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For quantum fermion problems, many accurate solvers are limited by the temperature regime in which
they can be usefully applied. The Mermin theorem implies the uniqueness of an effective potential from
which both the exact density and free energy at a target temperature can be found, via a calculation
at a different, reference temperature. We derive exact expressions for both the potential and the free
energy in such a calculation, and introduce three controllable approximations that reduce the cost of
such calculations. We illustrate the effective potential and its free energy, and test the approximations,
on the asymmetric two-site Hubbard model at finite temperature.

The fermionic quantum problem occurs in many areas
of physics and is notoriously difficult to solve[l]. It is at
the heart of all electronic structure problems, and so so-
lution methods have enormous impact in condensed mat-
ter physics, quantum chemistry, materials science, and
beyond[2]. Over decades, many diverse approaches have
been developed and refined[3]. In almost all cases, there
are trade-offs between accuracy, computational cost, and
domain of applicability. Some techniques are almost solely
designed to work on finite systems at zero temperature (e.g.,
many ab initio quantum chemical approaches), while oth-
ers are extremely general but costs become prohibitive as
the temperature lowers (e.g., path integral Monte Carlo,
(PIMQ)[4, 5]). A collection of high-accuracy methods
were recently benchmarked on strongly-correlated lattice
models[6]. On the other hand density-functional methods
are relatively inexpensive, but require an uncontrolled ap-
proximation to the exchange-correlation (XC) energy. Re-
cently, density functional theory (DFT) methods have en-
joyed considerable success in being applied at temperatures
relevant to warm dense matter (WDM), a phase of matter
with properties of solids and plasmas[7], such as occurs in
fusion experiments and planetary cores[8-20].

The central question addressed in this work is: Can a
quantum fermion solver be run at one temperature (the
reference temperature) to yield results at some other tem-
perature (the target temperature)? Such a scheme could
be applied to many diverse combinations of calculations. In
the examples above, it could be used to bootstrap PIMC
calculations to lower temperatures, quantum chemical cal-
culations to finite temperatures, or to combine DFT meth-
ods with more accurate solvers for WDM[21-23]. Our work
is compatible with other approaches such as the formula-
tion by Alavi and coworkers[24]. Any two methods can be
combined using our stitching method.

We show that the answer is in principle yes, at least for
extracting the free energy and density. Inspired by Ref. [25],
we use the Mermin theorem[26] to define a unique effective
one-body potential from which, with an accurate quantum
solver, we can extract the target quantities. We derive the
relevant formulas for a finite-temperature Kohn-Sham treat-

ment. We identify three useful, controllable approximations
that make extraction of the target free energy easier in prac-
tice. Finally, we illustrate the relevant exact quantities and
test the approximations on the finite-temperature asymmet-
ric Hubbard dimer.

Our formulas are general for any quantum fermion prob-
lem, but we will discuss WDM simulations as an example.
Mermin generalized the Hohenberg-Kohn theorem|[27] to
non-zero temperatures at thermal equilibrium[26]. Thermal
DFT became a popular tool of plasma physics in subsequent
decades[28-30]. The advent of accurate ground-state ap-
proximations and robust codes led to many recent successes
of thermal DFTJ[12, 13, 18, 19, 31-36]. For greater reliabil-
ity and higher accuracy, but at much higher computational
cost, PIMC simulations are used[4, 5, 37-41].

Thermal DFT is made computationally tractable by the
use of a non-interacting potential v (r) that yields the in-
teracting density, n”(r), at temperature 7. This Mermin-
Kohn-Sham (MKS) system is exact in principle but in prac-
tice requires approximations to the XC free energy, A7.[n],
as a functional of the density[42]. Most WDM simulations
use the zero-temperature approximation[43], which replaces
A7 .[n] by Exc[n], an approximation to the ground-state XC
energy[44], but used in the MKS equations. An alternative
is to use the thermal local density approximation, where
a parametrization of the XC free energy of the homoge-
neous electron gas is used to approximate A7, [n][40, 45—
47]. Thermal generalized gradient approximations[48, 49]
have also been suggested.

