
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Magnetic field induced Weyl semimetal from Wannier-
function-based tight-binding model

John W. Villanova and Kyungwha Park
Phys. Rev. B 98, 075123 — Published 13 August 2018

DOI: 10.1103/PhysRevB.98.075123

http://dx.doi.org/10.1103/PhysRevB.98.075123


Magnetic Field Induced Weyl Semimetal from

Wannier-Function-based Tight-Binding Model

John W. Villanova∗ and Kyungwha Park†

Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, USA

(Dated: July 23, 2018)

Abstract

Weyl semimetals (WSMs) have Weyl nodes where conduction and valence bands meet in the

absence of inversion or time-reversal symmetry (TRS), or both. The TRS-broken WSM phase can

be driven from a topological Dirac semimetal by magnetic field B or magnetic dopants, considering

that Dirac semimetals have degenerate Weyl nodes stabilized by rotational symmetry, i.e. Dirac

nodes. Here we develop a Wannier-function-based tight-binding (WF-TB) model to investigate the

formation of Weyl nodes and nodal rings induced by B field in the topological Dirac semimetal

Na3Bi. The field is applied along the rotational axis. So far, studies of B field induced WSMs

have been limited to cases with effective models. Remarkably, our study based on the WF-TB

model shows that upon B field each Dirac node is split into four separate Weyl nodes along

the rotational axis near the Fermi level; two nodes with Chern number ±1 (single Weyl nodes)

and two with Chern number ±2 (double Weyl nodes). This result is in contrast to the common

belief that each Dirac node consists of only two single Weyl nodes with opposite chirality. In the

context of the 4 × 4 effective models, the existence of double Weyl nodes ensures nonzero cubic

terms in momentum. We examine the evolution of Fermi arcs at a side surface as a function of

chemical potential. The number of Fermi arcs at a given chemical potential is consistent with the

corresponding Fermi surface Chern numbers. Our study also reveals the existence of nodal rings

in the mirror plane near the Fermi level upon B field. These nodal rings persist with spin-orbit

coupling. Our WF-TB model can be used to compute interesting features such as anomalous Hall

and thermal conductivities, and our findings can be applied to other topological Dirac semimetals

like Cd3As2.
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I. INTRODUCTION

In Weyl semimetals (WSMs), bulk conduction and valence bands touch at an even number

of points near the Fermi level, called Weyl nodes, which are topologically protected by

conserved crystal momentum1,2. The WSM phase occurs when inversion symmetry (IS) or

time reversal symmetry (TRS) is broken or both. A non-zero Chern number is associated

with each Weyl node, and it also dictates the number of open Fermi-arc surface states. Since

early theoretical proposals of WSM in iridates2, HgCr2Se4
3,4, and TaAs5,6, experimental

observation of Weyl nodes in IS-broken WSMs TaAs family7–9 has stimulated the field. In

addition to Weyl nodes with Dirac dispersion in three orthogonal directions (single Weyl

nodes, Chern number ±1), various types of Weyl nodes were proposed and observed. To

name a few, double (triple) Weyl nodes with Chern numbers ±2 (±3) are associated with

quadratic (cubic) dispersion in the plane orthogonal to the Weyl node separation axis3,4,10,11;

type-II Weyl nodes12,13 are realized when conduction and valence bands meet with the same

sign of slope such that electron and hole pockets are formed near the Fermi level. WSMs

are expected to show interesting phenomena arising from Berry curvature, such as the chiral

magnetic effect14–16, anomalous Hall conductivity and Nernst effect17,18, and unique quantum

oscillations19,20.

Mostly IS-broken WSMs have been experimentally well characterized, with dozens of

Weyl nodes found near the Fermi level, and often off symmetry lines or planes in momentum

k space5,8,9. Experimental studies of TRS-broken WSMs based on magnetic materials are in

debate due to material stability or difficulty in identification of magnetic ordering21. (Here

a strict definition of WSMs is applied where there are no other trivial bands than the bands

formingWeyl nodes near the Fermi level.) A recent study proposed that if doped TRS-broken

WSMs with IS can realize a superconducting state with translational symmetry, then the

superconducting state must have an odd-parity, spin-triplet pair potential22. However, such

a scenario is not guaranteed in doped IS-broken WSMs.

One way to induce the TRS-broken WSM phase is to apply a magnetic field B or insert

magnetic dopants in topological Dirac semimetals (DSMs). Despite TRS and IS, topologi-

cal DSMs have degenerate Weyl nodes with opposite chirality, i.e. Dirac nodes, which are

protected by rotational symmetry23. Topological DSMs Na3Bi and Cd3As2 were experimen-

tally confirmed to have only two Dirac nodes well separated along the rotational symmetry

2



axis24,25. Thus, breaking TRS would generate a much smaller number of Weyl nodes com-

pared to IS-broken WSMs. It is commonly believed that each Dirac node would split into

two Weyl nodes of opposite chirality upon B field. This arises from studies of the 4 × 4

effective model keeping only up to quadratic terms in k17,18,23,26,27. Although a possibility

of higher-order terms was discussed in the effective model26,28,29, the existence and strength

of such terms have not been investigated before. So far there are no first-principles-based

studies of B field induced WSMs.

In order to investigate topological properties of B field induced WSMs beyond simple

effective models, we develop a Wannier-function-based tight-binding (WF-TB) model for

topological DSM Na3Bi with B field applied along the rotational axis. The electronic struc-

ture of bulk Na3Bi is first calculated from density-functional theory (DFT) without spin-orbit

coupling (SOC) or B field. Atom-centered Wannier functions (WFs) are generated from the

electronic structure, and we then construct a WF-TB model by separately adding atomic-

like SOC and a Zeeman energy. Landau levels or Peierls phases are not considered in our

WF-TB model. The band structure calculated from the WF-TB model still respects C3

and 63 (screw) symmetries and mirror symmetry (σh) upon B field. We avoid maximally-

localized WFs in our construction of the WF-TB model. Topological obstruction30,31 is not

relevant in our WF-TB model since unoccupied bands are included. For example, in topo-

logical insulators and semimetals, WF-TB models have been successfully used to investigate

topological invariants and other properties5,32,33.

