
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Strain enhancement of the electro-optical response in
BaTiO_{3} films integrated on Si(001)

Kurt D. Fredrickson, Viola Valentina Vogler-Neuling, Kristy J. Kormondy, Daniele Caimi,
Felix Eltes, Marilyne Sousa, Jean Fompeyrine, Stefan Abel, and Alexander A. Demkov

Phys. Rev. B 98, 075136 — Published 20 August 2018
DOI: 10.1103/PhysRevB.98.075136

http://dx.doi.org/10.1103/PhysRevB.98.075136


1 

Strain enhancement of the electro-optical response in BaTiO3 films integrated on Si (001) 

Kurt D. Fredrickson1*, Viola Valentina Vogler-Neuling2†, Kristy J. Kormondy1‡
, Daniele Caimi2, 

Felix Eltes2, Marilyne Sousa2, Jean Fompeyrine2, Stefan Abel2, and Alexander A. Demkov1§ 

1Department of Physics, The University of Texas at Austin, Austin, TX 78712, USA 

2IBM Research-Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland 

Abstract 

We discuss the possibility of significantly enhancing the nonlinear electro-optical 
response in strained perovskite BaTiO3. First principles calculations predict the 
enhancement for both compressive and tensile strain. The physical origin can be 
traced to strain-induced phonon softening that results in diverging first order 
susceptibility. Within the Landau-Ginzburg-Devonshire formalism we 
demonstrate how, in turn, this divergence results in a diverging second order 
susceptibility and Pockels coefficient. Our results suggest a way to optimize 
BaTiO3 films for use in silicon nanophotonics. 

I. Introduction  

Interest in BaTiO3 (BTO) for use in nonlinear optic devices lies in its extremely large electro-
optic (Pockels) coefficients >100 pm/V.1,2 Even more importantly, the monolithic integration of 
BTO on semiconductors has paved the way to several types of entirely different devices ranging 
from ferroelectric memory to electro optical modulators.3 Together, these developments have 
raised a possibility for applications of BTO in silicon nanophotonics, a hybrid technology 
combining semiconductor logic with fast broadband optical communications and optical 
information technologies.1,4–6  

BTO is a perovskite that has originally garnered interest for integration on semiconductors, due 
to its very high permittivity.7 It has been grown epitaxially on Si(001) using BaO,8 Ba0.7Sr0.3TiO3 
(BST),9 and SrTiO3 (STO)10–12 buffer layers, and on Ge both directly13 or with an STO14 buffer 
layer. Above the Curie temperature of ~120ºC, BTO is cubic and paraelectric, but below that 
temperature, it becomes tetragonal and ferroelectric.15–17 The ferroelectric transition from cubic 
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(m3m) to tetragonal (4mm) symmetry is believed to be first order but close to second order and is 
described by a multicomponent order parameter, which is directly proportional to polarization.18 

The dielectric constant ε of BTO diverges upon approaching the Curie temperature.19 Previous 
theoretical studies have shown that strain can soften the phonon modes, also resulting in 
diverging ε in SrTiO3

20 as well as in BTO21. Particularly, in BTO this divergence occurs near the 
strain-induced monoclinic-to-orthorhombic phase transition21. The Pockels or linear electro 
optic-effect occurs in certain non-centrosymmetric crystals, such as BTO, and describes a change 
in ε caused by applied electric field: 

 (1)

where r is the electro-optic tensor. Importantly, the Pockels effect in thin BTO films integrated 
on Si (001) enables optical on-chip manipulation of information at telecom wavelength of 1.55 
μm.1,4,6 As the thin film is grown epitaxially on a substrate with a lesser lattice constant, the 
effect of strain on the electro-optical properties is of crucial importance. There has been some 
theoretical22–26 and experimental work27,28 on the electro-optic tensor of BTO, but so far the 
effect of strain has not received appropriate attention. 

Here, using first principles calculations and Landau-Ginzburg-Devonshire theory we 
demonstrate that in BTO films integrated on a Si (001) substrate, strain causes divergence in first 
and second order susceptibility, which in turn significantly enhances the electro-optic effect, thus 
making Si-integrated BTO extremely attractive for applications in Si nanophotonics. 

