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We consider theoretically a conical Ag tip coupled to surface states of three-dimensional topologi-
cal insulator (3D TI) such as Bi2Se3. Generation of propagating surface plasmon polaritons (SPPs)
in metal cone by a laser field produces an intense optical field near the tip of the cone and high
concentration of hot carriers in the metal near the surface of topological insulator. Such hot carriers
are transferred through a Schottky contact between tip and TI to the chiral spin surface states of
TI, resulting in finite spin polarization and spin current at the surface of TI. SPPs in metal cone
are excited with a THz laser with energy in the optical bandgap of 3D TI to avoid photoexcitations
in the bulk of Bi2Se3. We also propose a detail scheme for experimental measurements of such
currents. Our results can find applications in spintronics.

PACS numbers:

I. INTRODUCTION

In a nanosystem of a size larger than the nonlocal-
ity radius, ln ∼ υF /ω, the radiative decay of SPPs is
highly suppressed, and SPPs transfer most of their en-
ergy to valence band electrons creating “hot” carriers. It
has been shown that decay of SPPs can generate strong
photocurrent in plasmonic nanoantennas/semiconductor
interface1,2. An unprecedented level of optical energy ac-
cumulation can be achieved at the tip, and generated hot
carriers after decay of SPPs can be used for the purpose of
nanoscopy based on atomic force microscopy in scanning
surface of a material below spatial resolution of 50 nm3.
Significant energy transfer from SPPs to single electron
excitations occurs for nanosystems (nanocrystals) with
size around 10 nm4,5.

The decay rate of SPPs is inversely proportional to ra-
dius R of a plasmonic nanocone if R is less than the skin
depth of metals, ls = ω

c

[
Re
(
−ε2m
εm+εd

)]
, where εm and εd

are the metal and medium dielectric parameters, respec-
tively (for Ag and Au, ls ∼ 25 nm)6–9 . Due to a strong
filed enhancement, accumulation of energy can be ob-
tained to a scale of size of the non-locality radius, which
is around a nanometer. The SPPs propagating towards
the tip are adiabatically concentrated, and the optical
energy is focused along tapered waveguides at the dimen-
sion of nonlocality radius. The group velocity of SPPs,
υg = 1

~
dEq
dq , asymptotically decreases along waveguides,

which leads to a highly localized field at the conical tip7,8.
SPPs in nanocylinders or nanorods of noble metals at ter-
ahertz frequency (THz) are shown to have propagation
length in millimeter range10,11.

If wave vector q (q ≤ 0.3 L, where L is a high symme-
try point of the first Brillouin zone of Ag) of SPP is small
compared to electron’s momentum, then SPP’s energy,

that is transferred to s-electrons, is an energy difference
between the states k and k + q, Ek+q − Ek ≈ ~2

mq · k.
This energy difference is below the interband threshold
Eth (in Ag, Eth = 3.7 eV ). Hot carriers with longer life-
time (and mean free path of up to 40 nm) are generated
after decay of SPPs with energy lower than the interband
threshold. Above Eth, generated hot carriers are short
lived and are excited mostly from d-bands with the mean
free path of 5 nm or small12. Therefore, in noble met-
als the interband threshold separates two regime of hot
carrier excitations. In a conical waveguides with tip size
a, SPPs characteristic wavelength is equal to the size of
tip’s circumference and maximum energy transferred to
hot carriers is about ~2

m qk. If we assume that the plas-
monic fields result the transitions around the Fermi level
in metal, then the energy transferred to hot carriers is
~υF q ≈ 0.3 eV for a tip of size a = 4 nm.

