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We show that edges of Quantum Spin Hall topological insulators represent a natural platform for
realization of exotic magnetic phase which has all properties of lattice supersolid. On one hand,
fermionic edge modes are helical due to the nontrivial topology of the bulk. On the other hand, a
disorder at the edge or magnetic adatoms may produce a dense array of localized spins interacting
with the helical electrons. The spin subsystem is magnetically frustrated since the indirect exchange
favors formation of helical spin order and the direct one favors (anti)ferromagnetic ordering of the
spins. At a moderately strong direct exchange, the competition between these spin interactions
results in the spontaneous breaking of parity and in the Ising type order of the z-components at
zero temperature. If the total spin is conserved the spin order does not pin a collective massless
helical mode which supports the ideal transport. In this case, the phase transition converts the helical
spin order to the order of a chiral lattice supersolid. This represents a radically new possibility for
experimental studies of the elusive supersolidity.

PACS numbers: 71.10.Pm, 73.43.-f 75.30.Hx, 67.80.K-, 67.80.kb

Supersolid is an exotic phase where, very counterin-
tuitively, crystal order and an ideal transport coexist in
one and the same physical system [1]. Dating back to
the 50ties, first discussions of supersolidity resulted in
arguments against its existence [2]. It was realized later
that the quantum bosonic statistics could provide nec-
essary conditions for formation of supersolids. Starting
from the 60ties, studies were concentrated on interact-
ing bosons, in particular, on 4He [3–6]. It can crystallize
at a high pressure and is expected to combine broken
translational invariance with superfluidity. In spite of
large interest and intense experimental efforts, the su-
persolid phase has not been convincingly realized in he-
lium [7–9]. This failure calls for a search for alternative
physical platforms for supersolidity. Recent experiments
aim at realizing supersolid in cold atoms [10, 11]. An-
other well-known alternative is provided by a possibility
to have magnetic supersolid after mapping the bosonic
theory onto a magnetic (or a quantum gas) lattice model
[12, 13], where both the spin rotation symmetry and the
lattice symmetry can be broken simultaneously [14–16].
Longitudinal and transverse components of the antifer-
romagnetic order of the magnetic lattice model (or the
diagonal and off-diagonal long-range order of the quan-
tum gas) correspond respectively to the crystalline order
and to superfluidity of the bosons. The transition to the
supersolid phase on the lattice is similar to the Dicke and
the Ising type transitions [17, 18].

In this Letter, we suggest a novel platform for lattice
supersolid. It is provided by the recently discovered time
reversal invariant topological insulators [19–21] which
have become famous due to their virtually ideal edge
transport. We will concentrate on two-dimensional topo-
logical insulators, Quantum Spin Hall samples (QSH),
where transport is carried by one-dimensional (1D) he-

lical edge modes. These modes possess lock-in rela-
tion between electron spin and momentum so that he-
lical electrons (HEs) propagating in opposite directions
have opposite spins [22–24]. This locking protects trans-
port against disorder [25–27]: An elastic backscattering
of HEs must be accompanied by spin-flip and, there-
fore, it can be provided only by magnetic impurities [28].
However, a single Kondo impurity is unable to change
the ideal dc conductance [29] if the total spin is con-
served. Under some conditions, e.g. a random magnetic
anisotropy, the ballistic transport of HEs may be sup-
pressed by coupling to a Kondo array [30–36]. The latter
can be present in realistic samples due to the edge disor-
der which localizes a fraction of the bulk electrons close
to the edge [31] such that the localized electrons become
spin-1/2 local moments. Alternatively, the Kondo array
can be generated by magnetic adatoms located close to
the edge [37].

While transport of the 1D HEs coupled to a dense
Kondo array has been intensively studied, magnetic prop-
erties of these systems have attracted less attention. It is
known that helical spin ordering, similar to that caused
by dynamical instabilities [38], can result from the indi-
rect Ruderman–Kittel–Kasuya–Yosida (RKKY) spin in-
teraction mediated by HEs [31, 33, 39]. However, the di-
rect Heisenberg exchange interaction between the Kondo
impurities has never been taken into account though one
may expect it to appear at relatively high spin densities.
We will show that, if the Heisenberg coupling, JH , is suf-
ficiently strong, the helical magnetic order on the QSH
edge is converted to another exotic magnetic state which
has all properties of lattice supersolid, see Fig.1. We will
call this phase Chiral Lattice Supersolid.
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FIG. 1. Illustration of helical (upper panel) and supersolid
(lower panel) spin orders. Red and green arrows show in-
plane- and z-components of the spins, respectively. The or-
ange arrow exemplifies the total spin orientation in the super-
solid phase. Dotted line stands for the helix; black circles are
the lattice sites. We have assumed that the isotropy of the
xy-plane is inherited from the bulk of QSH.