II. Theoretical calculations 

Using density functional theory (DFT), we calculate the effect of strain on the dielectric tensor 
and nonlinear electro-optic tensor of BTO, considered as an epitaxial strained film. All 
calculations are done using DFT within the local density approximation (LDA) as implemented 
in the ABINIT code, using Teter norm-conserving extended pesudoptentials;29 we use density 
functional perturbation theory to calculate phonon frequencies and eigenvectors, along with the 
calculation of ε and r.23,30,31 We use the valence configuration 5s25p66s2 for Ba, 3s23p64s23d2 for 
Ti, and 2s22p4 for O. We use a 1220 eV kinetic energy cutoff for the plane wave expansion. For 
the Brillouin zone integration, we use dense 10×10×10 Monkhorst-Pack32 k-point meshes. As the 
polarization is sensitive to the lattice constant, and is adversely affected by its underestimation in 
the LDA,33 we choose to work with the experimental room temperature tetragonal crystal 
structure with lattice constants of a = 3.994 Å and c = 4.038 Å.34 We also use the experimental 
elastic constants (222 GPa for C11, 108 GPa for C12, 111 GPa for C13 and 151 GPa for C33

27) to 
account for strain. We model two cases (Figure 1): the first is when the BTO film is polarized 
out-of-plane, with the long c axis perpendicular to the BTO/Si interface; accordingly, we strain 
the a and b lattice constants uniformly (so that a = b for all strains), and use elastic constants to 
find the optimum c lattice constant. In the second case, BTO is in-plane polarized, with the long 
c axis parallel to the interface; we strain the a and c lattice constants by the same amount, and 
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use elastic constants to find the optimum b lattice constant (in this case, in general a ≠ b ≠ c, but 
c/a is fixed). In all cases we relax the ions until the forces are less than 1×10-4 eV/Å.  

A few words need to be said about the calculations of the electro-optical tensor, as it is not trivial 
for bulk BTO. Fortunately, the problem we are interested in, i.e. the strain effect on the nonlinear 
response in an epitaxial film, is somewhat more tractable. Still, the results are only qualitative, 
despite the first principles nature of the theory.  For our purposes, it is sufficient to consider a 
strain-free (clamped) response. In other words, we ignore the piezoelectric contribution to the 
EO tensor.35 Most importantly, the calcualtions are limited to zero Kelvin, and the primitive 
tetragonal P4mm cell is dynamically unstable and therefore, it is not posssible to compute the 
largest bulk  r42 component, as has ben poined out by Veithen et al.23 We obtain the bulk values 
of r13 and r33 to be 9.2 and 23.6 pm/V, respectively, close to 8.9 and 22.3 pm/V, the clamped 
LDA result of Veithen et al.23 These should be compared with 10.2 and 40.6 pm/V reported by 
Zgonik et al.36 The origin of this discrepancy is subtle, and can be traced to the zero Kelvin 
nature of the calculation. The room temperature five-atom P4mm cell of ferroelectric BTO is 
actually a dynamic time average over the fluctuating lower symmetry structures;37 and it is this 
structure that gives a large EO reponse. At low temperature, corresponding to the calculation, the 
ground state structure of BTO is the low symmetry R3m structure. Therefore, the bulk response 
is computed for an average cell that doesn’t represent the instantaneous bulk crystal at room 
temperature. Fortunately, the strain effect we are after is governed by the soft mode 
mechanism20,21, not the order-disorder mechanism of the bulk crystal. Therefore, despite these 
limitations of the theory, the change in the EO response caused by epitaxial strain is captured 
reasonably well. Thus, though the absolute values should be taken with a grain of salt, the 
physics will be properly described and our calculation provides a qualitative description of the 
EO response of BTO under strain. 