The spins of SPPs induced carriers in a metal tip are
randomly oriented. Such carriers are injected on a sur-
face of 3D TI with spin chiral states, which results in
a spin polarized surface current due to nonequilibrium
carrier distribution and spin-momentum locking prop-
erty of TI surface states. In Ref. 13, authors propose
a model for a topological plasmon spin filter that utilizes
THz spin plasmons on the surface of 3D TI to generate a
static spin acumulation in a resonant Ag metalic nanos-
trucutres coupled to the 3D TI. In one half cycle of plas-
monic field, a spin-up is induced while in the other half
cycle a spin-down is induced in the Ag metal. Spins are
then driven away in opposite directions by a drift. This
possibility shows that 3D TI can be a source of polarized
spin current without a need of external drift. In this pa-
per, we propose another approach to generation of spin
polarization at the surface of 3D TI coupled to the metal
conical tip. The idea is based on adiabatic concentration
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of SPPs at the end of the tip. We consider hot carriers are
generated after the decay of SPPs in a conical Ag waveg-
uide of base radius R and length L. The induced hot car-
riers are transferred to a surface of 3D TI material such as
Bi2Se3, generating a spin polarized current with density
of up to 104 A/cm2. Our result for the spin polarized cur-
rent for a finite sheet of 3D TI with the given surface area
is in the same order of magnitude (few micro Amperes)
as of current obtained in the experiments14. We assume
that the system is irradiated with a laser of wavelength
6 µm (≈ 0.2 eV), that selectively excites SPPs and does
not photoexcite 3D TIs as the laser energy is within the
optical bandgap of Bi2Se315. Below the optical band gap
of Dirac system, direct transitions are prohibited as the
bands are filled up to the Fermi level. For the energy of
photon ~ω ≤ 2EF , photoexcitation does not occur in the
3D TI16,17. The 3D TIs are small bandgap semiconduc-
tors with metallic surface states. The energy dispersion
of such surface states is the same as the energy disper-
sion of relativistic Dirac fermion, and the spin is locked
in the direction perpendicular to the momentum15,18,19.
Coupling between optical field and electrons in metal tip
induces long lived carriers through intraband transitions
in Ag12,20. When the tip is placed near the surface of
Bi2Se3, a nanoschottky diode is formed at the interface
with a potential height of eϕ (r)|r=0 = eϕb

21. This po-
tential difference is asymptotically equal to a difference
of the work functions, eφAg− eχBi2Se3 = 0.2 eV, between
the two materials (Figure 1 b) (work function of a clean
sample of Bi2Se3 is ≈ 4.23 eV22). The SPPs decay gener-
ates a non-equilibrium distribution of the carriers in the
metal around the Fermi level. Such carriers are trans-
ferred into the surface of TI, which is characterized by
single particle relativistic dispersion relation, see Fig. 1
c,. Our system consists of an Ag conical tip of dimension
a �

√
A, where A is the area of the surface of Bi2Se3.

The tip angle is 0.08 rad. The waveguide is placed with
an small angle orientation as shown in Fig. 1 a that al-
lows a maximum momentum transfer from metal to the
surface of 3D TI. Due to a nanosize of the tip, we assume
that single particle electron states at the surface of TI are
unperturbed. In addition to that, the metal tip is not in
complete contact with the surface of TI and therefore, it
is sufficient to treat the situation under a regime of weak
coupling of metal and Dirac states of Bi2Se321,23,24. This
approximation is also valid in optical experiments, where
the surface states are weakly coupled to the photoexcited
bulk carriers25–27.

The paper is organize as follow: We present our model
based on the density matrix formalism in the section II.
In the section III, we calculate the SPP fields propagating
in a conical waveguide and show explicitly the filed in-
tensity developed at the tip. The section IV is devoted to
the interaction of the SPP field with the metal electrons
around the tip. We calculate the density of electrons
that can be excited as result of SPP decay. In the sec-
tion V, description on the SPP induced excited electrons
that are moved to the interface and are transfered to the
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Figure 1: Schematic of a) a Ag cone placed over a Bi2Se3
surface with an orientation angle of θ. SPs are excited and
decay inducing hot carriers, which are injected to the surface
of Bi2Se3, b) the band alignments at Ag/Bi2Se3 interface.
The side view of the Dirac cones are also depicted to show
surface states (SSs), c) SPP decay induced carriers with en-
ergy EF ≤ E ≤ EF + eϕb and spin component Sy are filling
single particle Dirac states.

surface are presented. Finally, we summarize our paper
with conclusions in the section VI.

