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We theoretically introduce the fundamentally fastest induction of a significant population and val-
ley polarization in a monolayer of a transition metal dichalcogenide (i.e., MoS2 and WS2). This may
be extended to other two-dimensional materials with the same symmetry. This valley polarization
can be written and read-out by a pulse consisting of just a single optical oscillation with a duration
of a few femtoseconds and an amplitude of ∼ 0.25 V/Å. Under these conditions, we predict a new
effect of topological resonance, which is due to Bloch motion of electrons in the reciprocal space
where electron population textures are formed due to non-Abelian Berry curvature. The predicted
phenomena can be applied for information storage and processing in PHz-band optoelectronics.

Femtosecond and attosecond technology has made it
possible to control and study ultrafast electron dynam-
ics in three-dimensional solids1–6. There is a wide class
of two-dimensional (2D) crystals, which have unique and
useful properties7–14 that bear a promise for applications
in ultrafast opto-electronics15. However, not all 2D ma-
terials are suitable for any given application. For ex-
ample, graphene is a well-studied 2D material, which is
semimetallic with no bandgap between the valence band
(VB) and the conduction band (CB). This causes a rel-
atively high off-current in graphene transistors drasti-
cally limiting their usefulness16–19. In contrast, there is
a broad class of 2D semiconductors possessing finite di-
rect bandgaps. Among them, transition metal dichalco-
genides (TMDC’s) possess direct bandgaps of 1.1 − 2.1
eV7,10,11,20–22.

Similar to graphene, TMDC monolayers have
hexagonal lattices constituted by two triangular
sublattices10,18,20. Unlike graphene, these sublattices
consist of different atoms (metal and chalcogen), which
breaks the inversion (P) symmetry and opens up
bandgaps at the K,K ′-points whose degeneracy is pro-
tected by time reversal (T ) symmetry18,23.

The T -symmetry and K,K ′-valley degeneracy can
be relaxed by circularly-polarized optical pumping,
which allows for a highly valley-specific electron pop-
ulation, depending on the helicity of the excitation
pulse21,23–27. This selective valley population, known
as valley polarization, introduces a new area referred
to as valleytronics12,28. A significant spin-orbit cou-
pling (SOC) makes these materials promising also for
spintronics21,25.

In this article, we theoretically introduce the funda-
mentally fastest induction of significant population and
valley polarization in MoS2 and WS2 monolayers by a
single cycle of a strong circularly-polarized optical field
with duration of a few femtoseconds and amplitude of
0.2 − 0.5 VÅ−1. This process is determined by elec-
tron motion in the reciprocal space, spanning a signif-
icant part of the Brillouin zone. This motion also causes
a new effect, topological resonance, which we introduce
below in discussion of Fig. 1.

For a single-oscillation pulse, optical electric field F(t)
as a function of time t is parametrized as

Fx(t) = F0(1− 2u2)e−u
2

, Fy(t) = ±2uF0e
−u2

, (1)

where u = t/τ , and τ = 1 fs determines the pulse dura-
tion and its mean frequency [see Supplemental Materials
(SM) for definition] ~ω̄ ≈ 1.2 eV. The ± sign defines he-
licity of the applied pulse: + for the right-handed and
− for the left-handed circular polarization. These left-
and right-handed pulses are mutually T -reversed. A few-
or single-oscillation pulses are presently experimentally
available from near-ultraviolet through terahertz range
in linear29–35 or circularly polarization34,36.

We set the TMDC monolayer in the xy plane with
the pulse incident in the z direction. We use a three-
band tight binding (TB) (third nearest neighbor) model
Hamiltonian20, HTNN, see Eq. (1) of SM. The TB Hamil-
tonian of a TMDC monolayer is constituted by three
orbitals, dz2 , dxy, and dx2−y2 of the metal atom. The

full Hamiltonian is H(t) = HTNN + HSOC + H int(t),
where HSOC is the SOC term [Eq. (3) of SM], and
H int(t) is the light-TMDC interaction term. In the length
gauge H int = −eF(t)r, where e is electron charge. This
model includes three bands: valence band (VB) and two
conduction bands (CB’s), each band spin-split into two
bands.