III. Discussion 

First, we discuss the case when the BTO film is polarized out-of-plane, with the long c axis 
perpendicular to the BTO/Si interface; accordingly, we strain the a and b lattice constants 
uniformly (so that a = b for all strains), and use elastic constants to find the optimum c lattice 
constant (Figure 2(a)).  In ferroelectrics, the rumpling is defined as the difference between the O 
and Ti positions in the direction of interest (to a good approximation, the polarization of the 
system is linear with respect to the rumpling of the cell).38 In Figure 2b, we show the effect of 
strain on the atomic rumpling where BTO is polarized normal to the interface. We note that, even 
in the unstrained case, BTO is polarized not only in the long axis c direction, but the Ti and O 
had displacements also along the a and b directions, although to a lesser degree. A previous 
experimental study showed that BTO polarization does not directly point toward the [111] axis, 
but is slightly tilted away by 11.7 ± 1.1° toward the xy-plane, as the c direction rumpling is larger 
than in the a or b direction.39 In the unstrained case, we calculate an off-angle of 10.7°, in 
excellent agreement with the previous experimental results. In Figure 2b, we see that there are 
two critical strain values in the system: One at -1% compressive strain, where the rumpling in the 
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a and b directions vanish, and one at 1.3% tensile strain, where the rumpling in the c direction 
vanishes. At above ~1.3%, the rumpling in the [001] direction vanishes, and only the [110] 
rumpling remains; below -0.5% strain, the rumpling in the [110] vanishes, and only the [001] 
rumpling remains; for strains below 1.3% and above -0.5%, there is rumpling in both directions. 
Interestingly, these transitions do not occur when the a/c ratio becomes smaller than 1, which 
occurs at ~ 0.5% strain. This shows that the disappearance of rumpling in certain directions is not 
related to the change in long cell axis (switching from c being the long axis to the a and b axes 
being the long axes).  

In Figure 3a, we show the dielectric tensor ε as a function of strain where BTO is polarized 
perpendicular to the interface (ε11 = ε22 by symmetry). We see that at -1.0% strain, ε11 diverges, 
and at 1.3% strain, ε33 diverges. These are the same strains for which the a/b rumpling and c 
rumpling vanish. The reason for the divergences is the softening of phonon modes. In Table 1, 
we show that the [110] ferroelectric mode (in which the Ti moves in the [110] direction, and the 
O move in the [ 0] direction) softens as we approach the critical strain, either from below -
1.0% of strain or above. This can be thought of in terms of the Lyddane-Sachs-Teller or LST 
relation40,41, as the frequency of one of the ωTO decreases toward zero, ε diverges (in this case 
only one element of the ε tensor). Likewise, in Table 2 we show that the [001] ferroelectric mode 
(in which the Ti moves in the [001] direction, and the O move in the [00 ] direction) softens as 
we approach the critical strain of 1.3%. This is similar to the result of Reference21. However, 
while the BTO undergoes a phase transition to a cell of a different symmetry, we keep the BTO 
in our calculations tetragonal to model clamping on a substrate. 

Table 1. The frequency of the ferroelectric mode in the [110] direction with respect to strain, for 
the out-of-plane polarized case. 

Strain Frequency (1/cm) 
-1.20% 62.40 
-1.15% 57.47 
-1.10% 47.54 
-1.05% 36.30 
-1.00% 37.34 
-0.90% 52.22 
0% 157.59 

Table 2. The frequency of the ferroelectric mode in the [001] direction with respect to strain, for 
the out-of-plane polarized case. 

Strain Frequency (1/cm) 
0% 282.94 
1.10% 109.16 
1.20% 68.47 

1 1

1
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1.30% 21.27 
1.50% 81.62 
1.60% 100.05 

 

Next, we calculate the r tensor as a function of strain. In Figure 3b, we report the values of r113, 

r333, and r232 = r131, (r13 = r23, r33, and r42 = r51 respectively, in Voigt notation). The r tensor can be 
separated into two components: the electronic part rel, and the ionic part rion. The rion is given by 

 
(2)

where V is the unit cell volume, n is the index of refraction, αm is the Raman susceptibility of 
mode m given by 

 (3)

where κ indexes the atoms in a unit cell, β is a Cartesian direction, χ(1) is the linear susceptibility 
tensor, τκβ is the displacement of atom κ in the β direction, and u is the displacement pattern of 
the eigenmode m. p is the mode polarity given by 

 (4)

where Z* is the Born effective charge tensor.23 The electronic part  is small (less than 3 pm/V 
for all values of strain considered) and is not important for the following discussion. Previous 
theoretical calculations of r for BTO found a value of 8.9 pm/V for r13 and a value of 22.3 pm/V 
for r33 for unstrained BTO.22 In comparison, we calculate a value of 0.5 pm/V for r13, and a value 
of 24.0 pm/V for r33. Although the values of r33 are in good agreement, our value of r13 is smaller 
than the previous result. This is because the previous calculation did not take into account the 
rumpling in the a and b directions (the imaginary frequencies of these modes were not included 
in the calculation of the r tensor in Equation 2 above). Our calculations show that these modes 
have a large contribution to r that actually cancels the contributions from other modes in the 
system, resulting in a reduced value of r13.  