II. MODEL BASED ON DENSITY MATRIX
FORMALISM

Consider a Hamiltonian for our system as

H (t) = Ho + V (t) (1)

whereHo is a time independent state Hamiltonian with
eigenvalue Eo and V (t) is a time varying potential which
induces transitions between the eigenstates of Ho. The
light matter interaction on the metal surface can be de-
scribed by the term V (t).

The Liouville equation to be solved is28

~
∂ρ (t)mn

∂t
= i [ρ (t)mn , H] +

∂ρ (t)mn
∂t

∣∣∣∣
decay

(2)

where Γmn = ~
τmn

is a relaxation rate between mth

and nth states, and the decay term ∂ρ(t)mn
∂t

∣∣∣
decay

=

−Γmn (ρ (t)mn − ρ (0)mn) describes the vacuum fluctua-
tions or spontaneous emission.

Diagonal terms of the Liouville equation are given by

�
ρmm (t) = Γmmδρmm (t) +

i

~
∑
m6=n

(ρnm (t)Vmn (t)− Vnm (t) ρmn (t)) (3)

where δρmn (t) = ρmn (t)−ρmn (0). Any diagonal term
of V (t) just renormalizes Eo.
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The off diagonal term of the density matrix is given by

�
ρmn (t) =

i

~
ρmn (t) (Eon − Eom)

+
i

~
Vmn (t) (ρmm (t)− ρnn (t))− Γmm (ρ (t)mm − ρnn (0))

(4)

To find the population density, δρmm, on the surface
of metal, solution of interest is the diagonal element of
density matrix, which can be solved under rotating wave
approximation.

In the interaction picture, the off diagonal term is

ρmn (t) = ρImn (t) e−
i
~ (Eon−E

o
m)t (5)

This implies

~ρ̇Imn (t) = −~Γmmρ
I (t)

−iVmn (t)
(
ei(ωt+ωmnt) + ei(ωt−ωmnt)

)
(ρnn (t)− ρmm (t))

(6)

where Vmn (t) = Vmn
(
e−iωt + eiωt

)
. The density ma-

trix can be written in two components form as ρImn (t) =(
ρI,amn (ω) e−iωt + ρI,bmn (ω) eiωt

)
eiωmnt. Under adiabatic

pumping ρ (t) → ρ (ω) , and rotating wave approxima-
tion, term with ei(ωt+ωmnt) can be discarded. This im-
plies that the components of the density matrix can be
written as28

ρI,amn (ω) =
|Vmn|

(
ρInn − ρImm

)
~ω − ~ωmn + iΓmn~

(7)

ρI,bmn (ω) =
|Vmn|

(
ρInn − ρImm

)
−~ω − ~ωmn + iΓmn~

(8)

When a dynamic equilibrium is established, the rate of
change of density matrix with respect to time approaches
to zero,

�
ρmm (t) ,

�
ρnn (t) ,→ 0. Under this situation the

stimulated emission and absorption are balanced by the
relaxation process28. With the help of equations 7 and
8, we can write the off diagonal density matrix elements
in frequency space. Then using equations 3 and 4, the
nonequilibrium population density can be obtained as

δρmm (t) = − 2

Γmm

∑
m 6=n

(ρnn − ρmm) |Vmn|2
[

Γmn

(~ω − ~ωmn)
2

+ (Γmn~)
2 +

Γnm

(~ω + ~ωmn)
2

+ (Γnm~)
2

]
(9)

where we drop the index I. Note that δρmm (t) =
−δρnn (t). Two terms in right hand side of the equation
9 describe the emission and absorption process between
the states nth and mth.

