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Electrostatic gating and optical pumping schemes enable efficient time modulation of graphene’s
free carrier density, or Drude weight. We develop a theory for plasmon propagation in graphene
under temporal modulation. When the modulation is on the timescale of the plasmonic period, we
show that it is possible to create a backwards-propagating or standing plasmon wave and to amplify
plasmons. The theoretical models show very good agreement with direct Maxwell simulations.

Introduction – Two-dimensional layered materials have
been intensively explored in recent years for their en-
hanced light-matter interactions through a plethora
of dipole-type excitations[1–3]. Graphene, in partic-
ular, can accomodate electrically tunable and highly
confined low loss plasmon-polaritons[2–11]. The plas-
monic resonance lies in the highly sought after ter-
ahertz to mid-infrared regime, with applications in
optoelectronics[12, 13], optical modulators[14–16], beam-
forming and antenna[17, 18], and detection and finger-
printing of biomolecules[19, 20]. Enabling these appli-
cations is the ease in tuning of graphene plasmon reso-
nances and their scattering phases through modulation of
its electronic doping n. The modulation of n can also be
achieved in the temporal domain in a practical setup but
its consequences on graphene plasmons are less under-
stood. On the other hand, temporal modulation of waves
has been studied in many physical contexts, revealing
interesting phenomena from time-reversed acoustic[21],
elastic[22], electromagnetic[23] and water waves[24–26] to
the modulation of refractive index in optics[27–29].

In the terahertz to mid-infrared regime, the optical
conductivity of graphene is well-described by the Drude
model, σ(ω) = iD/(ω+i/τ), where D is the Drude weight
and τ is the electron relaxation time. The premise of
our work is that the plasmons is in the conventional ki-
netic regime, which also coincide with most experimen-
tally observed plasmons in graphene[30–33]. In graphene,

D = e2µ
π~2 ∼

√
n where µ is the electrochemical potential

and n is electron density, while in conventional 2D elec-
tron gas, D ∼ n. However, when the plasmon frequency
is much smaller than the electron-electron scattering rate,
and the plasmon wavelength smaller than the electron-
electron scattering mean free path, then we enter the
hydrodynamic regime, and one should adopt a different
form of Drude weight[34–36], a subject not within the
scope of this study. Experimental modulation of D(t)
(or n(t)) can most easily be achieved with electrostatic
gating[4, 5], or via optical pumping[33]. In the former,
the modulation is through the change in the chemical po-
tential, at a time scale dictated by the gate delay time
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in the sub-ps range. In the latter, it is via the electronic
temperature, and the time scale is in the 10-100 fs[37–
40]. In this letter, we examine the response of graphene
plasmons under non-adiabatic temporal modulation of
D(t), and provide the prescriptions for achieving maxi-
mal backwards propagating plasmons, standing plasmon
waves, and the amplification of plasmons.

Theory – Consider a graphene plasmon

Hz(x, y, t) = sign(y)eiξx−γ|y|−iωt (1)

propagating along the x axis in a sheet of graphene in the
xz-plane. The dispersion relation for a graphene plasmon
is well-known[1];

ξ =
ω

c

√
1− 4

σ(ω)2Z2
(2)

where c is the speed of light in the surrounding medium
and Z is the impedance of the surrounding medium. Sub-
stituting the Drude model for the conductivity and using
the fact that in a typical experimental setup Z2D2τ2 � 1
gives us

ω ≈ − i

2τ
±
√
Dξ
2ε
, (3)

where ε is the permittivity of the surrounding medium.
In general ω can be complex, where the real part corre-
sponds to frequency and the imaginary part corresponds
to damping. Note that the positive and negative square
root correspond to leftward and rightward propagating
plasmons, respectively.

Now we consider a time-dependent D(t). Under tem-
poral modulation, ω is not a conserved quantity. On the
other hand, since the graphene is spatially homogeneous,
ξ is invariant. Hence, one should view (2) as an equation
for ω given ξ. In the quasi-static limit, ξ � |ω|, hence,

γ =
√
ξ2 − ω2/c2 ≈ |ξ|. Therefore, only ω in (1) changes

in time.
By discretizing D(t) as a series of small jumps in Drude

weight we can develop a propagator matrix framework to
describe the evolution of Hz(x, y, t) in time. Changes in
D(t) will cause reflection, so that