From the WF-TB model, we find that upon B field each Dirac node is split into four

separate Weyl nodes along the rotational axis near the Fermi level. Two of the nodes have

Chern number of ±1 (single Weyl nodes), while the other two nodes have Chern number of

±2 (double Weyl nodes). This result differs from the common belief that each Dirac node

consists of two Weyl nodes of opposite chirality, which is true only when higher-order terms

like cubic terms are ignored in the 4 × 4 effective model. Our calculated Chern numbers

associated with the double Weyl nodes unambiguously reveals the existence of the higher-

order terms in momentum. We further examine the evolution of Fermi arcs at a side surface

as a function of chemical potential, finding that the number of Fermi arcs is consistent with

the calculated Chern numbers associated with the Weyl nodes. This analysis corroborates

our findings of the double Weyl nodes. In addition, our study reveals that with B field there

are nodal rings in the mirror plane, i.e. ab plane, near the Fermi level. These nodal rings
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persist with SOC, in contrast to most proposed nodal ring semimetals where the nodal rings

are gapped by SOC except for a few k points. Our WF-TB model with B field can be used

to compute interesting features arising from Berry curvature such as anomalous Hall and

thermal conductivities. Our findings can be applied to other topological Dirac semimetals

like Cd3As2.

We present crystal structure and symmetries of Na3Bi in Sec. II and the detailed proce-

dure of constructing the WF-TB model in Sec.III. Then in Sec. IV we discuss the WF-TB

model calculated band structure, the calculated Chern numbers of the Weyl nodes, the

calculated nodal rings, and the evolution of the Fermi arcs versus chemical potential. We

conclude in Sec. V.

II. CRYSTAL STRUCTURE AND SYMMETRIES OF NA3BI

We consider bulk Na3Bi in space group P63/mmc (No. 194) with experimental lattice

constants of a = 5.448 Å and c = 9.655 Å26 and no geometry relaxation is performed

within DFT. There are two inequivalent Na sites, 2b and 4f, with z =0.5827 for the latter

in Wyckoff convention, and these are shown in Fig. 1 in blue and green, respectively. There

is one inequivalent Bi site, 2c in Wyckoff convention shown in gold in Fig. 1. The site

symmetries of 2b, 4f, and 2c sites are D3h, C3v, and D3h, respectively. The primitive unit

cell in real space consists of six Na atoms and two Bi atoms, and an associated first Brillouin

zone (BZ) is shown in Fig. 1(c). The bulk crystal has inversion symmetry, C3 rotational

and 63 screw symmetries about the c axis (or z axis), and seven mirror planes (the single

horizontal xy plane, yz-mirror, and xz-glide, as well as the four other planes related to the

latter two of these species by rotational symmetry). Note that our x and y coordinates are

reversed from those in Ref. 26. Henceforth, we refer to the global primitive cell coordinates

as unprimed and the local (12̄0) cell coordinates as primed. For convenience, we use the

z′ ⊥ (12̄0) non-primitive unit cell for all that follows, unless specified otherwise. The non-

primitive unit cell has a rectangular shape and its dimension is 9.436×9.655×5.448 Å3. The

volume of the non-primitive unit cell is twice that of the primitive unit cell. Note that the

non-primitive cell is not expanded along the crystal c-axis. Here the unit vectors in the local

coordinates are related to those in the global coordinates as follows: (x̂′, ŷ′, ẑ′)→(−ŷ, ẑ,−x̂).

We consider a side surface (12̄0) for the study of Fermi-arc surface states in Sec. IV.D and
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E. The reason we use the non-primitive unit cell will be discussed in Sec. III.B.

FIG. 1: (Color online) (a) Top-down view of the primitive (001) unit cell of Na3Bi which crystallizes

in the P63/mmc hexagonal structure. Bi atoms are orange and Na atoms are blue (Wyckoff site

2b) and green (4f). (b) The primitive unit cell at a slight perspective angle. The in-plane lattice

vectors are shown in (a). (c) A first Brillouin zone (BZ) associated with the primitive (001) unit

cell. (d) Top-down view of the primitive cell first BZ showing the projection onto the (12̄0) plane.

(Panels (a), (b), and (d) are used with permission, copyright 2017 American Chemical Society34.)

III. CONSTRUCTION OF WANNIER-FUNCTION-BASED TIGHT-BINDING

MODEL

We first calculate the electronic structure of bulk Na3Bi without SOC and B field by using

DFT codes VASP35 and Quantum Espresso (QE)36. Next we generate the WFs from

the DFT-calculated band structure using Wannier9037. Then we construct a tight-binding

model from the WFs and add atomic-like SOC and Zeeman energy to the tight-binding

model.
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A. Initial DFT calculations

We perform the ab-initio calculations using QE36 within the Perdew-Burke-Ernzerhof

(PBE) generalized-gradient approximation (GGA)38,39 for the exchange-correlation

functional without SOC. We use the Na.pbe-spn-kjpaw psl.0.2.UPF and Bi.pbe-dn-

kjpaw psl.0.2.2.UPF projector augmented wave (PAW) pseudopotentials40 with an energy

cutoff of 50 Ry and smearing of 0.001 Ry. We consider bulk Na3Bi with the experimental

lattice constants26 without further relaxation. We use the z′ ⊥ (12̄0) non-primitive unit

cell for all that follows other than the band structure calculation. We use an 11 × 11 × 7

Monkhorst-Pack k-point mesh in the former case and a 7×7×15 mesh in the latter case. In

both k-point samplings, the Γ point is included. We also calculate the electronic structure

by using VASP35 with the PBE-GGA and PAW pseudopotentials in the absence of SOC

and with a 11× 11× 5 mesh. We use an energy cutoff of 250 eV and smearing of 0.05 eV.

We find excellent agreement between the QE-calculated and the VASP-calculated electronic

structures, which justifies our choices of the PAW pseudopotentials40 used in QE.

