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Abstract

We describe the phases of a solvable t-J model of electrons with infinite-range, and random, hopping
and exchange interactions, similar to those in the Sachdev-Ye-Kitaev models. The electron fractionalizes,
as in an ‘orthogonal metal’, into a fermion f which carries both the electron spin and charge, and a
boson ¢. Both f and ¢ carry emergent Zs gauge charges. The model has a phase in which the ¢ bosons
are gapped, and the f fermions are gapless and critical, and so the electron spectral function is gapped.
This phase can be considered as a toy model for the underdoped cuprates, without spatial structure.
The model also has an extended, critical, ‘quasi-Higgs’ phase where both ¢ and f are gapless, and the
electron operator ~ f¢ has a Fermi liquid-like 1/7 propagator in imaginary time, 7. So while the electron
spectral function has a Fermi liquid form, other properties are controlled by Zo fractionalization and the
anomalous exponents of the f and ¢ excitations. This ‘quasi-Higgs’ phase is proposed as a toy model of

the overdoped cuprates. We also describe the critical state separating these two phases.



I. INTRODUCTION

One of the main outstanding puzzles in the study of the cuprate superconductors is the nature of
the transformation in the electronic state near optimal doping. There are numerous experimental
indications that the underlying electronic state changes from a Mott-like state with a small density
of carriers at low doping, to a Fermi liquid-like state with a large density of carriers at high
doping. The most recent indication of this transformation is in the doping dependence of Hall
coefficient [1]. It is also becoming clear that this phenomenology cannot be described solely in
terms of a conventional symmetry-breaking phase transition in the Landau framework: despite
much experimental effort, no suitable order parameter with sufficient strength has been found near
optimal doping. Furthermore such order parameters are also sensitive to quenched disorder, while
the cuprate transition appears quite robust to varying degrees of disorder e.g. the transformation in
the electronic state is seen in STM experiments in both the ‘2212” and ‘2201’ series of compounds
[2, 3]. Also of interest for our discussion below are recent observations [4] of dynamic density

fluctuations near optimal doping, which match those of locally critical models [5].

The most promising route therefore appears to lie in investigating non-Landau, zero temperature
transitions which have a ‘topological’ character. Moreover, we need to understand such zero
temperature transitions in the presence of finite density fermionic matter, and also with quenched
randomness. There are no known theories of quantum phase transitions under such conditions.

Solvable examples in simple limits would clearly be valuable.

In this paper we propose a solvable, ‘local’ t-J model of electrons, with infinite-range hopping
and interactions, which exhibits a phase transition under such conditions. Both phases of our
model are deconfined, possessing gapless fermionic excitations, f, which carry Z, gauge charges.
Our model also possesses a bosonic “Higgs” field ¢, carrying Z, gauge charges, and the electron
is a composite of f and ¢. The Higgs field is gapped in one of the phases, and so is the electron:
this phase can be considered as a toy model for the underdoped cuprates. The other phase has
power-law correlations of the Higgs field: so it is not quite a Higgs/confining phase of the Z, gauge
theory, but a novel ‘quasi-Higgs’ phase with slowly decaying correlations of the Higgs field. The
electron operator in this quasi-Higgs phase has a leading 1/7 decay in imaginary time, as in a
Fermi liquid.

For the criticality near optimal doping in the cuprates, a SU(2) gauge theory with Higgs fields
has been proposed to describe both the underdoped pseudogap regime, and the phase transition(s)
to an eventual Fermi liquid at large doping [6-11]. The Higgs phase of the theory realizes the
pseudogap as a metal with Z, or U(1) topological order: either an ‘algebraic charge liquid’ [12]
or an ‘orthogonal metal’ [13, 14]. Once the Higgs field is gapped, we obtain an algebraic charge

liquid with a large Fermi surface, which can confine to a Fermi liquid or a BCS superconductor.



The toy model presented here is proposed as a study of this model in the presence of disorder, in
an approximation in which spatial structure is neglected. The ‘local’ criticality observed in recent
density fluctuation measurements [4] indicate that this can be a reasonable starting point.

Our model is a 041 dimensional quantum theory, in the class of the Sachdev-Ye-Kitaev (SYK)
models [5, 15]. Although these models do not have any spatial structure, they exhibit a ‘local

criticality’ which is interesting for a number of physical questions:

e The SYK models are the simplest solvable models without quasiparticle excitations. They
have also been used as fully quantum building blocks for theories of strange metals in finite

spatial dimension, with non-trivial spatial structure [16-22].

e The SYK models exhibit many-body chaos [15, 23], and saturate the lower bound on the
Lyapunov time of large- N model to reach chaos [24]. So they are “the most chaotic” quantum
many-body systems. The presence of maximal chaos is linked to the absence of quasiparticle

excitations, and the proposed [25] lower bound of order h/(kpT) on a ‘dephasing time’.

e Related to their chaos, the SYK models exhibit [26] eigenstate thermalization (ETH) [27, 28],

and yet many aspects are exactly solvable.

e The SYK models are dual to gravitational theories in 1 + 1 dimensions which have a black
hole horizon. The connection between the SYK models and black holes with a near-horizon
AdS, geometry was proposed in Refs. [29, 30], and made much sharper in Refs. [15, 31, 32].

It has been used to examine aspects of the black hole information problem [33].