Our prediction is prompted by the recent theory for
Kondo-Heisenberg models which states that a competi-
tion of RKKY with the Heisenberg exchange may lead to
the Ising-type phase transition [40]. Time-reversal and
parity symmetries are spontaneously broken in the or-
dered phase and, if the system is SU(2) symmetric, spins
form the isotropic scalar chiral spin order. It is charac-
terized by an exotic order parameter which involves three
neighboring spins [41, 42], Eq.(13).

The lattice which we consider is very unusual: SU(2)
symmetry is broken at the QSH edges by helicity of the
electrons. Therefore, the RKKY/Heisenberg competition
leads to the formation of a different exotic state. It com-
bines: (i) the helical in-plane and (anti)ferromagnetic
spin orders which are counterparts of off-diagonal and
diagonal supersolid orders, respectively; (ii) the helical
transport which is supported by collective modes of HEs
coupled to the transverse spin fluctuations. These modes
are slow due to the strong electron-spin coupling. Even
more importantly, they are gapless, i.e. transport is
ideal, provided the total spin is conserved. Thus, the
electrons play an auxiliary róle for formation of the spin
orders but their helicity is crucially important for the
ideal transport. We come across all properties of super-
solidity described above; the name “Chiral Lattice Su-
persolid”reflects their unique combination peculiar to the
QSH edges. These are our main results.

Both spin orders appear only at T = 0. At finite tem-
perature, the corresponding correlation lengths are finite
but diverge at T → 0. Hence there is a region of temper-
atures T < ∆ where the correlation lengths are large in
comparison with the scale O(1/∆); ∆ is the energy scale
below which the coupling between the electrons and the

localized moments becomes strong, see Eq.(7). In this
temperature range, the proximity to the ordered state is
strongly felt and the spin order is present [43].
The model and key steps of our approach [44]: The

Hamiltonian of HEs coupled to an array of interacting
localized spins is: Ĥ = Ĥ0+Ĥint+ĤH+ĤK , where Ĥ0,int

describe the free fermions and the interaction between
them, respectively:

Ĥ0 = −ivF
∫

dx
∑
η=±

η ψ†η(x)∂xψη(x), (1)

Ĥint =
g

2ν

∫
dx (ρ+ + ρ−)

2
, ρ± ≡ ψ†±ψ±. (2)

Here ψ+ (ψ−) describes spin-up right moving (spin-
down left moving) in the x-direction HEs ψR,↑ (ψL,↓);
vF is the Fermi velocity, ν is the density of states of
HEs and g is the dimensionless interaction strength which
governs the Luttinger parameter K = 1/

√
1 + g [45].

Without loss of generality, we consider the isotropic
short range antiferromagnetic exchange interaction be-
tween neighboring spins described by the Hamiltonian:

ĤH = JH
∑
m

S(xm+1)S(xm), xm = ξm, JH > 0; (3)

S are s-spin operators on the lattice sites xm. The sum
runs over sites of the spin array; for the sake of simplicity,
we will not distinguish constants of crystalline and spin
lattices, ξ.

The coupling between the spins and HEs is described
by the backscattering Hamiltonian:

ĤK =

∫
dx ρsJK

[
S+e2ikF xψ†−ψ+ + h.c.

]
; (4)

where kF is the Fermi momentum; JK is xy-isotropic
coupling constant; S± ≡ Sx ± iSy. The dimensionless
impurity density ρs is used to convert the sum over
the lattice sites to the integral. We omit the forward-
scattering term ∼ JzSz since a unitary transformation
of the Hamiltonian allows one to map the theory with
the parameters {K,Jz 6= 0} to the equivalent theory
with the effective parameters K̃ = K(1 − ξJzν/2K)2

and J̃z = 0 [46, 47]. Thus, Hint can take into account
both the direct electron-electron interaction and the in-
teraction mediated by the z-coupling to the Kondo impu-
rities. The coupling constants are assumed to be small,
sJH,K � u/ξ,D. Here D is the UV energy cutoff which
is of the order of the bulk gap in the QSH sample and u
denotes the excitation velocity renormalized by the elec-
tron interaction.