B. Generation of the Wannier functions

AWannier function, |r−R′, n〉, centered at positionR′ in real space is a Fourier transform

of Bloch states, |ψnk(r)〉, over the k space, where n is a band index. The Bloch states can

be written as eik·runk(r), where unk(r) denotes a lattice-periodic function.

|r−R′, n〉 =
V

(2π)3

∫

d3ke−ik·R′

|ψnk(r)〉, (1)

|ψnk(r)〉 =
∑

R′

eik·R
′

|r−R′, n〉, (2)

where V is the volume of the first BZ. Although the concept of Wannier functions was

developed very early41, their practical usage has rapidly developed in the past twenty years

since two bottlenecks were removed by Marzari, Vanderbilt, and collaborators42,43. The first

difficulty was non-uniqueness of WFs due to gauge freedom, which was resolved by searching

for maximally localized Wannier functions42. The second bottleneck was dealing with cases

in which the set of bands of interest is not separated from a larger set of bands by a gap at

every k point, as is the case in metals. This was solved by minimizing the gauge invariant

part of the spread functional43. These features are implemented in Wannier90 code37.
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FIG. 2: (Color online) (a) Wannier function corresponding to an s-orbital, and (b)Wannier function

corresponding to a pz′-orbital in the non-primitive unit cell. An isosurface level of 3 eV/Å3 is chosen

in both panels. Bi atoms are orange and Na atoms are blue (Wyckoff site 2b) and green (4f). Green

Na atoms are vertically oriented relative to the Bi atoms in the primitive hexagonal cell.

Before presenting our WF generation, let us discuss several criteria that the WFs must

satisfy in our WF-TB model. First, the WF-TB model must reproduce the DFT-calculated

band structure near the Fermi level with and without SOC. Some occupied and unoccupied

bands near the Fermi levels are needed to investigate the Dirac and Weyl nodes. Second, the

band structure obtained from the WF-TB model must respect inherent crystal symmetries

with and without B field. There is a topological obstruction30,31,44 to the construction

of (maximally-localized) WFs for Chern insulators and topological insulators when only

occupied bands are considered. In addition, maximally localized WFs tend to break crystal

symmetries, while projected atomic WFs (without maximal localization) respect crystal

symmetries 32. Thus, we carry out only the disentanglement procedure by minimizing the

gauge-invariant part of the spread functional ΩI . The definition of ΩI can be found from

Ref. 43. Third, the Wannier centers should be at the atomic centers. Fourth, the WFs

must be either very close to pure atomic orbitals or a linear combination of them. The third

and fourth criteria are required because we add the atomic-like SOC and a Zeeman energy

term. Fifth, the spread functional of each WF must not be too large to exceed the size of
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the home cell. Sixth, a small number of WFs is desirable in order to reduce the size of the

Hamiltonian matrix.

In order to first construct the SOC-free WF-TB model, we start with an initial set of

16 projected atomic orbitals, gj , comprising s-, px′-, py′-, and pz′-orbitals centered at the

four Bi atoms in the z′ ⊥ (12̄0) unit cell. Using the DFT-calculated Bloch eigenvalues and

eigenstates, we compute the overlap matrix, Mk,b
mn = 〈umk|unk+b〉, and projection matrix,

A
(k)
mj = 〈ψmk|gj〉, at each DFT-sampled k point by using Wannier9037. Here m and n are

indices of the Bloch states or bands, b is a vector between two neighboring k points, and

j is the WF index. Then we apply only the disentanglement procedure within the outer

energy window [−3.86, 5.44] eV with respect to the Fermi level. In this energy window, the

number of Bloch bands (27 ≤ Nb(k) ≤ 34) is much greater than the number of the WFs,

where the number of occupied bands is 12 and the total number of Bloch bands depends

on k. We find that the generated WFs have only real components and that the WFs are

close to pure atomic orbitals, as shown in Fig. 2. In the case of the projected s-orbital

WFs, there are small contributions from the neighboring Na sites. This does not affect our

implementation of SOC since the s-orbital WFs do not contribute to SOC. The Wannier

centers are at the atomic centers within the order of 0.001 Å for the p-orbital WFs and

0.01 Å for the s-orbital WFs. The spreads of the individual WFs as well as the Wannier

centers are listed in Table I. The p-orbital WFs are well localized, whereas the s-orbital

WFs are substantially delocalized but their spreads remain within the home non-primitive

unit cell. Such spreads could be the reason we obtain a better set of WFs when we increase

the unit cell size in real space, compared to the case of using a primitive unit cell. Here

a “better set” of WFs means improved agreement with the DFT-calculated band structure

while respecting the crystal symmetries. A similar effect has been discussed for topological

insulators45. With the generated WFs, the gauge-invariant part of the spread functional ΩI

is 84.69 Å2, and the diagonal and off-diagonal non-invariant part of the spread functionals

ΩD and ΩOD are 0.15 and 19.21 Å2, respectively. We also check that matrix A†(k)A(k) is not

singular at any k points for our choice of the initial set gj.
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TABLE I: Cartesian positions (Å) of the WFs for the (12̄0) cell with their spreads. The atomic

positions are listed at the top of the table for ease of comparison. All coordinates are local.

Atom Orbital x′ y′ z′ Spread (Å2)

Bi 1 1.57270 2.41375 2.72400

Bi 2 3.14540 7.24125 0.00000

Bi 3 6.29081 2.41375 0.00000

Bi 4 7.86351 7.24125 2.72400

1 s 1.53021 2.41377 2.72400 13.30

2 s 3.18791 7.24123 0.00000 13.30

1 pz′ 1.56990 2.41375 2.72400 4.36

1 px′ 1.57225 2.41375 2.72400 4.36

1 py′ 1.56931 2.41375 2.72400 3.99

2 pz′ 3.14821 7.24125 0.00000 4.36

2 px′ 3.14587 7.24125 0.00000 4.36

2 py′ 3.14880 7.24125 0.00000 3.99

3 s 6.24840 2.41377 0.00000 13.30

4 s 7.90603 7.24123 2.72400 13.30

3 pz′ 6.28801 2.41375 0.00000 4.36

3 px′ 6.29034 2.41375 0.00000 4.36

3 py′ 6.28742 2.41375 0.00000 3.99

4 pz′ 7.86632 7.24125 2.72400 4.36

4 px′ 7.86398 7.24125 2.72400 4.36

4 py′ 7.86691 7.24125 2.72400 3.99

C. Spin-free Hamiltonian

Now we construct the spin-free WF-TB model, by using the generated WFs, |R + sβ〉,

centered at R + sβ , where R are the lattice vectors and sβ denote the sites of orbital β
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(β=1,...,16). The spin-free Hamiltonian matrix H0 reads