We model the underdoped state of the cuprate superconductors as a deconfined phase of a Z,
gauge theory [34]. The case which we have found to be most amenable to a SYK-like description
is to represent the deconfined phase as an ‘orthogonal metal’ [13, 14]. In this description, the
electron operator ¢;, (i is a site index, and « is a spin label) fractionalizes into an ‘orthogonal

fermion’, f;,, which carries both the spin and charge of the electron, and an Ising variable o7:
Cia :O'l'-Z fia- (11)

This decomposition has to be supplemented with additional constraints to preserve the fermion
anti-commutation relations [13, 14]. However, the constraints only modify numerical features of
the results, with no significant qualitative changes. As we are only interested in qualitative features
of our toy model, we will not include the additional constraints. Note that the decomposition in

Eq. (1.1) is invariant under the Z, gauge transformation

o; = ni0; 5 fia = Nifias (1.2)
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where 7; = £1. We can then set up a ¢-J model for these degrees of freedom, with a Hamiltonian
like
Ho ==Y 150707 flufia+ Y Jiifhfisflatio—g ) of. (1.3)
.3 i>j,a8 i
At large g, the value of ¢* will rapidly average to zero, and only the J;; term will be active: so
we expect a fractionalized orthogonal metal state in which the o* excitations are gapped, and
the orthogonal fermions f are deconfined. In contrast, at small g, the ¢* can condense and
then Z, charges are confined: this would be a conventional state in which ¢ ~ f. Indeed, a
similar transition has appeared in a recent Monte Carlo study on the square lattice at half-filling,
between an orthogonal semi-metal and a confining superconductor or a confining antiferromagnet
[10, 11, 35]. However, as we noted above, the specific model we shall study here only has a gapless,
‘almost confining’, quasi-Higgs phase.
The model H,, is not directly amenable to a SYK-like large N limit. However, it does become
so when we promote the Z, Ising spin to an O(M’) quantum rotor [36, 37|, ¢,, p = 1... M’ which

obeys the constraint
M/
> b, =M (14)
p=1

As in Ref. [36, 37], we expect that this promotion from Ising to large M’ rotors does not modify
the universal critical properties. To obtain a suitable large M limit, we also promote the spin
index a = 1... M to a SU(M) spin index (as in Ref. [5]). For this purpose, we introduce an orbital

index, p, and fractionalize the electron as

Cipa = Pip fia (1.5)

so that
Dip = NiPip (1.6)
under the Zy gauge transformation. Then we obtain the final Lagrangian of the ¢-J model to be

solved in this paper:
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where the site indices 4, j = 1... N. With ¢;; and J;; independent random numbers with zero mean,
we will show that this Lagrangian is solvable in the limit of large number of sites, N, followed by

the limit of large M and M’ at fixed
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M

For our future diagrammatic analysis, we represent the interaction vertices in £ in Fig. 1.
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FIG. 1. The interaction vertices in £. The full lines are f fermions, and the dashed lines are ¢ bosons.

II. LARGE N LIMIT

To take the large N limit, we average over t;; and J;;, with [t;]2 = t2/2 and J_fy = J? In
this large N limit, everything reduces to a single site problem, with the fields carrying replica
indices. The consequences of the replica structure have been explored elsewhere in similar models
[5, 38, 39], and they play no fundamental role as long as we are not in the spin glass phase; so we

drop the replica indices. Then the single-site Lagrangian is

1 . , 0
5:%2(@%)2HA (%:gbf,—M) +§a:fl (E_“> fa

p

2 1/T
WX AR = ol

2 1T
S [ anr Qe O B ), )
a,B8

where T is the temperature and A is the Lagrange multiplier imposing Eq. (1.4). More precisely, as
in Ref. [5], decoupling the large N path integral introduces fields analogous to R and ) which are
off-diagonal in the SU(M) and O(M’) indices. We have assumed above that the large N limit is
dominated by the saddle point in which these fields are SU(M) and O(M’) diagonal. This requires
that the large N limit is taken before the large M and M’ limits. This procedure supplements the

Lagrangian with the self-consistency conditions

1

R(r —7') = =25 D> (6(N)ep(r) (1) fu(r))
Qr —7) = 153 S A S 1ul7)) (22)
o,



It is convenient to rescale ¢, — \/g¢, so that the Lagrangian becomes

ﬁ:%Z(&T¢p)2+z’)\ (Zgbg—%) +> (a%_“) fa

p p g

np) 1/T
— tM pza/o drdr' R* (1 — T’)¢p(T)¢p(7'/)fl<7')fa(7'/>

2 1T
3 [ it - ), 23)
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where ¢ = tg.

Next we take the large M and M’ limit at fixed K = M/M’. Note that the large N limit has
already been taken. By this sequence of limits we obtain for the fermion Green’s function, G, and
the ¢ correlator x

1
iwn + 11— X(iwy,)
1

x(iw,) = SZ T Pliw) § Plio, =0) P(1) = =2t2*G(1)G(—1)x(7) (2.5)

