
tex; the “undress” update is its complementary partner.
This set of updates is not ergodic for the full problem
(e.g., no diagrams in which a D-propagator covers two
or more non-linked vertices can be reached), but it ac-
counts for all diagrams covered by Fig. 2.

The results of benchmark comparison are shown in
Fig. 3. We see that perfect agreement is reached for the
Green function at zero momentum as a function of imag-
inary time for a list of length P = 106 (the same length
is used for both G and Γ). The method of stochastic lists
seems thus promising to study vertex corrections in the
context of (bosonic) dynamical mean-field theory and its
cluster extensions. However, as we will see in the next
section, establishing the convergence of the answer can
only be done on a case by case basis, at best.

III. GROUND STATE OF THE
ANTIFERROMAGNETIC HEISENBERG MODEL

In this section, we consider the spin-1/2 Heisenberg
antiferromagnet (HAF) on a square lattice

H = J
∑
〈i,j〉

Si ·Sj =
J

2

∑
〈i,j〉

(S+
i S
−
j +S−i S

+
j +2Szi S

z
j ), (6)

with spin exchange amplitude J > 0. The sum is
over nearest neighbor sites, and the lattice is of size
L× L. By performing the unitary transformation Sxi →
−Sxi , Syi → −S

y
i , Szi → Szi on one of the sublattices,

the sign of the amplitude in front of the raising and low-
ering term is reversed. The matrix elements of C−H, for
an appropriately chosen constant C = JL2/2, are then
all positive in the usual Sz basis. The eigenvalue problem
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FIG. 4. (Color online.) Difference between the exact energy
per site (taken from Ref. 19) and the one obtained with either
a stochastic list of length P (see text for an explanation of the
different protocols), or in a diffusion Monte Carlo simulation
with Nw walkers (“Hetherington,” with k = 128; see text).
The system is a 2D Heisenberg model with linear size L = 10
with J = 1.
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FIG. 5. (Color online.) Minus the energy per site as a function
of 1/P using protocol 3 (with κ = 1) with a Gutzwiller guiding
wavefunction with b = 0.8, which is (close to) optimal. The
error bars have been obtained from 10 independent runs. The
data are compared with the value E/J = −0.671549(4) per
spin, plotted as a thin blue line and its error bars as a thin dot-
dashed green line, obtained by A. Sandvik using the stochastic
series expansion method19. The data have been extrapolated
linearly (shown as a full line in the plot) according to E(x) =
E0 − bx with x = 1/P , resulting in a = 0.671555(4) and
b = 11.3(4). The system is a 2D Heisenberg model with linear
size L = 10 with J = 1.

(C −H)ψ = (C − E0)ψ, (7)

can be considered a power method when the state ψ is
iteratively represented by the stochastic list. It yields
the absolute value of the largest eigenvalue in magni-

tude, whose eigenfunction can always be chosen posi-
tive for a positive matrix. With the above transforma-
tions, this corresponds to projecting onto the antiferro-
magnetic ground state (and not the ferromagnetic anti-
groundstate). This problem is challenging because of the
gapless spectrum of elementary excitations in the ther-
modynamic limit and the large dimension of the Hilbert
space, growing exponentially with system size.

The coordinates in the list consist now of L2 bits rep-
resenting the spins on the lattice. We add to the sampled
configuration space a dummy spin-independent term for
normalization purposes; the equation to solve thus con-
tains a normalization constant CN as well as the matrix-
vector multiplication term. The key updates are switch-
ing between these two terms. To go from the former to
the latter, we pick randomly an entry from the stochas-
tic list of length P , which provides us a coordinate (Fock
state) j. The probability of this selection is 1/P or, ac-
cording to Eq. 2, |ψj |/Nψ, where Nψ =

∑
j |ψj | is the

normalization sum (estimated using the same procedure
as described above for NG). Next, we have to determine
all non-zero Hamilton matrix elements Hij when acting
on the state corresponding to coordinate j. We assume
that the Hamiltonian is too large to be stored explic-
itly, so that this step must be repeated in every Monte
Carlo update. For sparse matrices, there are very few
possible final coordinates i. We choose the final coordi-
nate i according to the heatbath algorithm, i.e. with
probability pi = Hij/H̄j , where H̄j =

∑
iHij . The

resulting Metropolis-Hastings acceptance ratio is just
R = NψH̄j/CN (and 1/R for the reverse update). The
update is accepted with probability min(1,R). We also
occasionally employed the Metropolis-like algorithm, in
which one of the non-zero matrix elements Hij is chosen
with uniform probability instead of the heatbath algo-
rithm. It did not lead to significant differences in the au-
tocorrelation times. A good choice for the dummy term
constant is CN = 2JL2 (to compensate the typical value
of the H̄j sum). Measurements of the parameter Nψ and
recordings of the new list entries are performed only in
the matrix-vector multiplication sector.

Apart from the previously discussed protocol (“proto-
col 1”) where the current list is replaced by the new one
once the latter is completed, we also applied “protocol
2.” Here there is only one list updated at each Monte
Carlo step by drawing a random integer in the interval
m ∈ [0, P [ and replacing the existing entry m with the
new coordinate. In “protocol 3” the list is continuously
growing as a function of the Monte Carlo steps according
to P =

√
τMC/κ. The list grows then by one entry when-

ever the integer part of
√
τMC/κ increases by one; oth-

erwise an existing entry is overwritten when measuring
the list. As will be clear from the results, the differences
between these protocols are not of leading importance.