H0,αβ(k) = 〈ψk,α|H0|ψk,β〉, (3)

=
∑

R

e−ik·(R+sα−sβ)tαβ(R− 0), (4)

tαβ(R− 0) = 〈R+ sα|H0|0+ sβ〉, (5)

where tαβ(R− 0) is a hopping or tunneling parameter from orbital β at site sβ in the home

cell at R = 0 to orbital α at site sα in the unit cell located at R. Note that we have four

different Bi sites within the non-primitive unit cell. The factor e−ik·(sα−sβ) in Eq. (4) can be

absorbed into a new basis set.

D. Addition of spin-orbit coupling and Zeeman term

Since the atom-centered Wannier functions are very close to pure states of the orbitals we

project onto, on-site SOC is added to the home-cell terms directly. The matrix form of SOC

in the basis set of {|s, ↑〉, |pz′, ↑〉, |px′, ↑〉, |py′, ↑〉, |s, ↓〉, |pz′, ↓〉, |px′, ↓〉, |py′, ↓〉} for a single Bi

atom is

HSOC = λL · σ =
λ
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0 0 0 0 0 0 −1 i

0 0 0 −i 0 1 0 0

0 0 i 0 0 −i 0 0
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0 0 1 i 0 0 0 0

0 −1 0 0 0 0 0 i

0 −i 0 0 0 0 −i 0







































, (6)

where λ is the SOC parameter, L is the orbital angular momentum, and σ represent Pauli

spin matrices. With our generated WFs, we now have a 32 × 32 matrix HSOC since there

are four Bi sites per non-primitive unit cell. We find that λ = 1.165 eV reproduces the

DFT band structure around the Fermi level the best, which is to be favorably compared to

λBi = 1.25 eV46.

We add the magnetic field as a Zeeman term HZ = g̃µB(L + 2S) · B, where µB is Bohr

magneton and S is the spin angular momentum. For a free electron, g̃ = 1. We do not
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include Peierls phases in the hopping parameters tαβ. The total Hamiltonian for the WF-

TB model is H = H0+HSOC +HZ . For the results presented through the rest of this work,

we consider g̃µBBz= 0.025 eV, unless specified otherwise. The experimentally realized Dirac

semimetals exhibit large g-factors, with g ≈ 20 in Na3Bi
47 and g ≈ 40 in Cd3As2

48, and the

magnetic field strength that we consider is experimentally achievable. However, our findings

would not qualitatively change with the field strength if the magnetic field is not extremely

high. For example, the number of the Weyl nodes near the Fermi level, the Chern numbers

associated with the Weyl nodes, the existence of the cubic terms in k in the 4 × 4 effective

model, and the existence of at least one nodal ring, do not change when g̃µBBz is less than

0.05 eV. We choose the particular value of B field since the splitting of each Dirac node is

more visible and easier to analyze.

IV. RESULTS AND DISCUSSION

A. Calculated band structure and symmetry

We check that our WF-TB model reproduces the first-principles band structure without

SOC. Figure 3(a) shows the WF-TB-calculated band structure overlain with the VASP-

calculated one in the absence of SOC. Except for the band-folding, there is excellent agree-

ment between the two band structures over a wide range of energies, approximately within

[-4.0, 1.0] eV with respect to the Fermi level. In the Appendix, we show both the VASP-

calculated and the WF-TB-calculated band structures in the non-primitive unit cell for a

comparison with band-folding. Especially, the band structure near the Dirac node along the

A-Γ direction is well reproduced from the WF-TB model Hamiltonian. We note that the

VASP-calculated band structure is identical to the QE-calculated one. In the vicinity of the

Dirac node, the QE-calculated band structure demonstrates that the two crossing bands,

without SOC, consist of one band with Na s, Bi s, and Bi pz orbital characters, and the other

band with Bi px and py orbital characters (in the global coordinates). The composition of

the orbital characteristics is shown in Fig. 4. The contribution of the Na s orbital is hardly

larger than the contribution of the Bi s plus pz orbitals along the A-Γ direction. This fact,

along with the observation that the resultant WFs comport with our six criteria, justifies

our choice of the initial set, gj.
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FIG. 3: (Color online) (a) Comparison of the bulk band structure without SOC of Na3Bi, using

VASP with the primitive unit cell versus the WF-TB Hamiltonian with the non-primitive unit cell.

(b) Likewise with SOC, with the Dirac node circled. In both cases the band-folding is apparent,

especially where the (12̄0)-BZ ends halfway along MΓ. The vertical arrows draw the eye to the

region of excellent agreement referenced in the text. The horizontal solid lines in the middle in (a)

and (b) indicate the Fermi levels. Here (a) and (b) are without B field.

Now we diagonalize the 32×32 matrix, H0+HSOC, with the same interpolated k points, in

order to check if our WF-TB model reproduces the first-principles band structure with SOC.