Hz(x, y, t) = (A(t)e−iωt +B(t)eiω
?t)u(x, y) (4)
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FIG. 1. (L) The ratio |B|2/|A|2 as a function of the Drude
weight ratio D2/D1. (R) The transmission coefficients (|A|,
solid) and reflection coefficients (|B|, dashes) as a function of
ramp time tr. The Drude weight starts at D1 corresponding to
Fermi level of 0.5eV and ends at D2 corresponding to 0.1eV.
Shown in dots are the values calculated by direct Maxwell
simulation.

where u(x, y) = sign(y)eiξx−γ|y| and ω? is the complex
conjugate of ω. To understand the evolution of Hz in
time, we only need to keep track of the amplitude vector
[A,B]T and the complex frequency ω. On an interval
[t0, t0 + ∆t], where the conductivity is constant, the am-
plitude vector evolves according to the propagator matrix

M(D,∆t) =

[
e−iω∆t 0

0 eiω
?∆t

]
. (5)

Next, consider the change in the amplitude vector as D(t)
undergoes a jump from D1 to D2 at t = t0. In order
for Maxwell’s equations to be satisfied at all times we
require that Hz and Ex be continuous at t0. Using these
conditions gives us the propagator matrix

T (D1,D2) =

[
1+ω?

2/ω1

1+ω?
2/ω2

1−ω?
2/ω

?
1

1+ω?
2/ω2

1−ω2/ω1

1+ω2/ω?
2

1+ω2/ω
?
1

1+ω2/ω?
2

]
. (6)

The derivation of this equation is detailed in the Supple-
mentary section. It is based on requiring continuity for
Hz across the time “interface” t = t0 and keeping track
of how A and B in (4) changes.

For an initially rightward propagating plasmon the am-
plitude vector is [1, 0]T . Suppose the Drude weight, ini-
tially, D1, goes through a jump and becomes D2. If
damping is small we can use the propagator to obtain
the amplitudes after the jump, given by

A = 1
2

(
1 +

√
D2

D1

)
, B = 1

2

(
1−

√
D2

D1

)
. (7)

We view A and B as the amplitudes of the right- and left-
going waves. Thus they can be interpreted as transmis-
sion and reflection coefficients. To maximize reflection
we want D2 � D1. The ratio |B|2/|A|2 as a function of
D2/D1 is plotted in FIG. 1(L). In the limit D2/D1 ≈ 0,

we achieve |A| = |B|, which corresponds to maximal re-
flection of 50%.

In realistic experimental setup, the Drude weight will
not change instantaneously but will instead smoothly
vary from D1 to D2 over some ramp time tr. In this case
we calculate A and B using both the propagator matrix
method and direct full-wave simulations with excellent
agreement. The graph of |A| and |B| for when the initial
amplitude vector is [1, 0]T , is shown in FIG. 1(R). We
see that as the ramp time increases, the system moves
into an “adiabatic” regime where there is no reflection.
Interestingly, the amplitude of the transmitted plasmon
decreases asymptotically as it approaches the adiabatic
limit. This can be understood intuitively by considering
the energy density |j|2/(2D) of the current: a decrease in
D(t) is countered by an increase in |j|. We will elaborate
on this point in what follows.

A more quantitative explanation of the decrease in
transmission amplitude in the adiabatic regime can be
obtained by deriving a continuum limit of the propaga-
tor matrix method. We do this in the limit where τ � 1,
in which case we have

T (D1,D2) =
1

2

[
1 + ω2

ω1
1− ω2

ω1

1− ω2

ω1
1 + ω2

ω1

]
(8)

where ω1 and ω2 are now real. Further note that we have
ω2/ω1 =

√
D2/D1. In the limit where δt is small, we can

expand the propagator matrices as

D(t+ δt) =

[
1− iω(t)δt 0

0 1 + iω(t)δt

]
+O(δt2)

T (t+ δt) =

[
1 + D′(t)

4D(t)δt −D
′(t)

4D(t)δt

−D
′(t)

4D(t)δt 1 + D′(t)
4D(t)δt

]
+O(δt2).