We assume that electron collisions can be neglected
because the applied pulse (a few femtoseconds) is much
shorter than the electron scattering (dephasing) time in
TMDC’s. In fact, this dephasing time was 500 fs for an
atomically thin MoS2

37. Also, Ref. 38 reported electron
coherence times for WSe2 to be 150 fs to 410 fs. In Ref.
39, the dephasing time was calculated to be ≈ 37 fs for
a few layers of MoS2. Carrier relaxation time in MoS2

was found to be 25 ps, and the electron-hole recombina-
tion time to be 300 ps40. Based on this, we describe
the electron dynamics as coherent by time-dependent
Schrödinger equation (TDSE). Previously, such a TDSE
theory41–49 was successful in predicting new effects and
describing expermental results in both three-dimensional
solids2,3,50 and graphene51. For non-interacting particles,
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the TDSE theory is fundamentally equivalent to the den-
sity matrix equations but is computationally much more
efficient.

In solids, an applied electric field generates both in-
traband and interband electron dynamics. The intra-
band dynamics is determined by the Bloch acceleration
theorem52: for an electron with an initial crystal momen-
tum q, time-dependent crystal momentum k(q, t) is

k(q, t) = q +
e

~

∫ t

−∞
F(t′)dt′. (2)

The corresponding wave functions, which are solutions of
the TDSE,

i~
dΨ

dt
= H(t)Ψ , (3)

within a single band α, are the well-known Houston
functions53,

Φ(H)
αq (r, t) = Ψ

(α)
k(q,t)(r)e−

i
~
∫ t
−∞ dt1Eα[k(q,t1)] , (4)

where α = v, c1, c2 for the VB and CB’s, correspondingly,

Ψ
(α)
k are Bloch-band eigenfunctions in the absence of the

pulse field, and Eα(k) is the band energy.

The interband electron dynamics is determined by the
solution, Ψq(r, t), of TDSE (3), which can be expressed

in the basis of the Houston functions Φ
(H)
αq (r, t),

Ψq(r, t) =
∑
α=c,v

βαq(t)Φ(H)
αq (r, t), (5)

where βαq(t) are expansion coefficients.

Let us introduce the following quantities

A′α′α(q, t) = Aα′α[k(q, t)] exp
(
iφ

(d)
α′α(q, t)

)
, (6)

φ
(d)
α′α(q, t) =

1

~

∫ t

−∞
dt′ (Eα′ [k(q, t′)]− Eα[k(q, t′)]) , (7)

Aα′α(q) =
〈

Ψ(α′)
q

∣∣∣i∂Ψ
(α)
q

∂q

〉
,Dα′α(q) = eAα′α(q). (8)

Here α, α′ = v, c1, c2 are band indices, α 6= α′;
Aα′α(q) is a matrix element of the non-Abelian Berry
connection54–56, Dα′α(q) the interband dipole matrix el-

ement, and φ
(d)
α′α(q, t) is the dynamic phase.

We introduce TDSE in the interaction representation
in the adiabatic basis of the Houston functions as

i~
∂Bq(t)

∂t
= H ′(q, t)Bq(t) , (9)

where wave function (vector of state) Bq(t) and Hamil-

tonian H ′(q, t) are defined as

Bq(t) =

βc2q(t)
βc1q(t)
βvq(t)

 , (10)

H ′(q, t) = −eF(t)Â(q, t) , (11)

Â(q, t) =

 0 A′c2c1(q, t) A′c2v(q, t)
A′∗c2c1(q, t) 0 A′c1v(q, t)
A′∗c2v(q, t) A′∗c1v(q, t) 0

 .(12)

Matrix Â(q, t) is the non-Abelian Berry connection in
the interaction representation.

Schrödinger equation (9) defines dynamics of the sys-
tem with accuracy limited by the truncation of the
Hilbert space. Using Eq. (2), a general solution of Eq.
(9) can be presented in terms of the evolution operator,

Ŝ(q, t), as

Bq(t) = Ŝ(q, t)Bq(−∞) , (13)

Ŝ(q, t) = T̂ exp

[
i

∫ t

t′=−∞
Â(q, t′)dk(q, t′)

]
, (14)

where T̂ is the time-ordering operator57, and the integral
is affected along Bloch trajectory k(q, t) [Eq. (2)].