As shown in Fig. 3(b), with SOC, we also find excellent agreement between the WF-TB-

and VASP-calculated band structures near the Fermi level. See also the band structures in

the non-primitive unit cell in the Appendix for a comparison with band-folding. The Dirac

node from the WF-TB model is found to be at 0.08785 Å−1, which agrees well with the

location of the DFT-calculated Dirac node. Furthermore, we investigate the symmetry of

the WF-TB-calculated band structure by computing the constant energy contours of the

top valence band in the global-xy plane. With and without magnetic field, we find sixfold

rotational symmetry (Fig. 5). This result is consistent with the 63 screw and σh (mirror

symmetry about the xy or z′x′ plane) crystal symmetries, adding further credence to the
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FIG. 4: (Color online) (a) QE-calculated band structure without SOC colored for the contributions

of Na and Bi states. (b-e) QE-calculated band structure without SOC colored for the fraction of

the contribution of each orbital at each k point, (b) Bi in-plane px and py orbitals, (c) Bi pz, (d)

Bi s, and (e) Na s. (f) QE-calculated band structure with SOC, demonstrating the Dirac node as

a crossing of two doubly-degenerate bands with different rotational eigenvalues, |jz | = 3/2 (blue)

and |jz| = 1/2 (red and green). All cases use the primitive unit cell without B field.

validity of the WF-TB model. Note that we carefully check all aspects of the forthcoming

results near the Fermi level, confirming that those results are not influenced by the band

folding.
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FIG. 5: (Color online) (a) Constant energy contours of the top valence band in the kz=0 plane

as calculated from the WF-TB model for the (12̄0) cell in the absence of the magnetic field. (b)

Constant energy contours of the top valence band in the kz=0 plane as calculated from the WF-

TB model of the (12̄0) cell with an applied magnetic field of 25 meV, exhibiting the hexagonal

symmetry. In both panels, SOC is included and the colorscale is for the energy (eV). The Fermi

level in (a) and (b) is 4.44 eV.

B. Splitting Dirac Nodes via Magnetic Field: Single and Double Weyl nodes

We apply a magnetic field along the 63 screw axis (c axis) of Na3Bi, finding that each

Dirac node [Fig. 6(a)] splits into four separate Weyl nodes along the c axis. Figure 6(b)

and (c) shows the development of the four Weyl nodes along the c axis in the half-BZ upon

B field. Between these values of B field, the number of field-induced Weyl nodes does not

change and nor do the chiralities of the nodes. We henceforth present only the result for

g̃µBBz=0.025 eV, though we note that there is still no qualitative change in the results even

for larger fields g̃µBBz<0.05 eV. Each Weyl node is labeled such that Wn denotes a band

crossing point between bands n and n+ 1. When there are multiple crossing points arising

from bands n and n+1, an additional index is included right next to the band index. In order

to determine the chiral charge of the Weyl nodes, we first calculate the Berry curvature of

the Bloch bands obtained from our generated WF-TB model including the SOC and Zeeman
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FIG. 6: (Color online) Band structure of Na3Bi along the rotation axis (a) without B field, (b) with

g̃µBBz=5 meV, and (c) with g̃µBBz=25 meV. In (a), the location of the Dirac node is marked. In

(b) and (c) the positive (negative) chirality Weyl nodes are noted in orange (blue) circles, with the

small (large) circles meaning Chern numbers of ±1 (±2). (d) Berry curvature in the vicinity of a

single Weyl point W25 with chiral charge of −1. The “anti-hedgehog” monopole shape is apparent.

(e) Berry curvature in the vicinity of a double Weyl point W24,a with chiral charge of −2. The

“anti-hedgehog” shape is quite different, with almost all of the Berry curvature arising on a chord

of the sphere. The inset shows the projection of the Berry curvature of (e) onto the kz = 0 plane,

showing the chord which is almost along an equator of the sphere.
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term, by using Wannier Tools49. The Berry curvature of band n in momentum space,

Ωn(k), is defined to be ∇k ×An(k), where An(k) = i〈unk|∇kunk〉. Defining Hα ≡ ∂H/∂kα

and within the space represented by the WFs, the Berry curvature can be calculated as59

ǫαβγΩn,γ = −2Im
∑

m6=n

〈〈φn‖Hα‖φm〉〉〈〈φm‖Hβ‖φn〉〉

(Em − En)2
, (7)

where ‖φn〉〉 and En are the n-th eigenvector and eigenvalue of H (the 32× 32 Hamiltonian

matrix discussed in Sec. III), and ǫαβγ is the Levi-Civita symbol, though no sum over γ is

implied. Then we calculate the Chern number or Berry curvature flux χn of each Weyl node

Wn by enclosing it in spheres of successively smaller radius,

χn =
1

2π

∮

S

dS n̂ ·Ωn(k), (8)

where S is the two-dimensional surface of the sphere, or, as relevant later, Sn is the Fermi

surface (FS) sheet of band n, and n is a unit vector normal to S or Sn. Our calculation

shows that the four Weyl nodes consist of two Weyl nodes with χn = ±1 and two nodes with

χn = ±2. The former (latter) nodes are referred to as single (double) Weyl nodes. The Berry

curvature vector fields for the single and double Weyl nodes are shown in Fig. 6(d) and (e).

The calculated Chern numbers agree with the expected dispersion around the nodes. The

bands forming the single Weyl nodes disperse linearly in all directions around the nodes.

For the double Weyl nodes, the bands disperse linearly along the z-axis (rotational axis)

and quadratically in the xy-plane. The positions, energies, and chiralities of the Weyl nodes

are listed in Table II. One pair of single and double Weyl nodes, W25 (χ25 = −1) and W24,a

(χ24,a = −2), are located at higher energies, while the other two nodes, W23 (χ23 = +1) and

W24,b (χ24,b = +2), are found at lower energies.

Each Weyl node is the result of a crossing of bands with different rotational eigenvalues,

inherited from the Dirac node in the absence of the magnetic field. For example, band

crossings between jz = ±3/2 and jz = ∓1/2 bands create double Weyl nodes, while band

crossings between jz = ±3/2 and jz = ±1/2 produce single Weyl nodes, where jz is the

eigenvalue of the z component of the total angular momentum operator J, as discussed in

Refs. 26,29. We confirm that the jz values for the crossing bands obtained from the WF-

TB model agree with this analysis. The 63 screw symmetry allows double Weyl nodes50.

Figure 7 shows the field-dependence of the Weyl-node positions kz0 along the kz axis cal-

culated with the WF-TB model. At low B fields the k2z0 values evolve linearly with field,
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TABLE II: Chern number, momentum, and energy with respect to the Fermi level of the four Weyl

nodes in the z > 0 half-BZ, where Wn,α is α-th Weyl node arising from band n, the corresponding

band index shown in Fig. 9(a) and used in Eq. 10. Note that g̃µBBz=0.025 eV.