Begin with the Mermin-Kohn-Sham scheme. The equa-
tions are identical to those of the ground state,

v rumlam-dam. o

with the exception that the density is found by thermally
occupying the MKS orbitals:

n'(r) = Zf[\cﬁi’(r)\Q, (2)

where the occupations are Fermi factors at temperature 7.
vs(r) is defined by Egs. (1) and (2). Write the free energy



in terms of the MKS components:

Alv] = mgn (T7 [n] — 7SI [n] + Uln] + A%, [n] + T [nv))
(3)

where T7 is the MKS non-interacting kinetic energy at tem-
perature 7, S7 is the corresponding entropy, U is the Hartree
energy, and we introduced

z(f)= [ dr i) (4)
to represent the external potential energy. Writing
v (r) = v(r) 4+ vuln](r) + vic[n](r), ()

and identifying vy (r) as the Hartree potential and v, (r) as
the functional derivative of A7, the self-consistent solution

of the MKS equations finds the minimum density in Eq. (3).
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FIG. 1. mni vs. z at 7 = 0.25 (blue) and 7 = 1 (red). Solid

lines are U = 1 and dashed are non-interacting, U = 0. The
intersections with the horizontal line at n; = 0.5 give the
v values that yield n; = 0.5 for the given temperature and
interaction.

We demonstrate this with a simple exact model which is
a crude representation of a chemical bond. The asymmet-
ric Hubbard dimer has been used to test and understand
many flavors of DFT including ground-state[50, 51], time-
dependent[52-56], ensemble[57], thermal[43, 58, 59], and
DFT-like methods[60]. Here, the Hubbard dimer is used to
illustrate the exact properties of the stitching potential, and
simple approximations for extracting the free energy. In no
significant sense does it mimic the complexities of realistic
WDM simulations. Its Hamiltonian is

H=_¢ Z(é}gah +H.c.)+ Z(Uﬁnﬁu +vini)  (6)

where é;rg(éw) is the electron creation (annihilation) op-
erator and 7;, = ézaéw is the number operator, t is the
electron hopping, U is the Coulomb repulsion, and v; is the
onsite potential. We choose v; +vy = 0, define v = vo —v1,

and 2t = 1. In lattice DFT the site-occupations[61], n; and
ng, are analogous to the density. We work at half-filling
((N) = 2) which restricts 4 = U/2 to maintain particle-
hole symmetry. Fig. 1 shows exact thermal calculations.
The solid red line is the density on site 1 as a function
of the onsite potential v, for a relatively hot temperature
(7 = 1). The Mermin theorem guarantees its monotonicity.
The dashed red line is the same map but for tight-binding,
i.e., U =10. Thus, for a system with v = 2.834 (marked
by solid red vertical line), n = 0.5 at 7 = 1. The MKS
potential is v] = 2.246 (vertical dashed red line), and the
difference is the HXC contribution. The blue lines denote
the same things at a lower temperature, 7 = 1/4.

Mermin proved that in the grand canonical ensemble for
fixed temperature and chemical potential there exists a one-
to-one correspondence between the external potential and
electronic density for given particle statistics, interaction,
and temperature, 7[26]. Assuming v-representability, the
map 77[v](r) is invertible and the map v”[n](r) exists.
Note that the former is a potential functional (denoted by
a bar), while the latter is a density functional. Assuming
non-interacting representability, we can write

o [o](x) = (nd) AT W] (r). (7)

This compact expression is the map between the one-body
potential of the interacting problem and its MKS equivalent,
i.e., this is the MKS potential as a functional of the one-
body potential of the interacting problem, which is different
from its density dependence as expressed in Eq. (5).

For any system, we can define an effective thermal po-
tential (ETP), 97%(r), as the one-body potential that yields
the exact density at 7 by performing a calculation at 7x.
This is unique by Mermin's theorem and can be written

o u)(r) = (n7) 7 [T ] (2). (8)

A non-interacting map is defined in the same way. Fig-
ure 1 also illustrates the ETP logic. The horizontal line is
n1 = 0.5 and everywhere that it intersects a curve corre-
sponds to the potential that yields n; = 0.5 for the given
temperature and interaction strength. Thus o7%[v] is given
by the dependence of the blue vertical line on the red one,
with an analogous non-interacting version with dashed ver-
tical lines. This effective potential has some specific sym-
metry properties, namely

U7 (077 0] (r) = 07 [o] (r) = (x). (9)

We wish to derive the ETP for an MKS calculation, using
some 97 .[n](r), where this XC potential could be approx-
imate or exact. To do this, we must use the concept of
a ffunctional[62]. A functional is a function of a function,
whereas a ffunctional is a functional of a functional. Iden-
tify n”{0xc }[v](r) as the density at temperature 7 found by
solving the MKS equations with 97,[n](r). Then

o7 o] (r) = i " {Oxc Hol(r) = vife[n"{oxc } o]l (x).
(10)