Although r13 varies with strain, it always stays smaller than 8 pm/V. In contrast, r33 and r42 
diverge at 1.3% and -1.0% strain, respectively. This is precisely where the divergence of ε33 and 
ε11 occurs. From Equation 2, we see that rion depends strongly on the frequency of the modes of 
the system, and a softening mode increases the electro-optic response of the crystal. We calculate 
the contribution of specific phonons to the r tensor, and find that the modes that have a large 
contribution to r are the same modes as listed in Table 1. This shows that the modes that soften 
due to strain and cause divergence in ε are the same modes that cause divergence of r. 
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Let us now consider the case of BTO polarized parallel to the interface (in transmission, the 
electric field of light is parallel to the film surface and would not couple to polarization normal to 
the surface/interface).  The long c axis lies in-plane along with the a lattice vector, while the b 
lattice vector is perpendicular to the interface; alternating mutually orthogonal domains of c-
oriented BTO have been described as a mosaic structure.42 In this case, we strain a and c so that 
the a/c ratio is fixed, and use the elastic constants to optimize the b lattice vector, Figure 4(a). 
Under this strain, the crystal becomes orthorhombic, and so ε11 ≠ ε22 ≠ ε33. In Figure 4(b), we plot 
the rumpling in this cell under various a/c strains. There are again two critical strains in the 
system; one at -1.0% strain, where the polarization in the a direction vanishes, and one at 0.8% 
strain, where the polarization in the b direction vanishes. In Figure 5(a), we plot the dielectric 
constant as a function of strain. Now, we see that ε11 diverges at -1.0%, where the a polarization 
vanishes, and ε22 diverges at 0.8%, where the b polarization vanishes, consistent with our results 
for the out-of-plane polarization. In Table 3, we show that the [100] ferroelectric mode (in which 
the Ti moves in the [100] direction, and the O move in the [ 00] direction) softens as we 
approach the critical strain, either from below -1.0% of strain or from above. Likewise, in Table 
4 we show that the [010] ferroelectric mode (in which the Ti moves in the [010] direction, and 
the O move in the [0 0] direction) softens as we approach the critical strain of 0.8%. 

In Figure 5b, we plot the components of the electro-optic tensor as a function of strain. Unlike in 
the previous example, under orthorhombic strain, r51 and r42 are no longer equal. We see that r51 
diverges at -1.0% strain, and r42 diverges at 0.8% strain, again corresponding to the polarization 
vanishing in one of the crystal directions and of the divergence of ε. Again, the modes that have a 
large contribution to r are the modes soften due to strain. 

Table 3. The frequency of the ferroelectric mode in the [100] direction with respect to strain, for 
the in-plane polarized case. 

Strain Frequency (1/cm) 
-1.20% 64.30 
-1.10% 52.87 
-1.00% 36.29 
-0.90% 47.75 
-0.80% 76.56 

Table 4. The frequency of the ferroelectric mode in the [010] direction with respect to strain, for 
the in-plane polarized case. 

Strain Frequency (1/cm) 
0.60% 93.75 
0.70% 66.75 
0.80% 32.83 

1

1
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0.90% 48.77 
1.00% 64.78 

This relationship between the large Pockels effect and mode softening can be understood within 
the Landau-Ginzburg-Devonshire theory.20,43–48 In this theory, the free energy density F is given 
by: 

, (5)

where F0 is the free energy density at zero polarization, P is the polarization, and α and β are 
coefficients that depend on temperature and strain. The electric field E is given by 

. (6)

The linear susceptibility χ(1) is defined as 

, 
(7)

and  

, (8)

where the dielectric function ε measures the linear response. As BTO also has a nonlinear 
dielectric response to an electric field, one can readily compute the nonlinear electric susceptibly 
χ(2) as49 (the tensor notations are omitted for clarity): 

(9)

This means that ε changes with respect to an additional applied field E, giving us a change in the 
dielectric tensor Δε that depends on the strength of E. This is the Pockels effect and the electro-
optic tensor r is related to Δε as: 

(11)

It is clear that the divergence of r must occur if χ(1) and ε diverge. In our case, the physical 
reason for the susceptibility divergence is the strain-induced-softening of the corresponding 
phonon mode. 