Wn,α χn kz (Å−1) Energy (meV)

W24,a −2 0.10973 33.3

W25 −1 0.09779 35.8

W23 +1 0.07618 -60.4

W24,b +2 0.06237 -58.5

which is consistent with the Weyl-node positions obtained from the effective 4 × 4 model

(shown below)26,29. Although the single Weyl nodes induced by B field were reported in the

literature26,28, the existence of the double Weyl nodes was rarely mentioned29. The double

Weyl nodes are realized only when an effective 4 × 4 effective k · p model (shown below)

includes cubic terms in k, such as B(k) = −1
2
B3k

2
−kz. This B(k) term respects the crystal

symmetries and it couples the jz = ±3/2 and jz = ∓1/2 bands, where k± denote kx ± iky.

The Hamiltonian reads

H4×4 = ǫ0(k) +















M(k) A(k) 0 B⋆(k)

A⋆(k) −M(k) B⋆(k) 0

0 B(k) M(k) −A⋆(k)

B(k) 0 −A(k) −M(k)















, (9)

where M(k) = M0 +M1k
2
z +M2(k

2
x + k2y), A(k) = ik+A0(1 + A1k

2
z + A2(k

2
x + k2y)), and

ǫ0(k) = C0+C1k
2
z +C2(k

2
x+ k2y). The parameter values except for B3, A1, and A2 are found

in Ref. 26. Note that the above Hamiltonian is in our global coordinates, where our x and y

coordinates are reversed from those in Ref. 26. Since the cubic terms [B(k), iA0A1k+k
2
z , and

iA0A2k+(k
2
x + k2y)] do not affect the linear dispersion near the Dirac nodes in zero B field,

the existence of the terms cannot be shown from the fitting to the DFT-calculated bands in

previous studies26. Our finding of the double Weyl nodes is the first direct evidence of the

existence of the B(k) term.
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FIG. 7: (Color online) Evolution of the position of the Weyl nodes calculated with the WF-TB

model versus magnetic field strength. The single (double) Weyl node positions are shown as closed

(open) circles, and the blue (orange) color corresponds to the negative (positive) chiral charge.

The solid black lines correspond to the average of four fits which demonstrate good agreement

with the 4× 4 Hamiltonian, especially at low fields. The fit for the single Weyl node (χ25=−1) is

k2z0(Bz) = (7.613 · 10−3Å−2) + (7.830 · 10−3 (eV·Å2)−1) ·Bz[eV]. The other fitting curves are given

by the appropriate choice of the sign of the slope, and the double Weyl node fits have twice the

magnitude of the slope.

C. Nodal Rings Formed via Magnetic Field

In addition to the four Weyl nodes, we also observe nodal rings in the horizontal mirror

plane upon B field along the c axis, which is consistent with the result obtained from

the effective 4 × 4 model29. Figure 8(a) shows bands n=21 − 24 along the kx (or k′z)

axis. For g̃µBBz=5 meV, bands 23 and 24 meet at two points along the kx axis, while

for g̃µBBz=25 meV, the two bands meet at four points. In the kx − ky plane bands 23

and 24 form one nodal ring at low fields like g̃µBBz=5 meV but two nodal rings at higher

fields like g̃µBBz=25 meV, as shown in Fig. 8(a) and (b). Further, we calculate a π Berry
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phase on a loop-path which interlocks with one nodal ring (one path for each ring), and

this demonstrates the protection of the nodal rings due to the mirror symmetry51,52. Not

all the gapless points at the nodal rings have the same energy. As shown in Fig. 8(c) for

g̃µBBz=25 meV, the inner ring is more or less at the same energy, while the outer ring has

some variations in the energy. This is not surprising. It has been shown in other nodal ring

or line semimetals53,54. A nodal ring was found in fcc bulk Fe with SOC55. In most reported

nodal ring or line semimetals, the nodal rings or lines become gapped except for a few points

in the presence of SOC. However, the nodal rings persist with SOC in TRS-broken WSMs.

FIG. 8: (Color online) (a) Dispersion of bands 21− 24 of Na3Bi along the kz′ axis with g̃µBBz=5

meV. The gapless points are emphasized with arrows. (b) Likewise when g̃µBBz=25 meV. (c)

Nodal rings formed by bands 23 and 24 in the kx − ky plane for g̃µBBz=25 meV. The colorscale is

a logscale for the size of the bandgap in eV. (d) Gapless nodal rings in the kx − ky plane vs energy

for g̃µBBz=25 meV. The color scale is for the energy of the bands.
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D. Evolution of Fermi Arcs as a Function of Chemical Potential

We now present our calculation of Fermi arc surface states at a single surface as a function

of chemical potential µ in the presence of B field. As the experimental transport signatures

of the Fermi arcs are strongly dependent on the chemical potential relative to the energy

of the Weyl nodes, our analysis has qualitative explanatory relevance to future transport

experiments involving topological Dirac semimetals in an applied magnetic field. We com-

pute the bulk states and the surface states for a semi-infinite slab with the (12̄0) surface by

using an iterative Green’s function method56 as implemented in Wannier Tools49. We

use three principle layers in the iterative method. Figure 9(a) shows a zoom-in of the five

bands n=22− 26 near the Fermi level, colored in correspondence with Fig 8 and for future

reference. Figure 9(b)-(f) shows the calculated Fermi arcs at five values of chemical poten-

tial, E1,...,E5 as indicated in Fig 9(a). The Fermi arcs are indicated as red curves, while

the bulk states are shown as white and pale red. The single and double Weyl points are

marked as small and large circles, respectively. The orange (blue) color is for the positive

(negative) chirality. Weyl nodes on the +ky′ axis are related to the Weyl nodes on the −ky′

axis by the horizontal mirror plane. Figure 10 shows zoom-ins of the Fermi arcs and bulk

states near the Weyl points at the five energies. We denote the boundary of a Fermi surface

(FS) volume V of band n at different µ values as Sn. The color of the boundary in Fig. 10

corresponds to the denoted band index as in Fig. 9(a).