This result shows how to construct an approximate ETP
from a MKS calculation at different temperatures with a
given XC potential. Simply calculate the density from MKS
at the desired temperature, find what non-interacting po-
tential yields that density at the reference temperature, and
subtract off the approximate HXC potential evaluated at the
reference temperature. In Fig. 1, the first term is the MKS
contribution (vertical dashed blue line), while the second
is the HXC correction (difference between solid and dashed
vertical blue lines). Thus a DFT approximation might be
used to generate PIMC-quality densities at 7 by perform-
ing PIMC calculations only at 7z. This is a key result:
thermal stitching enables computationally tractable explo-
rations of complex physics by combining the capabilities of
multiple fermionic solvers. Our result satisfies several con-
ditions: (i) if the exact XC functional is used, the exact
n"(r) is found; (ii) if an approximate XC and the result-
ing ETP are used in an MKS calculation, the corresponding
self-consistent approximate density is found; (iii) if the tem-
peratures are equal, the exact result is recovered. But the
symmetry of Eq. (9) is lost with an approximate XC.
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FIG. 2. Effective thermal potential for v = 1 and 7 = 1

for various correlation strengths. Solid curves are interact-
ing, dashed are non-interacting, and dot-dashed is Hxc. All
calculations yield o;%, , < 0.

In Fig. 2, we plot the exact ETP, for a system with
v = 1. Green denotes weak correlation. The solid line is the
interacting curve, which varies strongly with temperature
(and approaches v as 7 — 7g). The dashed line is the
MKS ETP, which mimics the interacting curve closely, and
approaches the MKS potential at 7. The dot-dashed line
is the HXC contribution, which is smoother and relatively
small, suggesting it might be amenable to approximation.

We also show what happens as we increase the correlation
tow =1 (red) and u = 2 (blue). For moderate correlation,
the effects are similar, but larger. But for strong correlation
temperature dependence is mitigated, the HXC contribu-
tion is comparable to the MKS piece, and small errors in
approximations are less likely to be forgiven.

In Fig. 3, we plot the difference between the ETP

FIG. 3.
between ETP and its reference.

Same as previous figure, but now for the difference

and its reference value (v and v for interacting and non-
interacting, respectively), showing that the HXC contri-
butions are now even smaller. They remain monotonic
when correlation is weak or moderate, and vanish rapidly as
T — TR. This strongly suggests that approximating the XC
contribution to the thermal correction potential with a local
or semilocal density functional approximation should intro-
duce relatively little error in the density for weakly correlated
systems. For strong correlation, the HXC contribution is of
the same order as the MKS potential, develops nonmono-
tonic behavior, and vanishes much more slowly with temper-
ature. A semilocal density approximation might introduce
much larger errors in this case.

Although the density is important, greatest interest is of-
ten in the free energy and related properties. Thus we need
to generate accurate free energies from our formulas. We
begin with a recently proven formula[63] from a generaliza-
tion of potential functional theory[62, 64, 65] to the grand
canonical ensemble. Assume the energy components are
known exactly for some given reference potential, vy, and
write v (r) = vo(r) +AAv(r), where Av(r) = v(r) —wo(r).
The free energy of the system is then:

AT = Af + [0 [v, Av]Av], (11)

where 7 [v, Av] = fol dAn"[v}](r). Here 0 subscripts de-
note quantities for the reference potential. We find, exactly,

for the deviation from the reference A7, .

[Av] = Z[n7 v, Av]Av] — T [R][v], Avi]Av]]

+Z [nT [U]U:Ixc - ng [UO}UITIXC,O] .

AA]

HXC

(12)

The derivation of Eq. (12) is given in the Supplemental
Material[66].

To illustrate the value of a well-chosen reference, in Fig.
4, we plot the free energy versus temperature using Eq.
(11) with the reference potential set to 0, i.e., the sym-
metric dimer. We see that the deviation from the reference
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FIG. 4.  Temperature dependence of the free energy and
its deviation from reference for the same systems as in the
previous figures.

is an order of magnitude smaller than the reference value,
making it easier to approximate. Note that our reference
temperature is twice as high as before, but even at half its
value, the deviation in the free energy from the reference is
difficult to detect.