Let Q(t) be the total propagator matrix, then the change
in Q over a single infinitesimal conductivity step is

Q(t+ δt)−Q(t) = [D(t+ δt)T (t+ δt)− I]Q(t). (9)

Dividing both sides by δt and ignoring higher order
terms, we obtain a differential equation

dQ

dt
=
D′(t)
4D(t)

[
1 −1
−1 1

]
Q(t)− iω(t)

[
1 0
0 −1

]
Q(t). (10)

As tr → ∞ we obtain (see supplemental materials) the
asymptotic solution

A = e
1
4 log (D(∞)/D(0)) and B = 0. (11)

This limit is plotted in FIG. 1(R); we can see that it is
in agreement with the limit obtained from the full wave-
length simulations, shown in dots. Interestingly, |A| can
be larger than 1 if D(∞) > D(0). In other words, energy
can be adiabatically imparted to the plasmon wave. On
the other hand, when D(∞) < D(0), energy is being ex-
tracted instead. We will revisit these ideas later. In the
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FIG. 2. Temporal reflection of graphene plasmon. Images depict the spatial distribution of Ex with arrows indicating the
directions of propagation. (L) A plasmon is excited with a point dipole. (C) The plasmon spreads out. (R) Right after a
sudden drop in the Fermi level, part of the plasmon is reflected. In (R) the wave fronts in (C) have split into forwards and
backwards propagating components with the latter effectively reverses its trajectory in time.

adiabatic limit, B = 0 independently of D(0) and D(∞);
hence no reflected waves.

Experimental studies of plasmons in graphene often
rely on near field optical microscopy, where plasmons are
excited with an atomic scale tip[4, 5]. Hence, it is instruc-
tive to consider the propagation of a 2-D plasmon wave
excited by a point dipole under temporal modulation of
its Drude weight. We performed a full 3-D Maxwell sim-
ulation of this setup using a high-order spectral element
code, NekCEM[41, 42]. Modifications were necessary to
enforce the internal boundary conditions that must be
satisfied on the graphene interface. Numerical fluxes on
the graphene enters the Drude model as a forcing term
in the ordinary differential equation with the surface cur-
rents. The solver’s dependent variables, due to the cou-
pling, now include surface currents in addition to the EM
field. Here, plasmons wave emitted by the point dipole
propagates radially outwards, which upon an instanta-
neous change in the Fermi level, results in a reflected
wave that propagates inwards and refocuses back to its
point of origin. Effectively, we have a ‘time mirror’, which
reflects the wave back in time, much akin to a spatial dis-
continuity that reflects the wave. The resulting spatial
distribution of Ex at different times are depicted FIG. 2.

The concept of ‘time mirror’ has been discussed in
various context of waves phenomena[21–23, 25, 26]. Re-
cently, the ‘time mirror’ has been observed in the context
of water waves, showing clear reversal of shallow water
waves[24]. In this experiment, a circular wave is gener-
ated with a point source. While the wave expands, the
tank is accelerated in an almost instantaneous fashion.
The acceleration interacts with the expanding wave and
generates a transmitted component and reflected compo-
nent. The former is a circular wave whose radius contin-
ues to expand, while the latter is a circular wave with
decreasing radius.

Plasmon amplification – We have already observed
that by ramping up the Drude weight from D(0) to D(∞)
we can create a transmitted wave whose coefficient is
greater than 1. We wish to explore how D(t) can put
energy into the system.

The increase in energy can be understood in terms of
parametric resonance[43]. We set this up by considering
the electron density on the plasmon on the graphene af-

ter removing the oscillatory x-dependence. The electron
density (amplitude) satisfies

d2n

dt2
+

1

τ

dn

dt
+

ξ

2ε
D(t)n = 0,

in the quasi-static limit. We excite the system by modu-
lating the Drude weight as D(t) = D0 + ∆D sin(ωf t).
From parametric resonance theory, we predict that
growth is expected when ωf = 2ω0, where ω0 =√
D0ξ/(2ε) is the plasmon frequency for large τ . Am-

plification overcomes damping when ∆D
D0

> 2
τω0

.
To verify the theory, we consider a sinusoidal Drude

weight time dependence and computed the propagator
matrix P for a single period. The maximum eigenval-
ues of the matrix determines if amplification takes place.
Amplification occurs when the maximum eigenvalue is
greater than 1. For the verification, we plot the maxi-
mum eigenvalue of the propagator as a function of forc-
ing frequency ωf for values of ∆D below, equal to, and

FIG. 3. The maximum eigenvalue of the propagator matrix
P after one period of the sinusoidal Drude weight D(t) =
D0 + ∆D sinωf t as a function of forcing frequency ωf . Here
D0 corresponds to Fermi level of 0.5eV and ∆D is chosen so
that it is 80%, 100%, and 120% of the critical value. When the
maximum eigenvalue is greater than one, there is amplifica-
tion. Observe also that the maximum amplification occurs at
ωf = 2ω0; both ω0 and ωf are indicated with vertical dotted
lines.
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FIG. 4. The graphs of the real (blue) and imaginary (red) parts of the amplitude of Hz(x, 0, t), namely A(t)e−iωt +B(t)eiω
?t.