The above algorithm works remarkably well for small
matrices, even if they are poorly conditioned. For a sys-
tem of size L = 4, the systematic error can easily be
made smaller than the statistical noise. When P exceeds
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1000, we find that the systematic error decreases as 1/P .
However, at larger system size (speaking of L = 10 and
larger), this extrapolation law is no longer valid: Longer
lists are needed, which need to be iterated much longer
to converge. We also observe that the converged results
cannot be extrapolated as a power law in 1/P (even
though the results are remarkably accurate already for
short lists). This gets worse with increasing system size,
and the marginal gain of using longer lists diminishes
further. We also see in Fig. 4 that the scaling does not
depend on which protocol we use, suggesting that the rea-
son for the inefficiency of the simulation must be found in
the build-up of autocorrelations scaling unfavorably with
the system size: due to the overwriting of the entries in
the stochastic list, a few Fock states tend to dominate
and the superposition of those is not the exact ground
state. Protocol 3 appears to yield results that can be
extrapolated by a single power law over several decades
in 1/P and may hence look superior. Some care with
this observation is however needed because we could not
reach lists that are as long as in protocols 1 and 2; i.e.,
it might be that the law P =

√
τMC/κ is still too fast

when P � 105.

The method of stochastic lists applied to the power
method is highly reminiscent of diffusion Monte Carlo,
which has also been applied to the Heisenberg model
with impressive results.20–25 We compare here with an
implementation motivated by the original algorithm by
Hetherington20 and the reconfiguration ideas of Ref. 25.
In this scheme, Nw walkers propagate through the Fock
space but, instead of satisfying a detailed balance con-
dition, they acquire multiplicative weight factors (these
are the previously introduced H̄j sums), which fluctuate
at an extensive scale. After a number of generations k,
a population-control mechanism is applied to keep the
number of walkers fixed. Walkers with high weight are
more likely to reproduce and walkers with a low weight
are more likely to be eliminated. The resulting bias is
compensated by global factors

〈
H̄(1)

〉
, . . . ,

〈
H̄(k)

〉
(i.e.,

the H̄ values averaged over all walkers in every genera-
tion), see Refs. 20 and 25 for details. In Fig. 4 we see
that the above algorithm with k = 128 yields results that
are more accurate than the list when there are few walk-
ers, but that the scaling is the same as for the list. We
checked that the same holds for k = 12. It has been
known since the early days of diffusion Monte Carlo that
the population size might easily lead to the dominant
source of error; more recently, Nemec claimed an expo-
nential scaling,11 and population size bias was also found
by Boninsegni and Moroni.26 The explanation given by
Nemec apparently also applies to stochastic lists.

It is well known that diffusion Monte Carlo can sig-
nificantly be enhanced by using a good guiding wave-
function. For the HAF model, and certainly for small
system sizes, excellent variational Jastrow wavefunctions
are known.27 We employed here a simpler but faster to
evaluate Gutzwiller ansatz, reminiscent of perturbation

theory,

ψG ∼
∏
〈i,j〉

exp(−bSzi Szj ), (8)

where b is a variational parameter (Note however that
we have no proof that our final answer for the ground
state energy is variational). For b > 0 antiferromag-
netic correlations are enhanced. The only change to the
code is that the Hamiltonian matrix element is replaced
by Hij = ψG(i)Hij/ψG(j) where ψG(i) denotes Eq. 8
evaluated for spin configuration i. We performed the
simulation for various values of b using protocol 3. We
show in Fig. 5 the convergence for b = 0.8, which is very
close to optimal. We find that the energies differ by an
amount 8× ∼ 10−6 for the longest lists we have studied,
P ∼ 8 × 105. The figure makes however clear that the
energy still drifts as a function of 1/P . If we extrap-
olate, the results agree within error bars (of the order
of 4 × 10−6) with Sandvik’s stochastic series expansion
results19 and with the diffusion Monte Carlo results of
Ref. 25.These results are hence up to two orders of mag-
nitude more precise than the results without using the
guiding wavefunction. However, a poor guiding wave-
function can lead to severe slowing down and, recalling
our main goal of studying vertex corrections, one has
to recognize that good (and easy to evaluate) guiding
schemes are not available in general.

IV. CONCLUSION

We have introduced the method of stochastic lists,
which allows one to accurately emulate properties of a
multi-variable function F (x). The repeatedly refreshed
list consists of a large set of coordinates x distributed
according to the F (x) values. The list of length P repre-
sents only a tiny fraction of the full coordinate space of
F , but after it is refreshed multiple times, a faithful rep-
resentation of the entire F (x) function is obtained. The
method was benchmarked by computing vertex correc-
tions self-consistently for the Fröhlich polaron model and
by applying the power method for obtaining the ground-
state energy and wave function of the antiferromagnetic
Heisenberg model. The method gives reasonably accu-
rate results for most problems in practice, and can appar-
ently be extrapolated as a power law over several decades
in the inverse list length. However, for very long lists we
could observe deviations rendering a controlled extrapo-
lation for an arbitrary problem difficult. This behavior
seems inherent to all population-based methods. Never-
theless, stochastic lists are extremely promising for many
problems where clever guiding functions for the stochas-
tic sampling are known. Here the systematic error can
be reduced to such a degree that it becomes irrelevant in
practice.
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