We numerically solve TDSE (9) with initial con-
ditions βvq(−∞) = 1, βc1q(−∞) = 0, βc2q(−∞) =
0. The total population of the CBs is NCB(q, t) =∣∣βc1q(t)|2 + |βc2q(t)

∣∣2. After the pulse ends, there re-

mains residual CB population N
(res)
CB (q) = NCB(q,∞).

The field of a single-oscillation right-hand circular-
polarized pulse [see Eq. (1)] is displayed in Fig. 1(a) and
the T -reversed, left-hand pulse in Fig. 1(b). The resid-
ual CB population for MoS2 induced by such a pulse
with an amplitude of F0 = 0.25 VÅ−1 is displayed in
Figs. 1(c), (d) for spin-up (sz = 1/2 or ↑) and Figs. 1(e),
(f) for spin-down (sz = −1/2 or ↓). Valley polarization
is high: the right-handed pulse populates predominantly
the K valleys, while the left-handed pulse excites mostly
the K′ valleys. Protected by the T -symmetry, the K↑-
valley population for a given handedness pulse is inversed
(k ↔ −k) to the K′↓-valley population for the opposite

handedness; the same is true for K↓ and K′↑. Corre-

spondingly, panel (c) is center-reflected to panel (f), and
panel (d) to panel (e). The valley polarization is large,
ηV & 40%− 60% for at F0 = 0.1− 0.25 VÅ−1 – see Sec.
VI of SM. There is also an appreciable, though smaller,
spin polarization due to SOC.

We also performed computations for a two-oscillation
pulse (see SM Fig. 3) and found no fundamental differ-
ence from the single-oscillation pulses. In fact, both the
valley polarization and CB population become higher.

The valley and spin polarization in TMDC’s caused
by relatively weak (perturbative) circularly-polarized
continuous-wave (CW) radiation21,24,25 or relatively
long 30 fs pulses40 were previously known and at-
tributed to angular momentum conservation at the
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FIG. 1. Residual CB population N
(res)
CB (k) for monolayer

MoS2 in the extended zone picture. The red solid line shows
the first Brillouin zone boundary with K,K′-points indicated.
The amplitude of the optical field is F0 = 0.25 VÅ−1. (a)
Waveform F(t) for right-handed circularly-polarized pulse.
(b) The same as panel (a) but for left-handed circularly-
polarized pulse [T -reversed to that in panel (a)]. (c) Resid-

ual population of spin-up electrons, N
(res)
CB↑ (k), for right-

handed pulse. (d) The same as (c), N
(res)
CB↑ (k), but for left-

handed pulse. (e) Residual population of spin-down elec-

trons, N
(res)
CB↓ (k), for right-handed pulse. (f) The same as (e),

N
(res)
CB↓ (k), but for left-handed pulse.

K,K ′-points21,26. The spin polarization is related to the
intrinsic SOC in the transition metals20,21,26.

A distinction of this work is that the significant CB
population and valley polarization (along with a smaller
spin polarization) can be written by a single-oscillation
strong chiral pulse. The read-out can also be done by a
single-oscillation chiral pulse: optical absorption of the
read-out pulse of the same chirality will be reduced due
to the Pauli blocking, while the opposite-chirality pulse
absorption will not be attenuated because it interacts
with the other, unpopulated valley. This one-optical-
cycle recording and read-out make a basis of a funda-
mentally fastest optical memory.

Figures 2 (a) and (b) illustrates the residual CB popu-
lation for another TMDC, WS2, after a right-handed cir-
cularly polarized pulse with the amplitude of F0 = 0.25

VÅ
−1

for spin up and spin down electrons, respectively.
Similar to Fig. 1, the right-handed single-oscillation pulse
populates predominantly the K valleys. Due to stronger

FIG. 2. Residual CB populations N
(res)
CB (k) for monolayer

WS2 after right-handed circularly polarized pulse. Note that
the corresponding distributions for left-handed pulses are re-
lated to these by the T -symmetry similar to Fig. 1. The red
solid line shows the Brillouin zone boundary. Amplitude of

the applied field is F0 = 0.25 VÅ−1. (a) Population N
(res)
CB↓ (k)

for spin up electrons. (b) The same as panel (a) but for spin

down electrons, N
(res)
CB↑ (k).