III. SPP FIELD IN CONICAL WAVEGUIDE

The matrix elements, Vmn, are determined by interac-
tion between the plasmonic field and the single electron
system in the metal. We solve for radial and longitudinal
components of the plasmonic field in metal under the con-
dition of adiabatic focusing of the field in the tip. Follow-
ing the Ref. 7, Maxwell’s equation required to solve in the
cylindrical coordinates for TM modes Hθ = φ (ξ)ψ (z)
are

ξ2
∂2φ

∂ξ2
+

1

ξ

∂φ

∂ξ
− (1 + β2ξ2k2o)φ = 0 (10)

∂2ψ

∂z2
+ n2 = 0 (11)

where β =
√
n2 − ε, n is the index of refraction that is

a function of z. with r = βξko, solutions

φ< = A I1 (r<) (12)

φ> = B K1 (r>) (13)

where A and B are the field amplitudes, respectively,
inside and outside the metal surface. Kn (In) are the
nth modified Bessel function of second (first) kind. The
solutions for magnetic field can be written as Hθ (r<) =
φ (r<)ψ (z) and Hφ (r>) = φ (r>)ψ (z), where r> (r<)is
greater (smaller) of R. Electric field can be calculated
using ∂Er

∂t = − c
εi
∂Hθ
∂t and ∂Ez

∂t = c
r
∂rHθ
∂t with the time

varying components. Using Boundary condition Ez1 =
Ez2 and ε1Ez1 = ε2Ez2, we obtain the condition

ε2
β2

K1

Ko
+
ε1
β1

I1
Io

= 0 (14)

where ε1 and ε2 is the dielectric function of environ-
ment and that of metal. The R-dependent of the index
of refraction n is obtained by solving the equation 14.
Under asymptotic limit of the modified Bessel function
we obtain
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Figure 2: The total electric field distribution a) radial compo-
nent, and b) longitudinal component in a Ag conical waveg-
uide. The length of the cone is 2000 nm, and SPPs are propa-
gating from base to tip in vacuum. The insets show the fields
near the tip in enlarged scale. The simulation stops at 2 nm
away from the tip.

n =

√
4

k2oR
2

(
ε1/ε2

W [e2γε1/ε2]

)
+ ε1 (15)

where γ ≈ 0.577 is a Euler constant and W is Lam-
bert’s function. The R dependence of n increases rapidly
as we approach to the tip. In Figure 2 we show the
electric field amplitude of SPPs propagating along the
conical waveguide. Near the tip accumulation of energy
is obtained at the unprecedented level.

IV. INTERACTION OF SPP WITH
ELECTRONS IN METAL TIP

The second quantization expression for electric field of
SPP has the following form

E =
∑
q

Eq (r)
(
a+q + aq

)
. (16)

The interaction potential is given by

VI =
∑
q,k

Ωk,q

(
b+c,k−qbv,kc

+
q + b+v,k+qbc,kcq

)
, (17)

where

Ωk,q =
ie

mωk,k′

ˆ
Ψ∗
c,k′Eq ·PΨv,kd

3r. (18)
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Figure 3: a) Carrier generation rates after SPPs decay. As an
examples, for length L = 2000 nm (red) and 2500 nm (green)
are shown. As SPPs reach towards the tip, generation rate
per unit length is higher. b) The population density around
the tip for L = 2000 nm conical waveguide at different sizes
of the tip.

Consider a simple model where electrons are trapped in a
box with infinitely high potential wall, V (r) =∞. Then
the solutions of the Schrodinger equation in cylindrical
coordinates can be written as

Ψn,l = Cn,le
iθ sin

(nπ
L
z
)
Jl (µξ) (19)

where mth zero of the Bessel Function Jl is µl,m =
zl,m
R(z)

l = 0, 1 , 2, 3...., and Cn,l are the amplitudes of the wave
function.The corresponding energy eigenvalues are

El,m =
(
~2/2m

) (
z2l,m/R

2 + n2π2/L2
)
, (20)

Consider, as an example, zl,m = 30, n = 5, and a short
waveguide with L = 10 nm. We obtain energy El,m ≈ 40
meV at R = 40 nm. For a larger value of L, the wave vec-
tor kz can be considered as a continuous variable. There-
fore, only sufficiently high value of quantum numbers
contribute, which means the excitations happen close to
the Fermi level. For a given state with quantized wave
vector kz = nπ

L , the contribution to Ωk,q comes from the
longitudinal field component, and it is nonzero only when
the initial quantum number mi and the final quantum
number mf are even and odd, and vice versa. On im-
plementing a propagating solution for a long waveguide,
we obtain a nonzero contribution from the radial com-
ponent in addition to the longitudinal component of the
field. Figure 3 a shows the effect of decreasing of R (z)
on the excitation rate Ωk,q, that describes the number of
carriers generated per second. The results are shown for
two different lengths of waveguide. It is to be noted that
if the radius of the waveguide is less than the electron’s
mean free path, then SPPs lifetime is suppressed due to
surface scattering and related size effects that can reduce
τp by up to a factor of 529.