G(iwy,) = . N(1) = =J*GA(1)G(=7) + kt2G(1)X* (1) (2.4)

where
i\ =xy" + Pliw, = 0) (2.6)

is the saddle point value of i\. Note that we have introduced notation so that

X(iw, = 0) = xo0, (2.7)

is the static ¢ susceptibility. Formally, the value of yq is to be determined by solving the constraint

equation Eq. (1.4):
, 1
T g X (iwy,) = —. (2.8)
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In practice, we will treat the value of yo as a parameter that can be tuned to access all the regions
of the phase diagram, and use Eq. (2.8) to determine the value of g. This is convenient because
the coupling g does not appear in any of the other saddle-point equations (after our definition of
Z). Finally, the results as a function of xy will be recast as functions of g. We note that the large
N equations in Egs. (2.4) and (2.5) can also be derived diagrammatically, as illustrated in Fig. 2.
Coupled equations of Green’s functions of bosons and fermions have been considered previously
in a supersymmetric model [40], but the present equations have a different structure. The super-
symmetric model has a single boson field coupling to fermion composites, while Zy gauge invariance
of our model requires that pairs of bosons couple to fermions. The equations in Egs. (2.4,2.5) have
some resemblance to those of dynamical mean field theory, but do not require solution of a quantum

impurity problem in the large M limit.



FIG. 2. Feynman diagrams for the self energies of the fermions and bosons in Egs. (2.4) and (2.5). The
sum over the internal site index j yields a factor of N. The sums over the loops of SU(M) spin indices «

and S yield factors of M. The sum over the loop of the O(M’) index p yields a factor M’.
ITI. GAPLESS SOLUTIONS

First, we search for solutions of Egs. (2.4), (2.5), and (2.8) in which both the fermions and
the bosons are gapless. In our initial analysis, we will work on the imaginary frequency axis at
T = 0 (see Appendix A for definitions of spectral functions). The extension to 7" > 0 appears in
Section 11 C.

For the gapless solutions, we make the ansatzes valid as 7 — oo at T'= 0

F

G(r) = —SgH(T)W

X7 = s (3.1)
where F' > 0 and C' > 0, and they are both dimensionless. We will now see by explicit computation
that these ansatzes are indeed valid solutions of the saddle point equations at long times. The
ansatzes will be found to agree with numerical studies in Section VI First, we need the Fourier

transforms at 17" = 0 which are

‘ . F/JQAf
G(iw) = —2i Sgn(w)m cos(mAf)I'(1 — 2Ay)
X (iw) = 2|£|1——2Ab sin(mAp) (1 — 24A). (3.2)



From Eq. (2.4) and (2.5), the self energies are

J2F? kt2FC?/J?
Z(T> = —Sgn(7'> ((J|T|)6Af + <J|T|)2Af+4Ab)
2t2F2C)J

P(T):Wm, (3.3)

and their Fourier transforms are
) ] J2—6Af F3
Y(iw) = —2isgn(w) (W cos(3mA)I'(1 — 6Ay)

k(’{/JQ)QJ?—?Af—ZlAbFC?

|| 1—2A;—4A,

cos(m(Ay + 24,))1(1 — 2A5 — 4Ab)>

B 4(’{/J2)2J3_4Af_2AbF2C

P(Zu)) = |1*4Af*2Ab sin(w(ZAf + Ab))F(l - 4Af - ZAb) . (34)

|w
From Eqns (3.2) and (3.4), and using G(iw)%(iw) = —1 and x(iw)P(iw) = —1 in the limit of low

w, we see that solutions are only possible when
Ap+Ay,=1/2. (3.5)

Further examination of the saddle point equations shows that two classes of solutions are possible,
depending upon whether Ay > 1/4 or Ay = 1/4. We will examine these solutions in the following

subsections.

A. Af > 1/4

In this case, the first term in 3 (iw) in Eq. (3.4) is subdominant and can be ignored. Then the
Schwinger-Dyson equations can be solved, and they simplify to the relations
Ar cot(mAy)

2 —4Ay
21 cot(mAy)

Ag
These equations are consistent only if we choose the scaling dimensions
1 k
AT e T &
Note that Ay > 1/4 requires k < 2. So the exponents are limited to the ranges
i<Af<% , O<Ab<i. (3.8)

The above analysis of the low w limit of the saddle point equations does not determine the

k(t/J*)?F2C? =1

(t/J*)*F2C? =1 (3.6)

(3.7)

values of " and C' separately, only the value of their product C'F'. So we expect that the Ay > 1/4
solution defines a phase which extends over a range of value of g. Our numerical analysis will

confirm that this is indeed the case.



B. Aj=A,=1/4

Now both terms in 3 in Eq. (3.4) have the same frequency dependence, and so both contribute

to the low w limit. The Schwinger-Dyson equations have solutions which reduce to

~ 1

F4 kt 2\2 2F2:_
4 k()220 =

1

t/J?)PC R = — . 3.9
i/ 7 - (39)
These can be solved uniquely for both F' > 0 and C' > 0 provided again k < 2. The existence
of unique low w solution with these exponents indicates that Eq. (2.8) will yield only a particular

value of g. We will find that is the case in our numerics, and this solution appears to describe a

critical point between our Ay > 1/4 gapless and gapped phases.