(L) Under sinusoidal D(t) where the Drude weight has a mean corresponding to Fermi level of 0.5eV. Its sinusoidal amplitude
is at 120% of the critical value. The growth of the imaginary part is visible. Shown at the bottom (not in scale) is the periodic
excitation at frequency 2ω0. (R) Under periodic piecewise constant D(t) where the Drude weight alternates between Fermi
energies of E1 = 0.1eV and E2 = 0.05eV, and over time intervals t1 = 25fs and t2 = 53fs. In this calculation, ε = 3. Observe
that the real and imaginary parts of the expression are in antiphase, thus corresponding to a standing wave.

above the critical value for amplification. The resulting
graphs, shown in FIG. 3, confirm our prediction.

To further understand the phenomenon of amplifica-
tion, we consider exciting the plasmon sinusoidally at
frequency ωf = 2ω0 and ∆D/D0 corresponding to 120%
above the critical value for amplification. The plasmon
is initially right-going so its amplitude vector is [1, 0]T .
We graph the real and imaginary parts of the amplitude
of Hz(x, 0, t), i.e., A(t)e−iωt +B(t)eiω

?t, as a function of
time. We observe that there is a noticeable growth in the
imaginary part of the amplitude, whereas the real part
appears to be decreasing. Upon closer inspection, the
modulus of the amplitude does exceed 1 whenever the
imaginary part hits its peak or trough.

We next investigate whether we can produce richer
control of amplification by altering the time dependence
of D(t). We consider the simple case where D(t) is piece-
wise constant and periodic. The period is of the Drude
weight is t1 + t2, wherein within a period

D(t) =

{
D1 for 0 < t < t1,
D2 for t1 < t < t1 + t2.

For this part, we keep the damping finite, leading to com-
plex frequencies. In keeping with our previous notation,
the propagator from t = 0 to t = t1 is denoted by M1,
and across the interface at t = t1, we denote the propa-
gator by T1. Similarly, we have M2 and T2 corresponding
to propagation from t = t1 to t = (t1 + t2) and across
the interface at t = (t1 + t2). The propagator for a single
period is P = T2M2T1M1. If D(t) goes through N cycles,
the propagator is P = PN . We note that the matrix P
depends on t1, t2, D1 and D2. We expect it to exhibit
different behavior depending on these parameters.

To analyze the properties of P, we diagonalize P and
write P = V ΛV −1, so that P = V ΛNV −1. We start with
a right-going wave, i.e. initial vector is [1, 0]T . Let λ1 and

λ2 be the eigenvalues of P . Then the right- and left-going
components after N cycles can be found by examining
the first column of P. Suppose that both eigenvalues are
real and λ1 > 1 while λ2 < 1. Then the reflection co-
efficient after N cycles is λN1 . This is due to the nature
of P which we discuss in detail in Appendix B. We draw
the conclusion that by cycling the Drude weight, we can-
not selectively amplify transmission or reflection; both
components grow at the same rate.

Next we examine the possibility of generating standing
waves. For this to occur, the sum or the difference of
the reflected and transmitted components must be small
while at the same time λ1 > 1 and λ2 < 1. Fixing
Fermi energies at E1 = 0.1eV and E2 = 0.05eV , we
explored the parameter space for t1 and t2. We were
able to find parameter values where parameter settings
where standing waves can be created and amplified. This
is shown in FIG. 4(R).

Conclusion – In summary, we discussed how time mod-
ulation of the plasmonic Drude weight can enable rich
control of plasmons in space and time, such as inducing
reversed trajectory backwards in time, producing stand-
ing waves, and overcoming loss to achieve amplification.
Our estimates, considering experimentally feasible pa-
rameters, suggest that these phenomena should be ob-
servable. Future work will explore nonequilibrium effects
due to scattering with phonon bath especially at frequen-
cies in the 10 THz range, nonlinear response and the use
of second harmonics for amplification, and time- and spa-
tially modulated Drude weights.
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