The model Eqs.(1,2,4) with JH = 0 was studied in
Ref.[33]. Let us briefly recapitulate key points of that
paper and generalize it for finite JH . Our goal is to derive
the effective low energy theory. This can be conveniently
done after parameterizing the spins by unit vectors:

S±(xm) = s
√

1− n2z(xm) e∓2ikF xm±iα(xm),
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Sz(xm) = (−1)ms nz(xm) . (5)

Here, we have singled out slow spin variables α, nz. Next,
we change from the Hamiltonian to the action. The
parametrization Eq.(5) requires the Wess-Zumino term
in the Lagrangian [48], LWZ = −is(ρs/ξ)nz∂τα; where
τ is the imaginary time. Performing the gauge trans-
formation of the fermionic fields: ψηe

−iηα/2 → ψη, we
reduce the noninteracting fermionic part of the Hamilto-
nian, Eqs.(1,4), to the following Lagrangian density:

L0 =
∑
η=±

[
ψ̄η∂ηψη + sρsJK

√
1− n2zψ̄−ηψη

]
+
LLL[α, vF ]

4
;

LLL[α, vF ] ≡ [(∂τα)2 + (vF∂xα)2]/(2πvF ) . (6)

∂η ≡ ∂τ − iηvF∂x denotes the chiral derivative and LLL

is the hydrodynamic Lagrangian of the Luttinger liquid
model. LLL has been generated by the anomaly of the
fermionic gauge transformation [49].

A mean value M ≡ 〈
√

1− n2z〉 = const yields a con-
stant gap in the spectrum of the electrons, ∆0 = ∆̄0M
with ∆̄0 ≡ sρsJK , which is opened by backscattering,
Eq.(4). By combining the functional bosonization ap-
proach [50] with scaling arguments, one can show that
the main effect of the weak electron interaction, |δK| � 1
with δK ≡ 1− K̃, is renomalization of the Luttinger liq-
uid parameters, LLL[α, vF ] → LLL[α, u]/K̃, and of the
gap ∆0 → ∆� D:

∆

D
'
(

∆0

D

) 1
2−K̃

'M
[
1− δK log(M)

](∆̄0

D

) 1
2−K̃

. (7)

We will not consider the case M → 0 and, therefore,
correction O(δK) can be neglected in Eq.(7).

It is known that α is gapless at JH = 0 if the total spin
is conserved [31, 33]. We will show that this holds true
even at finite JH . Thus, Eq.(6) describes the connection
between gapped- and gapless sectors which is mediated
by fluctuations of nz. The energy scale ∆ establishes a
crossover from the weak to strong coupling between HEs
and the spins. In the strong coupling regime, they form
a single Luttinger liquid where the low energy charge ex-
citations and the in-plane spin excitations are described
by the same field α.

Transition between the helical phase and supersolid
can be identified after treating nz and α as the slow
variables and integrating out the gapped fermions. This
yields the density of the effective potential E(M) per one
unit cell. Restoring now finite JH , we find in the leading
order in sJK/D:

E(M) ' −
(
ξ∆2/2πu

)
log(D/∆) + (8)

+ s2JHM2
(

1 + cos[2kF ξ]
)

+ const;

gradient terms are discussed below. Minima of E(M)
determine the ground state configuration of the magne-
tization field, nz .

If JH is smaller than the critical value J∗H , the min-
imum is at M = Mh = 1 (i.e. 〈nz〉 = 0). The spins
are in the xy-plane [the upper panel of Fig.1]. When the
Heisenberg exchange exceeds J∗H a nontrivial minimum
appears at M =Ms < 1:

Ms =
D

∆̄
exp

{
−4πs2

JHu

ξ∆̄2
cos2(kF ξ0)− 1

2

}
; (9)

where ∆̄ = ∆/M is the M-independent part of ∆. The
critical value, J∗H , is defined by the equation

Ms(J
∗
H) = 1 ⇒ J∗H '

ξ∆̄2 log
(
D/∆̄

)
4πs2u cos2(kF ξ0)

. (10)

We consider small Heisenberg couplings. Therefore,
the nontrivial minimum can be realized only if sJ∗H �
u/ξ,D. This implies, in particular, the case cos(kF ξ0)→
0 must be excluded from the consideration.

The solution Eq.(9) corresponds to the staggered mag-
netization [the lower panel of Fig.1]. Since E(M) is in-
variant with respect to inverting the spin components Sz,
Sz(m) → −Sz(m) for all lattice sites, the ground state
is double-degenerate. This degeneracy is lifted at T = 0
by a spontaneous breaking of the corresponding Z2 as in
1D Ising model.

With a further increase of JH , the system approaches
the regime of isotropic Heisenberg magnet which is be-
yond the scope of the present paper.