C. Non-zero temperatures

It turns out that a 7" > 0 conformal extension of the above gapless solutions satisfies the saddle
point equations in Egs. (2.4) and (2.5) at T' > 0, just as was noted in Refs. [16, 30]. From Eq. (3.1),

the conformal extension is

Gir) = —senlr) Jf;f (I sin7(T7rTTT) | ) h

C T 28
X(T) - J2Ab+1 (‘ Sln(ﬂ’TT)’) ) (310)

But, we also have to verify that the Eq. (2.8) yields the same value of g as at 7' = 0. The
frequency summation in Eq. (2.8) is dominated by high energies, and we don’t expect significant
change in the spectral weight at such frequencies at a small T > 0. So we need only examine the
low frequencies in Eq. (2.8), in which case we can use the conformal solution. To focus on low
frequencies, we subtract Eq. (2.8) between its 7' = 0 and 7" > 0 values, and regulate the higher
frequencies by inserting a point-splitting 7. Then the requirement that the value of g is the same

at T'= 0 and in the conformal solution is

lim [y(7,T) — x(r,T = 0)] = 0 (3.11)

T—0

It is now easy to verify that Eq. (3.10) does indeed satisfy Eq. (3.11).

Taking the Fourier transform of Eq. (3.10), we have the low w gapless solution as a function of

9



wand T
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Fn(zAf)} 22 (

Glion) = | ==, r(i-

PR
where
I1(s) = 75 '2% cos (%8> F(1—s) , H(s)=7""2%sin (%) ['(1—s) (3.13)

From Eq. (2.7), we therefore obtain the T-dependence of the static susceptibility

CTI(2A,)T(Ay)

7281 14
TET(1 - Ay) (3.14)

Xo =

The susceptibility must have this T dependence at low T' to keep g fixed while T varies.

IV. GAPPED BOSON SOLUTION

Now we search for a possible solution of Egs. (2.4) and (2.5) with a gap in the boson spectrum
at T'= 0. With an energy gap, m, from Eq. (A8) we can conclude that the boson Green’s function
decays exponentially at long times. So we write

B
[T_ - 7| > 1/m, T=0, (4.1)

O

parameterized by the gap m, the exponent ~ and the dimensionless prefactor B. From the spectral
analysis in Appendix A we conclude that the boson Green’s function x(z) has branch cuts in the
complex frequency plane at z = £m. At z = m, the singular (non-analytic) part of x(z) is
(2) B iJ
sing\?) = 5
BT T PIG) (= m)t

Z~m (4.2)

With a gap in the boson spectrum, Eq. (2.4) imply that we can ignore the boson correlator in
the determination of the fermion spectrum at small w. Indeed, the fermionic component of the

equations are the same as those in Ref. [5], and so we have the same gapless solution i.e.

A T 1/2 1
G(1) = — A= ——+ 4.3
(7) sgn(7) J1/2 (|sin(7rT7’)|> ’ (47)1/4 (4.3)
From Eq. (2.5) we can then obtain the long time behavior of the boson self energy
2A°Bf? 1
_ —m|7| _
P(r) = 5 (J|T|)1+76 , 7> 1/m, T=0. (4.4)
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From the analysis in Appendix A, as for Eq. (4.2), we conclude that P(z) has a branch cut in the

complex frequency plane at z = +m with singular part

2mA2Bt? i(z —m)?

P‘in — )
nel?) = Ry

Z~m (4.5)

Comparing Egs. (4.2) and (4.5) with the Dyson equation in Eq. (2.5), it is not difficult to see that

a consistent solution is only possible if

—m?+x,' — P(z=m)+ P(z=0)=0 (4.6)
and the exponent .
=—. 4.7
T=3 (4.7)
The dimensionless pre-factor B is also determined to be
~ 1
(t/J*)*A’B? = —. (4.8)
4

V. COMPOSITE OPERATORS

A. )\ operator

Now we consider the structure of fluctuations about the saddle point solutions described in the
previous sections. First, we focus only on the fluctuations of the Lagrange multiplier field A; about
the saddle point value in Eq. (2.6). This field represents the ¢? operator [41], and so its scaling
properties are important in determining the manner in which the gap in the ¢ spectrum opens up
[41], as we will discuss in Section VI.

We write

iXi = X'+ Pliw, =0) + i), (5.1)

and then determine the effective action for \; fluctuations to leading order in large N and large M,
after integrating out the f and the ¢ fields. The diagrams that contribute to this effective action
are discussed in Appendix B, and they lead to an action of the form

M’
Sy = 5

S Ruwa) (I (wa) + T (w,) ) Xy (—w) (5.2)

Wn,t,J

Where we denote the bubble diagrams by IT§, which is diagonal in site index (i.e. II§ = I1y0%)

and yields (in time domain):

o(7) = =22__ T a— [X(T)]Q , (5.3)



where x(7) is given by Eq. (3.1). We use II? to represent ladder diagrams with external indices ;.
In general, we expect the matrix Hilj has permutation symmetry of the indices, which constrains
the form of Hilj to be a matrix with identical diagonal elements and identical off-diagonal elements,
i.e. there are only two free parameters. Such matrix admits one eigenvector that is uniform in site
index with eigenvalue (IT% + (N — 1)IT¥) and (N — 1) non-uniform eigenvectors with eigenvalue
(T1# — T1¥). We are interested in the site-uniform mode, whose eigenvalue for the whole kernel

including the bubble term can be written in the following symmetric way:
I + 10+ (N = DI =Tl + > ooy (5.4)
]
We denote the second term by II; := % > ; H’ij and computed in Appendix B, which requires

evaluation of multiple infinite series of diagrams; they yield the result in Eq. (B21):

I, (1) ~ % (1 - (1og2A—7T|T|)2> To(7). (5.5)

which is proportional to ITy(7) with a small (log A|7|) ™2 correction. Therefore we have the correlator
for the site-uniform A fluctuation

B _ 1
MmN =wn)) = Sr G T @)

(5.6)

Limiting ourselves to the A, = 1/4 critical state, to leading log accuracy at low frequency, this

propagator is dominated by the Fourier transform of IIy(7) ~ 1/|7|, which yields

6ZL:.)T 1

(X)) ~ /dwln(A/|w|) ~ (5.7)

with € = 1/(In(A|7|)). So we can write the scaling dimension [A] = (1 4 €)/2, with ¢ representing

logarithmic corrections to scaling.