FIG. 3. For a chiral left-handed pulse, Bloch trajectories

k(q, t) in the K′ valley and topological phase φ
(T)
cv (q, t) for

transitions v → c between bands forming the bandgaps at
the K- and K′-points. (a) Separatrix for the pulse used is
shown by the black line. Electron Bloch trajectory k(q, t)
is shown for initial point q outside the separatrix. The K′-
point is denoted by a solid dot and the Berry connection is
denoted by a green “whirl” where the chirality is indicated by
arrows. (b) The same as (a) but for q inside the separatrix.

(c) Topological phase φ
(T)
cv (q, t) on the Bloch trajectory for

the K-point and q outside of the separatrix (red line) and
inside the separatrix (blue line). (d) The same as (c) but for
the K′ point.

SOC in W in comparison to Mo, the spin dependence is
more pronounced.

The known valley selection rules for chiral
pulses21,23–27,58 are angular momentum perturba-
tive selection rules, which are local in k. In contrast,
there is also fundamentally different, nonlinear-optical
selection rule characteristic of strong-field excitation,
which is evident from Figs. 1 and 2: In all cases when
a given valley is favored by the angular momentum
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selection rule, its population predominantly occurs
outside of a closed curve (called separatrix47). This is
the case for K-valleys in Figs. 1 (c), (e) and Fig. 2 and
for the K ′-valleys in Fig. 1 (d), (f). In the opposite case,
when the angular momentum selection rule suppresses
a valley’s population, then the momentum states inside
the separatrix are predominantly but weakly populated
as is the case for the K ′-valleys in Figs. 1 (c), (e) and
Fig. 2 and the K-valleys in Figs. 1 (d), (f).

Formation of such textures is a fundamental effect,
which is non-local in k and directly related to global
topology of the Bloch bands. It is inherent in the strong-
field excitation where an electron moves in the reciprocal
space exploring the non-Abelian Berry connection, Â(k),
along its Bloch trajectory – cf. Eq. (14). We call it a topo-
logical resonance.

To understand the topological resonance, we turn to
Figs. 3 (a), (b). The separatrix, which is shown by a
closed black line, is defined as a set of initial points q
for which electron trajectories pass precisely through the
corresponding K or K ′ points47. Its parametric equation
is q(t) = K − k(0, t), or q(t) = K′ − k(0, t) where t ∈
(−∞,∞) is a parameter. For initial crystal momentum q
outside of the separatrix, the electron trajectory, k(q, t),
does not encircle the K-point as in Fig. 3 (a), otherwise
it does as in Fig. 3 (b).

Evolution operator of Eq. (14) describes a deeply
nonlinear, complex quantum dynamics of the photo-
excitation whose exact evaluation can only be done nu-
merically, cf. Figs. (1) and (2) above. To get a qualitative
insight, consider Eq. (14) in the first order of perturba-
tion theory, where it becomes

Ŝ(q, t) = 1 + i

∫ t

t′=−∞
Â(q, t′)dk(q, t′) . (15)

Correspondingly, residual (after the pulse ends) CB pop-
ulation nα is

nα =

∣∣∣∣ ∮ ∣∣∣Aαv[k(q, t)]n(t)
∣∣∣×

exp
[
iφ(tot)αv (q, t)

]
dk(q, t)

∣∣∣∣2 , (16)

where α = c1, c2, and the integral is affected along a
closed-loop Bloch trajectory (2) whose parametric form
is k(q, t) with parameter t ∈ {−∞,∞}, n(t) = F(t)/F (t)
is unit vector tangential to the Bloch trajectory, total
phase φ(tot) is expressed as

φ(tot)αv = φ(T)
αv (q, t) + φ(d)αv (q, t) , (17)

and topological phase is defined as

φ(T)
αv (q, t) = arg {Aαv[k(q, t)]n(t)} . (18)

Note that the non-Abelian Berry connection element,

Aαv[k(q, t)], and the topological phase, φ
(T)
αv (q, t), are

not gauge-invariant, and, correspondingly, are not ob-
servable. However, the CB population, nα, as given by a

closed-loop integral of Eq. (16), is observable. Also, the
total change of the topological phase during the pulse,

∆φ
(T)
αv (q) = φ

(T)
αv (q,∞) − φ(T)

αv (q,−∞), can be observed
interferometrically in a two-cycle experiment as proposed
earlier47. It is, therefore, also gauge invariant.