Fluctuations of Sz are gapped for all values of JH
excluding its critical value J∗H . Therefore, the corre-
sponding correlation functions are short ranged. The
effective action for α, Lα, can be derived by integrat-
ing out massive modes: the fermions and the nz fluc-
tuations [31, 33]. If the total spin is conserved, this
yields for the energies below ∆: Lα = LLL[α, uα]/4Kα

with uα/Kα ' u/K̃. Parameters of Lα are substan-
tially influenced by the electron-spin interactions such
that Kα � K̃ and uα � u. Lα contains only gradients
∂x,τα, hence, fluctuations of α are massless. One can
say that the massless excitations of our model are slow
spinons dressed by localized electrons. They govern spin
correlations at T � ∆:

〈〈S+(τ, x)S−(0, 0)〉〉 ∼ M2e−2ikF x〈ei[α(τ,x)−α(0,0)]〉 =

=M2e−2ikF x
[

(πTξ/uα)2

sin2(πTτ) + sinh2(πTx/uα)

]Kα
. (11)

At T = 0, the correlations in Eq.(11) decay as power law
which is a signature of a quasi long range order of these
components. The correlations are cut by the thermal
length, LT = uα/T , at T 6= 0.
Helical phase, JH < J∗H and M = Mh = 1: The

correlation function of S± spin components is given by
Eq.(11) with fluctuations being centered at the wave vec-
tor −2kF (not at +2kF ). This asymmetry is bound to
the certain helicity of the fermions at the edge of QSH,
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FIG. 2. Phase diagram of the dense Kondo-Heisenberg ar-
ray coupled to the interacting HEs at the QSH edge. Green
and red lines show phases with helical and supersolid order at
T = 0, respectively. Light-green and light-red regions mark
regimes where these orders are felt at finite T . The supersolid
order disappears at T ∼ EW , Eq.(14). The system becomes
completely disordered at T ∼ ∆, Eq.(7). Dashed lines ex-
emplify measurement protocols which could reveal different
phases, see Conclusions.

see Eq.(4): fermionic helicity governs orientation (right
or left handed) of the spin helix. The phase has a ne-
matic (or vector chiral) order parameter reflecting the
helical spin structure:

−→
Oh = [S(x)× S(x+ ξ)], [

−→
Oh]z ∼ s2 sin(2kF ξ). (12)

The helical order is felt at ξ � u/∆� L < LT where L is
the system size. It becomes suppressed at u/∆� LT <
L and is completely destroyed by the thermal fluctuation
at T ∼ ∆, see Fig.2.

Helimagnetic Lattice phase, JH > J∗H and M =Ms <
1: in addition to the helical order, a new order appears
in the system via the Ising type transition: 〈Sz〉 becomes
staggered and forms a magnetic lattice. The new phase
has some special features inherited from the helical phase.
The excitations are again centered at −2kF and not 2kF
[see Eq.(11)] and, therefore, are helical. The origin of
this asymmetry is the same: a certain helicity of the
edge fermions caused by nontrivial topology of the QSH
bulk. Moreover, the combination of the helical order with
the staggered magnetization trivially produces non-zero
scalar chiral order parameter:

Oc =
(
S(x− ξ),

−→
Oh

)
. (13)

The finite temperature suppresses the staggered mag-
netization via formation of domain walls. The energy
of the single wall can be estimated by the height of
the potential barrier in the potential E(M): EW ∼
E(Mh)− E(Mc). For JH close to Jc, EW simplifies to:

EW ∼
[
(JH − Jc)/∆̄

]2 × (ξ/u). (14)

Order of the helimagnetic lattice can be felt if T < EW ,
see Fig.2, which ensures the exponentially large correla-
tion length of the field nz: Lz ∝ exp(EW /T ). The Z2

symmetry is restored beyond the scale Lz.

Chiral Lattice Supersolid: Let us show that the heli-
magnetic lattice is a peculiar lattice supersolid. The spin
correlation function Eq.(11) is ∝ M2 and possess the
quasi long range order. Simultaneously, nonzero value of
M provides the ideal helical transport of electron/spinon
complexes [31, 33]. This suggest that, in our model, M
plays the role of the superfluid density with off-diagonal
order being reflected by 〈〈S+S−〉〉 correlations. The stag-
gered magnetization breaks translational symmetry of Sz
in the magnetic subsystem and, therefore, reflects diago-
nal order which does not suppress the ideal transport.

Since diagonal spin order coexists with the off-diagonal
one and with the gapless excitations, the helimagnetic
lattice is lattice supersolid. This concludes the proof of
our main result. To emphasize the complex nature of the
new lattice supersolid, we refer to is as ”Chiral Lattice
Supersolid”. The QSH samples are probably the unique
platform for realization of this phase.