Taking into account the symmetry of the problem, we
adopt cylindrical coordinates system to solve for the net
excitation density of metal electron at the interface. The
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angle φ at which a plasmon’s wave vector is scattered by
an electron is in the range k2−k2F+q2

2kq ≤ cosφ ≤ 1. The
energy difference ~ωk+q,k = Ek+q − Ek determines the
group velocity of the SPPs. SPPs with the momentum
satisfying the above conditions can produce a plasmon
drag effect on the surface of 3D TI30. The SPP momen-
tum in the radial direction is highly confined near the tip
due to its one dimensional nature of propagation along
the cone axis. For states defined by the indices m and n
in the equation 9, the population density can be equiv-
alently written in k space. A plasmon with momentum
q can scatter an electron with initial momentum k to fi-

nal momentum k+q. Hereafter we use k space indexing
rather than indexing the state by m and n as these are
two equivalent pictures. To simplify the equation 9, we
assume Γmn ≈ Γmm = Γnn. The denominator of the den-
sity matrix becomes a real quantity defining the detuning
from the resonance, and depends not only on the scatter-
ing wave vector but also on the scattering angle. With
the help of equations 17 and 18, equation 9 for the hot
carriers density can be recast in term of Rabi frequency.
Here we calculate the hot carriers density around the tip,
and write the diagonal element of density matrix given
by equation 9 as

δρk ==
2

(2π)
3

1

~ω
k2r |Ωk,q|2

ˆ

θ

cos θdθ

ˆ

k

dk

ˆ

φ

d (cosφ)(
~ω − ~2kq cosφ

m − ~2q2

2m

)2
+ Γ2~2

(21)

where φ has limits of φmin =
k2−k2F+q2

2kq and φmax =

1. The limit over k is determined by the momentum
conservation restricted by the value of cosφ. kr is the
wave vector in radial direction. θ is the orientation of the
cone with respect to the surface, and is integrated to be
unity. Integrations in equation 21 are readily performed
to obtain

δρk =
2

(2π)
3

1

~ω
k2r |Ωk,q|2

m

~2q
log

(
kf
k − q

)
Θ (k − kF )

(22)
where Θ (...) is the Heavyside step function that deter-
mines the lower cut off limit for the wave vector of the
carrier. The momentum conservation is explicitly sat-
isfied by taking into account the plasmon-electron scat-
tering angle φ. The equation 22 shows that excitation
density has logarithmic dependence on (kf/k − q). For
k → kf and q � k, we obtain δρk → 0. The excited
carriers are distributed within a narrow region of k-space
above the Fermi wavector (kF = 1.08×108/cm) as shown
in Fig. 3 b. This region corresponds to the energy range
of EF ≤ E ≤ eϕb. Figure 3 b also shows the excited
carrier density for different tip sizes.

V. INJECTION INTO TOPOLOGICAL
SURFACE STATES

In the secion IV, we calculated the density of excited
hot carriers in metal after the decay of SPPs. The ex-
citation density of hot carriers given by the equation 22
can be injected into the topological surface states if the
surface density of state is known. Only those carriers
that are injected below the gap of 3D TI have a possi-
bility of retaining the Dirac particle like features. The

number of carriers injected into the topological surface
states with the wave vector k along x-direction can be
written as δη = g (E)DDirac∆E, where DDirac is the
2D density of states for Dirac fermions, ∆E is the en-
ergy interval of Dirac single particle states in the range
of ∆k and g (E) is the carrier distribution. The carrier
distribution g (E) is obtained by normalizing δρk from
the equation 22 with the total number of possible ex-
citations within the range of EF and EF + eϕb, and it