B. Electron operator

From the definition of the electron operator in Eq. (1.5), we have to leading order in 1/N for

the electron Green’s function, G,

FC

J2—|7'| (5.8)

= —sgn(7)

where we have used Eq. (3.1) and the exponent relation in Eq. (3.5). Note that Eq. (3.5), and
hence Eq. (5.8), hold for the both the gapless solutions in Sections I[II A and 1] B. As was the case

12



for the A fluctuations discussed above and in Appendix B, additional contributions to Eq. (5.8)
from ladder diagrams only yield off-site terms which are suppressed by 1/N. So Eq. (5.8) is exact
to leading order in the large N limit of this paper.

It is remarkable that G.(7) has the same form as that in a Fermi liquid state. This can be seen
to be a consequence of the relevance of the hopping, ¢, which moves single electrons between sites.
However, it is important to note that despite the Fermi liquid form in Eq. (5.8), the states under
considerations are not Fermi liquids: their elementary excitations are the fractionalized f and ¢

excitations, which carry anomalous exponents.

VI. NUMERICAL RESULTS

We now present numerical tests of the solutions of Egs. (2.4) and (2.5). These go beyond the
low frequency analytical analyses of Sections Il and IV, and include all frequencies. There are no
ultraviolet divergencies, and so the solutions depend only upon the parameters in the Lagrangian.

Our numerical strategy was to pick at first the values of the parameters t and J, and then make
a choice for the boson susceptibility at zero frequency, xo. Then we iterate Eqgs. (2.4) and (2.5)
until the solution converges. Finally, we insert the solution in Eq. (2.8) and determine the value
of g. So we determine ¢ as a function of yg, rather than the other way around.

First, we examined the gapless solutions, with the input yg, the conformal solution prefactor
is determined by (3.14). A solution with Ay > 1/4 is shown in Fig. 3. In this case, at any
finite temperature, although the prefactor equations (3.6) from the saddle point equations do not
determine the prefactors F' and C' separately, but the matching condition (3.14) determines them.
We can think about it this way: different yq results from different g and it determines different F'
and C. So such a gapless solution can be obtained for a range of values of g at a fixed Ay. And at
zero temperature, when yq diverges, we cannot determine F' and C separately. Thus this gapless
solution defines a critical phase.

Next, we examined the gapless solution with Ay = 1/4 in Fig. 4. In this case, the saddle point
equations determine F' and C' separately in the prefactor equations Eq. (3.9). For each value of t,
J, k and T, the critical susceptibility is determined by (3.14), thus it determines an unique g..

We also examined the T' dependence of y,' predicted by Eq. (3.14). We choose different values
of T' with other parameters fixed, and found a T-indpendent value of g. This confirms the analysis
in Section [II C on extending the 7" = 0 gapless solution to nonzero 7'

Finally, we examined the gapped boson solution of Section IV in Fig. 5. The normalization
constant for the fermion conformal answer is defined in Eq. (4.3). Again we find good agreement
between the numerical solution and our analytic form.

Now we turn to determining how the various solutions fit together in a phase diagram as a
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FIG. 3. The numerical results for G(7) and x(7) at the gapless phase are shown in solid lines for J =1,
t=1k=1,T=0.005and g ~ 0.8077 (the input xo ~ 53.6). The gapless conformal answers for G and
x are plotted in dashed lines with the values from Eq. (3.7), Ay = 1/3, Ay = 1/6. The prefactor C' is
determined by (3.14) with A, = 1/6, then F' is determined by (3.6).

function of k£ and g. We set t=J =1 1in this analysis. As our independent parameter is g, and
not g, we show in Fig. 6 the value of g determined from Eq. (2.8) as a function of x,* for various
values of k. The values of y;' corresponding to Eq. (3.14) at A, = 1/4 yield the value of g. for
each k: this is plotted as the dashed line. The most notable feature of Fig. 6 is the non-monotonic
dependence of g on x, " for certain k. This implies that for a given g there are multiple solutions of
the saddle point equations in Eqs. (2.4), (2.5), and (2.8) corresponding to the different solutions for
the value of yo. To distinguish between the solutions, we have to evaluate the free energy of each
solution and pick the one with the lowest free energy. We have not carried out this evaluation, and

so are unable to determine the precise location of the transition between the gapless and gapped
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FIG. 4. The numerical results for G(7) and x(7) at the critical phase are shown in solid lines for J =1,
t=1,k=1,T =0.005 and g. ~ 1.133 (The input xo ~ 18.6 can be obtained from (3.14) with A, = 1/4).

The critical conformal answers for G and x are plotted in dashed lines.

solutions. In any case, we can conclude that there is a first-order transition from the gapless to

the gapped solution when g is a decreasing function of y;' near g..