At µ=E1=40 meV we find two Fermi arc surface states in Fig. 9(b). One of them

terminates tangentially on each of two FS sheets such as S26 (labeled in Fig. 10) and its

mirror partner, whereas the other Fermi arc terminates tangentially on FS sheet S25, as

shown in Figs. 9(b) and 10(a). At both µ=E2=10 meV and µ=E3=−20 meV , we observe

four Fermi arc surface states in the half-BZ; two arcs end tangentially on FS sheet S25 and

the other two (appearing within the gap between S24 and S25) terminate tangentially on

S24, as shown in Figs. 9(c) and (d) and 10(b) and (c). Figure 10(d) provides a zoom-in

view of the latter two Fermi arcs, and clearly shows the gap between the two different FS

sheets. This zoom-in view is qualitatively the same for µ=E2, E3 and E4, discussed next.

At µ=E4=−50 meV we find one surface-state loop connected through S25 and three Fermi

arcs ending tangentially on S24 [Fig. 10(e) and Fig. 9(e)]. In this case, the closed surface

state is similar to a topological-insulator-like surface state in external in-plane B fields57,58,
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and it terminates non-tangentially on S25. The two Fermi arcs within the gap between

S24 and S25 look similar to the cases of E2 and E3. The third Fermi arc looks like a short

whisker which forms off of the “crumpled-nosecone” of S24 and is lost into the projected bulk

states. At µ=E5=−65 meV we observe one topological-insulator-like closed surface state

well separated from the bulk states and one whisker-like Fermi arc terminating tangentially

on S23,a [Fig. 10(f) and Fig. 9(f)].

E. Analysis of Fermi-Arcs Evolution from Fermi Surface Chern numbers

In order to understand the evolution of the Fermi arcs as a function of µ, we examine the

Chern numbers of disjoint FS sheets at different µ values around the Weyl nodes following

Gosálbez-Mart́ınez et al.55. The Chern number, Cn, of each FS sheet Sn,α enclosing a volume

V arising from band n is given by

Cn =
∑

Wn,α∈V

χn,α −
∑

Wn−1,α∈V

χn−1,α, (10)

where χn,α is the chirality of the αth Weyl node connecting bands n and n + 1, Wn,α. The

sum is over all Weyl nodes interior to the FS sheet; the outward pointing normal vector

points toward the exterior of the FS for electron-pockets and the reverse for hole-pockets.

With this convention, the band crossing point becomes a source of Berry curvature flux in

the lower band (n) and a sink of Berry curvature flux in the upper band (n+ 1). Table III

lists the calculated FS Chern numbers of each Fermi sheet belonging to each band at each

of the five chemical potential values.

TABLE III: Cn for each Fermi surface sheet, Sn, as a function of chemical potential (meV). Only

Fermi surface sheets appearing in the z > 0 (or y′ > 0) half-BZ are listed. Not all Sn,α are shown

in Fig. 9(a).

n, α in Sn,α E1=+40 E2=+10 E3=−20 E4=−50 E5=−65

26 +1 - - - -

25 0 0 0 0 -

24 - +2 +2 0 0

23,a(b) - - - 0 −1 (0)
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FIG. 9: (Caption on page 24.)
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FIG. 10: (Caption on page 24.)
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FIG. 9: (Color online) (a) Zoom-in on the band structure showing the five choices of chemical

potential. (b-f) Fermi arcs and other surface states on the (12̄0) in an area one quarter of the

full BZ area. The panels show E1 − E5 respectively, which are +40, +10, -20, -50 and -65 meV.

The colorscale is a chimera of the spectral densities of the bulk and surface Green’s functions:

significant weight of the bulk Green’s function appears white or light red, and weight on the Fermi

arc surface states appears as strictly the darkest red. This makes it apparent that many of the

surface states attach tangentially to the bulk Fermi surface, and at low enough energy the surface

states are disconnected from the bulk Fermi surface.

FIG. 10: (Color online) (a-f) Fermi arcs on the (12̄0) surface, magnified near to the Weyl nodes

at energies E1 − E5 respectively, which are +40, +10, -20, -50 and -65 meV. (d) is a zoom-in on

the two Fermi arc states at E3=-20 meV connecting the C24=+2 and C25=0 Fermi surface sheets.

The colorscale in all panels is a chimera of the spectral densities of the bulk and surface Green’s

functions: significant weight of the bulk Green’s function appears white or light red, and weight

on the Fermi arc surface states appears as strictly the darkest red. This makes it apparent that

many of the surface states attach tangentially to the bulk Fermi surface.

At µ=E1, the chemical potential meets bands 25 and 26 and so C25 and C26 are relevant

to our analysis [Figs. 9(b) and 10(a)]. We find that a small electron-pocket ellipsoid S26,a

(brown) encloses W25 and W23. Only W25 enters into the calculation of C26 according to

Eq. (10) and so FS sheet S26,a inherits a Chern number of C26 = −χ25 = +1. The other

electron-pocket ellipsoid S25 (green) encloses all eight Weyl nodes in the full BZ. Among

them, all the Weyl nodes except for W23 and its mirror-symmetry partner are relevant, and

its FS Chern number is zero, i.e. C25=0. This is alternatively understood from the fact

that S25 encloses the parity-invariant Γ point, so its Chern number must be zero. From the

calculations of C25 and C26, we might expect one Fermi arc per surface terminating on S26

and zero terminating on S25. However, Haldane60 points out that Fermi arcs arising from

Weyl nodes higher or lower in energy may still be observed away from the energy of the Weyl

node (even when the FS Chern number is zero by enclosing Weyl nodes of opposite chirality),

so long as they terminate tangentially and respect the Chern number of the Fermi surface.

For C25=0, such a state would have to originate from and terminate on the same surface.