To summarize, we have demonstrated that, being cou-
pled to a dense array of localized quantum spins, helical
edge modes of a Quantum Spin Hall topological insula-
tor can host an exotic magnetic order at T = 0. The
system possesses a characteristic energy scale ∆ related
to the backscattering of the helical electrons from the
local spins. This energy scale signifies a crossover from
weak to strong coupling. In the strong coupling regime
the system remains critical, but the spin fluctuations are
absorbed into the electronic ones.

The temperature region T < ∆ can be characterized by
the proximity to the helical spin order existing at T = 0.
Its underlying mechanism is based on the RKKY inter-
action of the spins mediated by HEs. A competition of
the RKKY indirect exchange with the direct Heisenberg
one may lead at T = 0, JH > J∗H [see Eq.(10)] to the
Ising type phase transition and to the appearance of the
additional order which is the staggered magnetization. If
the total spin is conserved these two spin orders coexist
with the gapless excitation being able to support a sym-
metry protected (virtually ideal) transport. This is the
principal difference of our results from theories describ-
ing an interaction induced spontaneous breaking of time
reversal symmetry which removes the symmetry protec-
tion of the ideal transport [22, 23, 31, 33]. We have shown
that there is one-to-one correspondence between the new
phase and the magnetic lattice supersolidity. Thus, the
phase which we have described is also a kind of lattice
supersolid which inherits peculiar features of the helical
magnetic phase. The latter has the nontrivial vector chi-
ral order parameter, Eq.(12). That is why supersolid
hosted by QSH samples can be called ”Chiral Lattice
Supersolid”.

A weak disorder in the spin lattice can suppress neither
the helical spin order nor the protected ideal transport
[31]. Clearly, the staggered magnetization can also ap-
pear in the weakly disordered Kondo-Heisenberg array
coupled to HEs. Thus, such a disorder can lead only to
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some quantitative changes and is unable to destroy the
Chiral Lattice Supersolid.

Our findings suggest that magnetically doped QSH
edges provide a principally new possibility to study elu-
sive supersolidity. Coupling constants JK,H can be con-
trolled by varying the proximity of the magnetic adatoms
to the helical edge and their density, respectively. Exper-
imental detection of the Chiral Lattice Supersolid can
be based on spin correlations, i.e. spin susceptibilities,
which have no pronounced peaks in the disordered phase.
In the proximity to the helical phase [left dashed line in
Fig.2 at T < ∆], correlation functions of xy-spin com-
ponents acquire peaks at the wave vector Qh = ±2kF
with the sign being defined by helicity of the electrons.
The correlation function of z-components is expected to
be structureless in the helical phase but must show new
peaks at the Neel vector, Qa = π/ξ, in the proximity
to the supersolid phase [right dashed line in Fig.2 at
T < EW ]. Thus, measuring the spin susceptibilities at
different temperatures can fully characterize the system.

We have considered purely 1D system and, therefore,
the spin order is only algebraic even in the limit T → 0.
One promising generalization could include the study of
the Kondo-Heisenberg array coupled to the 2D edge of a
3D topological insulator. The influence of fluctuations is
weaker in 2D and, if lattice supersolid can be realized in
this setup, its spin order could become long-range.

Acknowledgments: O.M.Ye. acknowledges support
from the DFG through the grant YE 157/2-1. A.M.T.
was supported by the U.S. Department of Energy (DOE),
Division of Materials Science, under Contract No. DE-
SC0012704. We are grateful to Boris Altshuler for useful
discussions.

[1] M. Boninsegni and N. V. Prokofev, Rev. Mod. Phys. 84,
759 (2012).

[2] O. Penrose and L. Onsager, Phys. Rev. 104, 576 (1956).
[3] C. N. Yang, Rev. Mod. Phys. 34, 694 (1962).
[4] A. Andreev and I. Lifshitz, JETP 29, 1107 (1969).
[5] G. V. Chester, Phys. Rev. A 2, 256 (1970).
[6] A. J. Leggett, Phys. Rev. Lett. 25, 1543 (1970).
[7] E. Kim and M. H. W. Chan, Nature 427, 225 (2004).
[8] E. Kim and M. H. W. Chan, Science 305, 1941 (2004).
[9] M. Boninsegni, A. B. Kuklov, L. Pollet, N. V. Prokofev,

B. V. Svistunov, and M. Troyer, Phys. Rev. Lett. 97,
080401 (2006).
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