On the basis of the above analysis and Fig. 6, we assemble the phase diagram in Fig. 7. The
gapless phase with Ay > 1/4 is separated from the gapped boson phase by either a first-order
or a second-order phase transition. We use the value of g. from Fig. 6 to locate the position of
the both transitions. This is only approximate for the first-order transition, for which the value
must be located by a free energy computation. For the second-order transition, ¢. is the correct
location of the transition, and the critical state is described by the Ay = 1/4 solution described in
Section [I1B.
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FIG. 5. The numerical results for G(7) and x(7) at the gapped boson phase are shown in solid lines for
J=1,t=1,k=1,T=0.005and g ~ 1.149 (The input xo ~ 6.6). The critical conformal answers for G
from (4.3) is plotted in dashed line.

A. Small gap scaling

We now examine the nature of the scaling properties of the gapped side of the second-order
transition in Fig. 7. On general grounds, we introduce the exponent z by assuming that the boson

energy gap, m, vanishes as
m~(g—g)° . T=0, (6.1)
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FIG. 6. The numerical results for g as function of x, ! for various values of the parameter k at J = 1,
t=1and T = 0.005. At the critical g., xo is known from Eq. (3.14), while C is known from Eq. (3.9): this
allows to determine the critical g. shown as the dashed line. For k < k. ~ 1.2 the critical point is located
inside an unphysical domain, which means that the critical phase is absent and there is a first-order phase

transition.

As the energy gap appears from a ~ ¢? perturbation of the critical theory, we expect that the
scaling dimension of ¢? is related to z via [¢?] = 1 — 1/2z. On the other hand, as explained in the
context of the Wilson-Fisher CFT in Ref. [41], in the large M expansion [\] = [¢?] and so

=1 % (6.2)

We examined the scaling dimension of A in Section V A, and found that [A\] = (1 + €)/2, with €
representing logarithmic corrections to scaling. So z = 2(1 + ¢€).

From our numerical solutions, it turned to be difficult to obtain accurate values of the boson gap,
m, to test the above scaling predictions. So we employed an alternative method, which examined
the full functional form of the boson susceptibility x(7). From the structure of the gapped solution

in Eq. (4.1) we can expect a scaling solution for the 7" = 0 susceptibility of the form

m

X(7) = (ﬁ) 2 Oy (mr) (6.3)

for some scaling function ®;. Clearly, Eq. (6.3) is compatible with the long-time limit in Eq. (4.1).
Then integrating Eq. (6.3) over 7, we obtain the divergence of the static susceptibility as the gap,
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FIG. 7. Phase diagram as a function of g and k with parameters as in Fig. 6. The phase boundary is
obtained from the ¢ = g. line in Fig. 6. The thin line represents second-order transition which occurs
exactly at g = g, with a Ay = Ay = 1/4 critical state. The thick line indicates a first-order transition.
The actual position of the first-order transition will differ slightly from the g = g¢g. line: its precise

determination requires a free energy computation which we have not carried out.

m, vanishes
Xo~m V2 . T =0. (6.4)

For a second-order transition to a gapless phase, with the critical point described by the A, = 1/4
solution in Section 11 B, Eq. (3.14) implies that the static susceptibility behaves as

xo~TV?2 0 m—0. (6.5)

Combining Egs. (6.4) and (6.5), we propose the scaling form
Xo = T72®y(m/T). (6.6)
In our numerical solution, Eq. (6.6) is difficult to test directly because we treat xo as an independent

parameter and compute m and g, and also m is only defined at "= 0. As we can also measure

the deviation from criticality by x; ', we can combine the scaling in Eqgs. (6.1) and (6.6) to write
9= 9e=T"*05(x0T"?) , 9> ge, (6.7)

where @3 is another scaling function. Eq. (6.7) is now expressed in a form which is adapted to our
numerical approach: we pick the values of xo and 7', and compute g. Also, we can compute the
value g. by requiring that Eq. (6.7) be compatible with Eq. (3.14) i.e.
CII(1/2)T(1/4)
J3/21(3/4)

O3(x) =0at z = (6.8)
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We show tests of the scaling in Eq. (6.7) in Figs. 8 and 9. We find that scaling as a function of
xoT"/? is extremely well obeyed, confirming that the critical state is described by A F=0,=1/4
[42]. Specifically, we verified that at g = g, the right hand side of Eq. (6.7) was T independent as
T was varied while keeping yo7"/? fixed.

On the other hand, scaling with (g — g.)/T""/* yields variable values of z depending upon the
value of £, and of the window of parameters used for the scaling plots, as is apparent from Fig. 8.
We generally obtained values of z > 2, except at values of k£ near the onset of the first order
transition. Fig. 9 shows that scaling with z = 2 yields reasonable data collapse, with deviations
which appear to be within the range of logarithmic corrections described in Section V A. However,
data collapse could be improved with larger values of z especially by focusing on values of g very
close to g.: it does not appear these large and variable values of z are meaningful. More precise
tests of the nature of the phase transitions requires a detailed knowledge of the structure of the

logarithmic corrections, which we have not computed here.
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exactly overlap, as expected in the critical region.
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VII. CONCLUSIONS

Our paper has presented an exactly solvable model of fractionalization in metallic states in the
presence of disorder and interactions. We considered a ¢-J model with infinite-range couplings
which is solvable in the limit of large number of sites (N), followed by the limit of large numbers
of particle labels (M, M’). In this model, the electron, ¢, fractionalizes into a fermion f and a
boson ¢ both carrying Z, gauge charges. As the fermions f carries both the global U(1) charge
and SU(2) spin of the electron, these fractionalized phases can be considered as realizations of the
‘orthogonal metal’ of Ref. [13].