can be written as g (E) = δρk/
3
2

(
N
V

) ´
E

1
EF

(
E
EF

)1/2
dE31,

where N/V ≈ 1022/cm3. In 2D, DDirac = |E|
2π(~υf )2

,
where υF ≈ 6× 105 m/s is the Fermi velocity for Bi2Se3.
The carrier distribution is limited in y-direction for fix
ky. The 2D density of state is inverse Ly dependent,
DDirac = 1/Ly~υF . We need particle flux traveling with
momentum kx whose spin is locked along ky and passing
through a strip of length ky in the reciprocal space. Us-
ing the energy E ≈ ~υfk of an electron around the Dirac
point on the Fermi surface, we write the density of carri-
ers injected into the surface of 3D TI in the longitudinal
direction (x−axis) as

δη =
δρk
2

V

N

E
3/2
F{

(EF + eφ)
3/2 − E3/2

F

} 1

Ly~υF
eϕb, (23)

where the factor 1/2 is due to two states of spin,
and only half the number of electrons are traveling to
+x−axis. Note that Ly is the length of Bi2Se3 sample
along the y- direction, and δρk is given by the equation
22. Due to well defined momentum direction of single
particle Dirac state in a reciprocal space, only those hot
electrons having a tangential momentum direction with
nearly overlapping spin components to the Dirac states
are injected. The electrons with spin-up (spin-down) po-
larization contribute to the electron current along +kx
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(−kx). The polarized current density, J↑x , for spin up
states can be written as J↑x = eυF

´
δη↑, where δη↑ is

density of spin up carriers. J↑x can be explicitly written
as

Jx =
1

2
eυF

2

(2π)
3

1

~ω
k2r |Ωk,q|2

m

~2q
C

1

Ly~υf
εF

(
k

′

kf
−
k

′

f

kf

)
(24)

where k
′

= k+ (k− q) log [kf/(k − q)] and k
′

f = kf + (kf − q) log [kf/(kf − q)], and C = V/N

(
ε
3/2
F

(εF+eϕb)
3/2−ε3/2F

)
is a

normalization factor.

Similarly, expression for the spin down component con-
tributing to the electron current along −kx have the
form J↓x = −eυF

´
δη↓, where the negative sign is due

to opposite direction of Fermi velocity. In figure 4 a,
we show carrier distribution on the surface of Bi2Se3 at
different inverse length scale along y-axis after the in-
jection, and in the Fig. 4 b, we show J↑x on the sur-
face of Bi2Se3 as a function of electron wave vector for
|ky| ≈ 1/Ly = 0.017/nm and at different values of SPP
momentum. The group velocity of SPP approaches zero
and the wavelength is equal to the tip’s circumference.
Excited carriers above the metal Fermi surface with en-
ergy EF ≤ Ek ≤ EF + eϕb are passed to the semicon-
ducting surface through the oxide layer with thickness
of around one nanometer and energy barrier height of
nearly 3 eV3, see Fig. 1 b. The magnitude of Dirac
fermion’s wave vector is determined as

∣∣kD∣∣ =Ek/~υF .
Note that kD ≥ kF , and kD is calculated so as to satisfy
the energy conservation across the interface. The spin
polarized current is generated due to a shift of the center
of the circular Fermi surface by ∆kF along +kx.

The in-plane group velocity υg of the Dirac fermions
is a spin dependent quantity. From the low energy Dirac
Hamiltonain, Hk = ~υf (z× σ) · k − µ, it can be ob-
tained that υg = 1

~
∂Hk
∂k = 2

~υf (z× S), where S = ~
2σ.

If S is along +ŷ, it is apparent that υg points along +x̂,
a direction of the charge flow. The average spin polar-
izations along +ŷ is given by 〈Sy〉 = ~

2eυfη
Jx. Thus, a

flow of spin polarized charges creates a net average spin
accumulation in the direction perpendicular to the flow.
Even a low carrier transfer efficiency can create a signif-
icant charge current across the interface3, which in turn
is proportional to the spin accumulation.