This analysis agrees with the observed two Fermi arcs discussed in Sec. IV.D [Fig. 9(a)].
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At µ=E2, bands 24 and 25 meet the chemical potential and so C24 and C25 are relevant

to the counting of the Fermi arcs [Figs. 10(c) and 10(b)]. For S25 a similar analysis to the

case of µ=E1 can be applied and thus C25=0. The hole-pocket S24 (magenta) encloses the

double Weyl node W24,a, yielding C24=+2. Note that an extra minus seems to enter for

a hole pocket in Eq. (10), but only because of the reversed direction of the Fermi velocity

vector at the surface of the hole pocket alters the sense of which Weyl nodes are interior to

the FS sheet. One may initially expect two Fermi arcs to connect S24 and its mirror partner,

yet these arcs terminate on S25. Figure 11 represents this case schematically to facilitate

discussion. Though these Fermi arcs in the ky′ > 0 half-BZ terminate on S25, their mirror

symmetric partner states in the ky′ < 0 half-BZ do so as well. In this sense two arcs enter

and two arcs exit S25, consistent with C25=0. Meanwhile the separated hole FS sheets, S24

and its mirror partner, have a net flow of Fermi arcs (indicated as red arrows in Fig. 11)

into or out of each and in opposite measure, consistent with their nontrivial and opposite FS

Chern numbers. At µ=E3, the analysis is much the same as at the preceding energy except

that the hole-pocket S24 encloses an extra Weyl node W25 [Fig. 10(c)]. The extra Weyl node

connects bands with indices which are irrelevant for the calculation of the hole-pocket Chern

number (C24), and so C24 does not change.

At µ=E4, the chemical potential meets bands 23, 24, and 25, and so C23, C24, and C25 are

relevant [Fig. 10(e)]. The crossing point between bands 23 and 24 at the BZ boundary (A

point) does not carry any chirality and the hole-pocket S23 (not shown) encloses this crossing

point. Thus we obtain C23=0. The electron-pocket S25 encloses W24,b and its partner with

opposite chirality across the Γ point, and so C25=0. Now S24 is roughly ellipsoidal except

for a “crumpled-nosecone” shape near where it avoids S25. The Weyl node W23 is actually

exterior to S24. S24 extends all the way across the BZ boundary (the A point) enclosing

W24,a and its partner with opposite chirality, so we have C24=0. Our analysis shows that

the number of Fermi arcs is not constrained at this chemical potential.

At µ=E5, bands 23 and 24 cross the chemical potential which is below the energies of all

four Weyl nodes. In the half-BZ (y′ > 0), there are two disjoint hole-pockets S23,a (blue) and

S23,b (not shown in Fig. 10(f)). The former hole pocket encloses only W23 while the latter

pocket encloses the A point, so C23,a(b)=−1(0). The hole-pocket S24 (magenta) reaches all

the way across the the BZ boundary, enclosing the parity-invariant point A (not shown) and

also all of the Weyl nodes and their partners. Thus C24=0. This analysis dictates one Fermi
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Hole FS (+2)

Electron FS (0)

Hole FS (−2)

vF

dkF

FIG. 11: (Color online) Schematic representation of the attachment of Fermi arcs in the full surface

Brillouin zone. The upper-half of this figure should be compared with Fig. 10(d). The Fermi arcs

on one surface attach tangentially to the Fermi surface (FS) sheets. The local Fermi velocities,

vF , (blue arrows) match at the points of attachment; pointing outward (inward) for electron (hole)

pockets. Choosing a consistent direction for the differential Fermi vector, dkF , (red arrows) along

the Fermi arc as in Ref. 60 (i.e. (n̂ × ~vF ) · d~kF > 0), there is a net Fermi arc flux associated with

the FS sheets with nontrivial Chern number, while such flux is zero into the FS with zero Chern

number (two arcs enter and two arcs exit).

arc tangentially terminating on S23,a, which corroborates our result.

V. CONCLUSION

In summary, we have developed a WF-TB model for the topological DSM, Na3Bi, which

reproduces the DFT-calculated band structure well while retaining the symmetries of the

crystal. The projected atomic Wannier functions are atom-centered with larger spread

26



than maximally localized WFs. Atomic-like SOC was included, and we investigated the

formation of line nodes in the mirror plane and splitting of the Dirac nodes into multiple

Weyl nodes in an applied magnetic field. We found that each Dirac node splits into pairs

of Weyl nodes with chiral charges ±1 and ±2 from the calculations of Berry curvature. By

carefully considering the Chern number of associated Fermi surface sheets, we detailed the

interesting development of Fermi arc and other topological surface states as a function of

chemical potential consistent with the topological charges of the Weyl nodes. Our tight-

binding model can be used to calculate novel properties induced by the nonzero Berry

curvature, and its qualitative features can be applied in another experimentally observed

topological DSM, Cd3As2.
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Appendix A: Electronic Structures Using the Non-primitive Unit Cell

In Fig. 3 of the main text, we compared the band structure of the WF-TB model in

the non-primitive unit cell to the familiar band structure of bulk Na3Bi calculated in the

primitive unit cell. In this section, we present the band structure of Na3Bi calculated using

VASP versus the band structure calculated using the WF-TB model in the non-primitive

unit cell for ease of comparison, given the band-folding. Figure 12(a) shows the bands in the

non-primitive unit cell without SOC; there is excellent agreement in the whole of the valence

band and up to even 1 eV above the Fermi level. Figure 12(b) shows the bands with SOC

included; while far from the Fermi level the bands are identical in dispersion but differ by

a vertical shift in energy, there is excellent agreement within [-0.5,0.5] eV around the Fermi

level. Hence our WF-TB model reproduces the DFT electronic structure very well with and

without SOC even for the non-primitive unit cell.
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FIG. 12: (Color online) Band structures of bulk Na3Bi in the non-primitive unit cell (a) without

SOC and (b) with SOC. The black (dark) bands show the the DFT-calculated bands using VASP,

and the blue (light) bands are calculated from the WF-TB model. The high-symmetry point labels

correspond to those in the primitive unit cell, so the band structures clearly show band-folding,

e.g. midway along MΓ where the non-primitive unit cell BZ ends. The vertical arrows draw the

eye to the region of excellent agreement referenced in the text.
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