The phase diagram of our model is presented in Fig. 7. There are two extended phases, separated
either by a first order transition, or a critical line. We did not determine the precise location of
the first-order line, as it requires a free energy computation we have not carried out.

In one phase, the boson ¢ is gapped, while the fermion f is gapless. This implies that the electron
¢ ~ f¢ also has a gapped spectral function. On the other hand, thermodynamic properties are
largely controlled by the gapless fermions. We propose this gapped boson phase as a toy model
for the pseudogap regime of the cuprates.

In the other phase, and also on the critical line, both the fermions and bosons are gapless,

and decay with time as |7| 72870

, where the values of the exponents are specified in Fig. 7. In a
Higgs phase, in which the Z, charges are confined, the boson correlator would decay to a non-zero
constant. As the boson decay here is a power-law in time, we labeled this phase as a quasi-Higgs
phase.

One of the most interesting properties of the quasi-Higgs phase follows from the exponent
identity in Eq. (3.5). The Green’s function of the electron operator, ¢, decays with time as 1/7
(Eq. (5.8)), which is the form of the local Green’s function in a Fermi liquid. This result is a
consequence of the relevance of the hopping term, ¢, in the Hamiltonian which transfers single
electrons between sites. Unlike previous SYK models, the present model balances the hopping (t)
and interaction (J) terms against each other, rather than one of them dominating; this leads to
the Fermi liquid form of the one-electron Green’s function. However, despite this form, most other
properties are not Fermi liquid-like e.g. the spin susceptibility is dominated by the response of
the f fermions which have an anomalous scaling dimension Ay. These intruiging properties are
suggestive of the overdoped regime of the cuprates, where there are indications of an extended
non-Fermi liquid regime, although photoemission indicates a well-formed large Fermi surface [43—
46).

Extending our toy model to a more realistic model of the cuprates requires introducing spatial
structure and examining transport properties. A number of methods of doing so have been intro-

ducing recently [17-22] for the SYK model, and it would be interesting to apply these, or others,
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to models similar to the one presented here.

It would also be useful to examine holographic duals of the phases and phase transitions pre-
sented here. Given the mapping of the SYK model to AdS, gravity [29, 31, 32|, and the conformal
invariance of the gapless solution in Section 11 C, it seems plausible that such holographic duals are
possible. The AdS; phase transitions studied in Refs. [47, 48] are likely candidates for developing
the dual theory.
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Appendix A: Spectral functions

We recall a few basic facts about fermion and boson spectral functions.

At the Matsubara frequencies, the fermion Green’s function is defined by

G(r) = —(T (f(1)f(0)))
yr
G(iwy,) :/0 dre*“""G(T), (A1)

and this is continued to all complex frequencies z via the spectral representation

G(z) = /00 @ﬂ (A2)

T z—

—00

The spectral density p(Q) > 0 for all real 2 and 7. The retarded Green’s function is G*(w) =
G (w-in) with n a positive infinitesimal, while the advanced Green’s function is G4(w) = G(w—1in).

From these expressions we obtain

 df) elB—m0
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So in the limit T"— 0 we have

G(r) = (A4)

< d)
/—p(—Q)eQT , 7<0.
\ 0

(e

We will focus on the particle-hole symmetric case, in which case p(Q2) = p(—£).

For bosons, the Green’s function is defined by
X(7) = (T (o(1)¢(0)))

YT
X (iwy,) = /0 dre ™ x(7), (A5)

and we have the spectral representation

)= [ 2L (6)

Now the positivity condition is Q((€2) < 0. For the real bosons ((—) = —((£2), and we will

assume this from now. The analog of Eq. (A3) is

o0

A0 (B—7)82
= TG e<r<s (A7)

So in the limit T — 0 we have

X(1) = (A8)

< dQ
/ d—C(—Q)eQT , 7<0.
\ 0 m

Appendix B: Diagrammatic summation for site-uniform )\ fluctuations

In this appendix, we consider the diagrams for site-uniform A fluctuation drawn in the time
domain. It turns out the leading diagrams in large N, M, M’ are all horizontal ladders, which can

be summed using a recurrence relation.

1. The index structure of diagrams

The original Lagrangian relevant for the vertices before averaging is:

\/J\lf_M (Z tibipbinfiafiat 3 Jijfzafi,gf}ﬁfj,a> (B1)

1,J,p,x i>j,0,8
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There are in general four types of ladders after averaging:

i | (B2)

t t t J

Note that we have reduced the vertices in Fig. 1 to points. The indices structure for the first two

diagrams are simple: ¢ must go to j:

Zap7777t777’]7p Z,CYH—II;\—H],O!
i, Ay, i, piij, P (B3)
,l’piiiitiiiij?p 2705*(—\2/—47‘7705

(B4)

Therefore we need to consider the extra counting when we have such ladder. Another subtlety
arises from k = M’/M factor. Each closed solid loop contributes M and dashed loop contributes
M’. Since we are interested in the site-uniform fluctuations, and mainly calculate II; = % > i 1"
which washes out the index structure and only keeps the multiplicative factors for the diagram
counting, we will not label the indices for the lines in the following equations.