In principle, Eq. (12) is sufficient to extract the free
energy from a thermal-stitching calculation. Although the
input densities are required at the target temperature T,
these can all be found from calculations at the reference
temperature. The last term in Eq. (12) is straightforward,
but the first involves averages over A that are cumbersome
since the ETP must be evaluated for every A. The last
step is to derive a controlled approximation that yields an
accurate expression using only quantities evaluated at 7g.

We make three distinct approximations. In the first,
we note that the exact formula requires finding nJ[vs o +
AAug](r) which, in general, is not equal to n™[vg+ AAv](r).
However, they match at A = 0 and A = 1, and nearly agree
everywhere for weak interaction, so we expect

nZlvso + Aug](r) = n"[vg + AAV](r) (13)

to produce little error. A second approximation is to ap-
proximate each coupling-constant integral by a two-point
formula:

' (v, Av](r) ~ %(HT [vo](x) + n7[ol(r)).  (14)
With these Eq. (12) simplifies to
AALEPPv] = T[(n"[v] = 77 [v]) vic]]
= Z[(n"[vo] = 2" []) vic 0] »

with the Hartree contributions canceling on both sides (See
Supplemental Material for derivation[66].). Inserting the
ETP is now simple:

(15)

(677 [W]])v%e.0] -

4

This formula yields (approximately) the XC free energy at
T using only densities from 7r, ETPs, and the XC potential
at 7, which can be extracted via a MKS inversion from the
accurate density at 7, i.e. Eq. (7), and subtraction of the
external and Hartree potentials.

Although Eq. (16) contains only quantities evaluated at
the reference temperature, as required, they are awkward
because the reference potentials and densities must be found
for many values of A, and then averaged over the coupling
constant. This process can be simplified by a linear approx-
imation for the ETP:

072 [0 (r) = 877 [vo + A(v — v0)](r)

~ 077 [vo](r) + A(O77 [v](r) — 077 [vo](r) J17)
which should be an excellent approximation for weak corre-
lation.
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FIG. 5. Correlation free energy from ETP for the same
system as previous figures. Solid is exact, dashed is from Eq.
(16), and dot-dashed includes the further approximation of
Eq. (17).

In Fig. 5, we plot correlation energies exactly, approx-
imately but doing the coupling-integral in Eq. (16) ex-
plicitly, and approximately with Eq. (17) to approximate
the coupling-integrations. Using Eq. (16) introduces small
errors for low temperatures but these quickly diminish as
temperature increases. Interestingly, they seem no worse
when correlations are stronger. Linearizing the potential
slightly worsens the results, but makes a smaller error than
already present in Eq. (16). This error also diminishes
rapidly with increasing temperature. Correlation becomes a
relatively smaller part of the total free energy as tempera-
ture increases[43]. The majority of the contribution to the
correlation free energy is in the reference term with similar
behavior in the correction term as seen for the total free
energy, and we make only a small error in approximating
the correction.

In this work we presented a formally exact method for
determining electronic properties at temperature 7 using a
calculation at temperature 7. To do so, we defined an ETP
which yields the exact density at 7 of a given system. We



also derived an approximate formula from potential func-
tional theory for the exchange-correlation free energy that
uses only the ETP. We applied simple approximations to
this equation to put it in a more elegant form and to make
it only require the ETP. All of this was illustrated using the
asymmetric Hubbard dimer.

We conclude with suggestions for approximations and fu-
ture work. For extended matter in WDM simulations, an
obvious reference potential is the uniform electron gas with
the average electronic density of the entire system. The free
energy of this system is well known[23, 45, 46, 67, 68]. Then
the coupling-constant integral connects local differences in
the potential from its average value. Eq. (10) would also
be tested with e.g., a zero-temperature GGA approximation
for the MKS approximation. This yields an approximate
density at 7 and the corresponding HXC approximation at
Tr. Then the same MKS code could be used to find the
corresponding MKS potential at g, by adjusting v7%(r)
until 27 (r) is found. These yield the approximation to the
ETP to be used in an accurate quantum solver at 7z. Note
that one could imagine this as the first step in an itera-
tive procedure in which the output approximate density at
7 is used in place of the MKS approximate density. This
would unbalance the use of DFT in the formula which might
in fact worsen the results. Only practical calculations can
tell. Additional tests include long Hubbard chains, more
complicated lattices, and atoms. These tests can further
demonstrate the theory’s applicability and accuracy.
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