The topological phase, φ
(T)
αv (q, t) (18), is displayed in

Fig. 3 (c) for the K-valley and in Fig. 3 (d) for the K ′-
valley. The total changes of this phase for the valleys
with opposite chiralities are opposite, as protected by the
T -symmetry. For initial crystal momentum q outside
of the separatrix, this change is significantly larger in
magnitude than otherwise (cf. the red vs. blue lines) and
is close to ±2π.

In Eq. (16), modulus
∣∣Aαv[k(q, t)]n(t)

∣∣ is a smooth
function of time; it is the oscillating phase factor,

exp
[
iφ

(tot)
αv (q, t)

]
that determines whether the integral

is large or small. If the topological phase, φ
(T)
αv (q, t), and

the dynamic phase, φ
(d)
αv (q, t), mutually cancel each other

in Eq. (17), then the accumulation along the Bloch tra-
jectory in the integral of Eq. (16) is coherent, and nα is
large. If to the opposite, the dynamic phase and topolog-
ical phase add to each other, then the phase exponential
in Eq. (16) oscillates more rapidly, and the contributions
along the Bloch trajectory tend to mutually cancel each
other leading to a small value of nα.

Under resonant conditions, dynamic phase φ
(d)
cv (q, t)

[Eq. (7)] during the pulse monotonically increases with
time t by ≈ 2π. Hence, the topological resonance takes

place for the topological phase, φ
(T)
cv (q, t), decreasing by

the same amount, ∆φ
(T)
cv ≈ −2π. For the case of a left-

handed pulse illustrated in Fig. 3, this topological reso-
nance occurs for crystal momentum q outside of the sep-
aratrix for the K ′-point [see the red curve in Fig. 3(d)].

For the same example of a left-handed pulse illustrated
in Fig. 3, if q is inside the separatrix, then the change of
the topological phase during the pulse for the K-point is

∆φ
(T)
cv ≈ −π. In such a case, there is only a partial phase

compensation. This leads to a weak population of the
K-valley inside the separatrix. This qualitative picture is
precisely what one can see in Figs. 1 (d) and (f): a strong
population of the K ′-valley outside of the separatrix and
a weak population of the K-valley inside the separatrix.
Note that the topological resonance only weakly depends
on spin [panels (d) and (f) are very similar], because the
SOC is still relatively weak. Protected by the T -reversal
symmetry, for the opposite chirality of the pulse, the K-
and K ′-valleys are exchanged, and the spin is changed
to the opposite – cf. Figs. 1 (d), (f) with Figs. 1 (c), (e).
These properties of the topological resonance are general
for all TMDC’s: cf. Figs. 1 (c), (e) with Figs. 2 (a), (b).

To conclude, we have demonstrated a fundamental pos-
sibility to induce a significant CB populations and valley
polarization in TMDC’s during just one optical period
of a chiral, moderately-high field (F0 ∼ 0.25 V/Å) laser
pulse. This is a wide-band ultrafast process which is
defined by the topological resonance that we have in-
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troduced above in this article. This resonance is due
to mutual compensation of the dynamic phase and the
non-Abelian Berry phase, which brings about forma-
tion of textures in the k-space with discontinuities at
the separatrices. These textures can be directly ob-
served using the time-resolved angle-resolved photoelec-
tron spectroscopy59.

The topological resonances can be present and pro-
nounced not only in TMDC’s but also in other materi-
als with direct bandgap at the Brillouin zone boundary,
e.g., hexagonal boron nitride et al.60. The topological
resonances can also be present in materials where the di-
rect bandgap is not at one of the T -invariant points such
as the Γ-point or the M -points. The presence of the
bandgap is essential because it causes a gradual accumu-
lation of the non-Abelian Berry phase along the Bloch
k-space electron trajectory, which is necessary to com-
pensate the gradually accumulating dynamic phase.

The predicted induction of the valley polarization
promises a wide range of important valleytronics appli-
cations, in particular, to PHz-band information process-
ing and storage. The predicted topological resonance is
a new concept, which will stimulate novel developments

in topological strong-field optics of solids. In particular,
the chiral, non-uniform electron distributions in the re-
ciprocal space will cause chiral currents in the real space,
which we will consider elsewhere.
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