We also performed preliminary experimental investigation of Pockels coefficients dependence 
on strain in a BTO film integrated on Si (001) that will be published separately. The tentative 
results are in qualitative agreement with theoretical predictions. Just a -0.04% change in relative 
strain causes a 30 pm/V increase in the effective Pockels coefficient. The calculated response to 
strain can be inferred from Fig. 5b, we obtain a change of 117 pm/V in the r51 value when the 
strain increases from -0.8% to -0.9%. It is instructive to compare the effect of strain with that of 
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temperature. Bernasconi and co-authors have related the temperature dependence of the linear 
EO coefficient to changes in the dielectric tensor and spontaneous polarization.26 They argue that 
in BTO and KNbO3 the temperature dependence is dominated by the variation in the 
permittivity, which is amplified by a structural instability. This is similar to what happens under 
strain according to our calculations. Also, when the lattice instability is caused by epitaxial strain 
there is no ambiguity to whether the transition is order-disorder or soft-mode type, as there is a 
specific divergent mode responsible for it. 

Conclusion 

In conclusion, we show that in strained epitaxial BTO films, for both normal and in plane 
polarization, the Pockels effect is enhanced under strain due to divergence of dielectric 
susceptibility. The divergence is caused by strain-induced soft modes and is manifested by an 
extinguishing of polarization in certain directions under strain. Based on the relation between the 
linear and nonlinear susceptibilities in the Landau-Ginzburg-Devonshire theory, we expect this 
divergence of nonlinear response caused by mode softening to be quite general. The first 
principles calculations suggest very large electro-optic effects that can be obtained via control of 
the lattice mismatch to the substrate. Our results suggest a previously unexplored route of tuning 
the electro-optic effect in active elements of Si nanophotonics. 

We thank Agham Posadas and Ali Hamze for critically reading the manuscript and insightful 
discussions. This work was supported by the National Science Foundation (Awards DMR-
1207342 and IRES-1358111), the Air Force Office of Scientific Research (Grant FA9550–12–
10494), Texas Advanced Computing Center, and the European Commission (FP7-ICT-2013-11-
619456-SITOGA, H2020-ICT-2015-25-688579 PHRESCO). 
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Figure Captions 

Figure 1. (Color online) The unit cell of BTO. In the unstrained case, a = b < c. The rumpling 
and tetragonality of the cell is exaggerated for clarity. We consider two cases; the c-axis pointing 
perpendicular to the interface (out-of-plane polarization) and the c-axis parallel to the interface 
(in-plane polarization); in both cases, up on the page corresponds to the direction of the surface. 
The blue solid line indicates that these axes are strained: The red dashed line indicates the axis 
that responds to the strain. 

Figure 2. (Color online) The lattice parameters (a) rumpling of BTO (b) as a function of strain 
for the out-of-plane polarized case as shown in schematic above. There are two rumplings for the 
a and b directions, since the rumpling for the equatorial O is inequivalent from the rumpling for 
the apical O. No such complication occurs in the c-direction.  

Figure 3. (Color online) a) The static dielectric constant and b) electro-optic tensor as a function 
of strain for the out-of-plane polarized case. Note that at zero strain the r42 component of the 
electro-optic tensor cannot be calculated using the present theory.22 

Figure 4. (Color online) The lattice parameters (a) and rumpling (b) of BTO as a function of 
strain for the in-plane polarized case as shown in schematic above. There are two rumplings for 
all directions, since all three oxygen atoms are inequivalent in an orthorhombic cell. Vertical 
dashed line indicates experimental lattice parameters. 

Figure 5. (Color online) a) The static dielectric constant and b) electro-optic tensor as a function 
of strain for the in-plane polarized case. Vertical dashed line indicates experimental lattice 
parameters. 
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