To measure J↑(J↓) experimentally, we propose a sim-
ple scheme as shown in Fig. 5. The photon energy of
the laser that lunches SPPs in the Ag conical waveguide
is chosen to be ~ω < 2~ωopt, where ωopt is the optical
bandgap frequency of 3D TI (~ω ≤ 0.2 eV), to avoid
photo-excitations on the surface and in the bulk of 3D
TI. A thin film of Al2O3 is grown on a sample of Bi2Se3
film. Two spin sensitive ferromagnetic probes (such as
Fe/Al2O3) are placed on the surface that detect spin po-
larized electrical current. This technique successfully en-

𝟏
/𝑳

𝒚
𝟏
𝟎
𝟔
/𝒄
𝒎

𝑱↑
𝟏
𝟎
𝟒
𝑨
/𝒄
𝒎

𝟐

𝒌𝒙 /𝒄𝒎 𝒌𝒙 /𝒄𝒎

𝒏 /𝒄𝒎𝟐

a b

𝒒(× 𝟏𝟎𝟔/𝒄𝒎)

5
3.3
2.5

2

kF
D

Figure 4: a), Carrier distribution on the surface of Bi2Se3 af-
ter the injection, and is plotted as a function of kx and inverse
of the sample’s length along y−axis. b), Current density due
to spin polarized carriers on the Dirac bands of the surface
of Bi2Se3 as a function of Dirac fermion wave vector at dif-
ferent SPPs wave vectors at the tip . The current density is
obtained above the Fermi wave vector kDF = Ek/~υF . Note
that energy is measured from the vacuum level. The inset
shows the scheme of spin polarization on the Dirac bands.

ables electrical detection of the spin polarization in semi-
conductors and metals14,32–34. The ferromagnetic detec-
tor records the full spin signal proportional to the un-
polarized charge current for electrons when the spins on
the surface are polarized in an opposite direction to the
contact magnetization direction (note magnetic moment
ms is in direction to magnetization M). As we rotate the
direction of M in x − y plane at the ferromagnetic con-
tact, the spin signal decreases and becomes zero when M
perfectly aligns with the direction of momentum (orthog-
onal to the direction of the spin polarization). Reversing
the direction of the charge current changes the sign of
recorded voltage. The reversal of the contact magnetiza-
tion should lead to a hysteresis loop of the spin voltage
of the ferromagnetic contact. The measured spin volt-
age amplitude is given by ∆V = αγPFMEFPSS2e , where
α=σSS/σTotal, σSS (σTotal) is the surface (total) conduc-
tance, γ is the efficiency of spin detection of the contact,
PFM = n↑−n↓/n↑+n↓ is the spin polarization of the con-
tact, n↑ (n↓) is the electron density for majority (minor-
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 ω
laser

1
0
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M

1 0k

s

32SeBi

kx

ky

∆kx

a b

Figure 5: Experimental setup to measure the enhanced spin
polarized current on the surface of Bi2Se3 due to SPPs decay
induced hot carriers, a. Two ferromagnetic detectors on the
surface measure the voltage proportional to projection of the
3D TI spin polarization onto the magnetization axis. b, A
small shift of ∆k of the circular Fermi surface along +kx

generates current with spin along +ky .

ity) spin direction, and PSS = nSS↑−nSS↓/nSS↑+nSS↓
is the spin polarization of the surface states14,23. ∆V is
the voltage difference between the majority and minority
spin carrier induced voltages measured at the detector
terminals. The difference ∆VSPP − ∆Vbare before and
after the SPPs excitation gives the measure of the net
spin related signal.

VI. CONCLUSION:

We show that carriers generated after decay of SPPs
in an adiabatic conical Ag waveguide with the tip size
of a few nanometers can be transferred to the surface of
3D TI such as Bi2Se3. We calculate the spin polarization
current density due hot carriers on the surface of 3D TI,
and provide a scheme for an experimental measurement
of such currents. Our calculated value of the spin polar-
ized current is in the order of 104A/cm2, and this result
agrees with experimentally measured value of spin polar-
ized current on the surface of 3D TI. Our results can be
useful for optical generation of enhanced spin polariza-
tions and corresponding currents that can be useful in
spintronics.
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