As we have defined in the main text, the Il is given by single bubble:

HO : 71 ‘::\’ ) o= T2 = X(Tl — 7'2)2 (B5)

When we have longer ladders, it could also involve four fermion vertices, e.g. we would have both

t-t ladder and J-J ladder and they have same form of propagators (upto a constant factor) running
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in the ladder since both x (71 —72)* and G(m — 72)? are proportional to |71 — 72| for A, = Ay = 1.

2. Recurrence relation

A convenient way to sum all the diagrams is to derive a recurrence relation for the diagrams
with different number of ladders. Note that we are working in the case A, = Ay = 1/4, therefore
the difference (upto constant factor) between boson lines and fermion lines comes from the sgn(r)
factor, which will be represented by arrows in the diagrams.

We first derive the elementary reduction. For convenience, we will use black line to represent
|71 — 72|° = const, red line to represent |7; —75|~*, blue line to represent |7, — 75|72 and use arrow
from vertex j to vertex k to represent —sgn(7; — 7).

For fermion block, we can reduce a block consist of four fermion lines with scaling dimension

A=1/4:

- Al - A1A2 (BS)

In each step we integrate over one time (represented by a point) using a star-triangle identity[49]
(also see section 2.2.3 of [32] for a reference and similar application). A; and Ay are coefficients

deduced from star-triangle identity:

2
A = %F (%) I'(0) sin % Ccos % cosg =2, Ay=A=2 (B9)

The bosonic block needs further treatment: the boson % line will induce a I'(0) divergence
while applying the star-triangle identity and need to be regulated. We can consider a dimension
regularization and shift the left three lines in a way that we can still apply the star-triangle identity

(the total scaling dimension at a vertex is 1):

PN

1 € 1 €

1t3 1t3
1 _ e 1 __ A/ Al Al

1 € 1 €

1t3 1t3

NI
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4_(1\° 2 4_(1\° 2
All = ;P (5) F(E) SiIl2 %Sing = E, A,2 = } (5) F<—€) Sin2%Sing = —E (Bl].)

The small dimension shift ¢ can be related to the cut-off scale A using following argument: the

divergence in the above diagram for |i

7 arises from the fourier transformation, where we need to

introduce a cut-off A, [[7, dre™!/|r| ~ log % We can estimate the inverse fourier transformaiton
using the following approximation (we put a time scale |75, the time sapration of two A field to

make the expression dimensionally sensible)

1
A 1 I 1 log A|T1o]
log |712| _ logA|7'12| <1 _ M) ~ logA|7-12| . |w7-12| 1ogAl\T12| % N 12 (B12)
|w712| 10gA|7'12| |7'| T12
Therefore the cut-off amounts to shifting the scaling dimension % to % — 5 Where € = ﬁ
g AT12

Having these two elementary reduction we are able to derive recurrence relations. First, we
notice the diagram counting has significant difference for bosonic box and fermionic box, so we

define two different types of ladder:

1. IIp,,: sum of all n ladders diagrams that start with a bosonic box, i.e. the first (left) vertical

ladder is arrowless;

2. Ilpy: sum of all n ladders diagrams that start with a fermionic box, i.e. the first vertical

ladder has an arrow on it.

Now we consider how to get Ilg 41 from Ilg/f,. We can add a bosonic box to n ladders to get

IIp p41 straightforwardly:

HBn+1IA/A/' t2 NMC2F2(HBn—l—Hpn):aHBn—i—aHpn a = — 1
, 1472 NM J4 ) ’ ’ o 2me2

where we use Eq. (3.9) for the relations of coefficients C, F' to evaluate a. The fermionic I, is

(B13)

more involved: if we add a fermionic block to Ilz,,, we have:

8t C*F? 4k
—AlAQ . WNM/ J4 . HB,n - bHB,n7 b = —? (B14>

Now if we add an extra fermionic box adding to Ilg,, there are two possibilities: one can add a

t-t vertex or J-J vertex, the contribution in total is

12 C?’F? 3 J? F* 6 —k
—AA, - NM' — NM— | Iz, =l = — B1
12 (NM EEREY Y J2) Fn = C0Fm € im (B13)
Therefore the two recurrence relations are:
HB,n-‘,—l - aHB,n + aHF,n7 HF,n-‘,—l = bHBm, + CHF,n (B16)
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And the boundary condition is IIr; = 0 and Ilg; = ﬁﬂo which is shown below and evaluated
using star-triangle identity again, we add the § dimension shift to the right corner boson line to

make the total dimension for the whole diagram unchanged.

1
B Ame? 0 (B17)
i
This set of recurrence relation can be treated as equation:
g4 a a g, g, 41;22
_ 7 = (B18)
g4 b c g, g, 0
Then the total sum can be expressed as:
1
_ a a g, 1
II; = 11— . =———1I B19
1 <1, 1) Sl (B19)
b c HF71

There is a final subtlety that for the diagrams with fermionic box, there is an overall up-down flip
with arrow reversing Z, symmetry for the diagrams, which means we have double counted every
diagram except the those with purely bosonic box in the above procedure. The total sum of such

ladders is given by:

- 1
g = (1 24 ), = ——11,. B20
p=1+a+a" +..)p, 9+ dne2 0 (B20)
Therefore the final result is
1~ 1~ 1 2w
II = —II Jg~-(1— ——— |11 B21
1(712) 5 + 5B~ 5 ( (logA\Tlgl)Q) o(712) , (B21)

where we expand the result for small e = | and only show the leading terms.

1
log A|T12
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