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We provide strong evidence for a quantum critical point (QCP) associated with the destruction of
Kondo screening in the Anderson-Hubbard model for interacting electrons with quenched disorder.
The evidence comprises three elements: (a) the identification of an energy scale, ω∗, that delineates
infrared Landau damping from higher frequency non-Fermi liquid(nFL) dynamics; (b) the finding
that this crossover scale ω∗ appears to vanish with increasing disorder; (c) the concomitant appear-
ance of a finite intercept in a broad distribution of Kondo scales. Our findings indicate a Kondo
destruction scenario, albeit distinct from the local QCP picture. The nFL behavior is shown to stem
from an interplay of strong electron-electron interactions and the systematic inclusion of short-range
dynamical fluctuations induced by the underlying random potential. The results have been obtained
through a computational framework based on the typical medium dynamical cluster approximation.

1. INTRODUCTION

The paradigm of Landau’s Fermi liquid (FL) theory1

provides a robust foundation for understanding metals
in terms of weakly interacting electron-like ‘quasiparti-
cles’. However, there exist several classes of materials
where deviations from FL theory have been observed.
A universal feature of such materials is the simultane-
ous presence of strong electron-electron (e−- e−) repul-
sive interactions and disorder2. Examples include heavy-
fermions3–9, rare-earths10,11, cuprates12–14, and doped
semiconductors15. Of particular relevance to this paper
is the breakdown of the FL paradigm in the dual presence
of strong e−- e− interactions (U) and quenched disorder
(W )5.

The origin of non-FL (nFL) behavior in strongly
correlated disordered systems has eluded theorists and
experimentalists alike5 and has thus received a sus-
tained interest16. Some early experimental17 and the-
oretical work on the phenomenological Kondo disor-
der model5,18,19 and on microscopic strongly correlated
models20,21 showed that responses from anomalously low
Kondo scales may be connected to singular thermody-
namic responses and nFL behavior. These sites with
anomalously low Kondo scales form sparse regions of
local moments21, consistent with an interpretation in
terms of Griffiths effects21,22. Furthermore, a relatively
recent work23 has highlighted the importance of disor-
der induced spatial inhomogeneities in such scenarios.
Experimental imaging of disordered strongly correlated
systems24,25 reveal the emergent role of disorder induced
spatial inhomogeneities on the microscopics of such sys-
tems that in turn would influence the thermodynamics.
Such experiments show how, even non-magnetic random-
ness in a Kondo system can induce strong hybridization
modulation thus influencing the electron scattering dy-
namics. Proposed mean field approaches neglecting spa-
tial fluctuations due to disorder cannot adequately ad-
dress the specific low energy scales that determine the

nFL nature revealed by strongly correlated disordered
systems. The theory for such systems should therefore
comprise two critical ingredients, namely, systematic in-
clusion of short range dynamical fluctuations due to dis-
order and its interplay with the local Kondo physics due
to strong correlations.

There now exists compelling evidence of a disorder
driven quantum-critical, metal-insulator transition in
correlated two-dimensional systems26,27 and associated
nFL charge dynamics27. The quantum critical nature of
the metal-insulator transition in bulk, lattice systems in
presence of disorder and Hubbard-type interactions has
also been reported6,7,28–30. Theoretically, the quantum
critical nature of such a metal-insulator transition in the
disordered two-dimensional electron gas was established
using the two-loop renormalization group approach31.
Irrespective of the experimental details, these observa-
tions generically support a scenario where at T = 0
and W = 0, the system is a normal FL metal grad-
ually developing nFL excitations before undergoing a
metal-insulator transition at W = Wc, demonstrating
critical nFL dynamics in the vicinity of a quantum crit-
ical point (QCP). Despite the early reports on disor-
der induced nFL phenomenology based on emergent lo-
cal moments5,20,21, a fundamental challenge remained,
namely, (1) do these rare regions of ‘emerging’ local mo-
ments, dubbed as Griffiths singularities, act as precursors
to a ‘genuine’ QCP, and (2) what is the feedback effect
of these local moment instabilities on the underlying in-
teracting FL from which they emerge?

In our work we provide unambiguous evidence of the
‘existence of such a QCP’ starting from the FL phase of a
microscopic Hamiltonian, namely the Anderson-Hubbard
model (AHM), where the idea of a local moment induced
QCP was ruled out in Ref.21. We discern the emergent
nFL excitations in proximity to the QCP, by investigat-
ing the many body scattering dynamics in the metallic
phase. The schematic presented in Fig. 1 summarizes
results from our simulations of the AHM and incorpo-



2

rates inferences from previous studies15,30,32,33. On the
metallic side of the QCP, we find a heretofore unidenti-
fied crossover energy scale, ω∗ that appears to vanish at
a QCP. The system shows characteristic Fermi liquid dy-
namics for energies, |ω| < ω∗ and gradually deviates from
∼ ω2 dynamics to |ω|α for ω∗ < |ω| < Λ, as the disorder
is increased, where the exponent α varies continuously
with W . For larger W ’s, beyond the QCP, we assume
that there must be some phase transition to quench the
entropy associated with the unscreened moments.

FIG. 1. Schematic representation of the obtained
crossover energy scale separating FL and nFL dynam-
ics: The black solid line represents the crossover scale derived
within our T = 0 calculations. This scale marks a crossover
from FL dynamics to nFL dynamics with increasing energy,
and its vanishing would eventually lead to a QCP at a criti-
cal disorder strength, Wc. This dynamics would manifest in
the finite temperature fan of the QCP . The black dotted line
represents a high energy cut-off, Λ, beyond which such a de-
scription of the dynamics becomes invalid. The red dashed
line separates the nFL phase from a second phase the nature
of which cannot be determined within the current theory, but
is inferred from previous studies6,7,26–30.

In this work we establish that the key to quantifying
Fig. 1 and understanding the origin of an nFL and a
QCP, lies in the systematic incorporation of short range
correlations due to disorder into the full many-body scat-
tering dynamics of the electrons. We achieve this by
adapting the typical medium dynamical cluster approxi-
mation (TMDCA)34,35 such that the physics due to mul-
tiple scales could be handled. Within this framework,
(1) we explore the precise evolution of the disorder aver-
aged scattering dynamics and the associated distribution
of Kondo scales; (2) subsequently, we predict the emer-
gence of a disorder-induced nFL dynamics and a unique
disorder dependent FL to nFL crossover scale that pre-
sumably leads to the QCP, thus delineating the FL-nFL
boundary in Fig. 1. We emphasize that an identification
of ‘Phase 2’ is beyond the scope of the current formalism
and that we can only probe the disorder-driven transition
starting from a Fermi liquid phase.

The paper is organized as follows. We discuss the
Model and Theoretical framework in Section 2, followed

by Results and Discussions in Section 3. We finally con-
clude in Section 4.

2. MODEL AND THEORETICAL
FRAMEWORK

We investigate the Anderson-Hubbard model (AHM)
for describing the physics due to the interplay of disorder
and electron-electron interactions,

H =
∑

ij,σ

tijc
†
iσcjσ +

∑

i,σ

(Vi − µ)n̂iσ + U
∑

i

n̂i↑n̂i↓ (1)

where, c†iσ (ciσ) is the fermionic creation (annihilation)
operator for an electron with spin σ at site i, and n̂iσ =

c†iσciσ; tij is the nearest neighbor hopping amplitude, U is
the onsite Coulomb interaction energy. The lattice is rep-
resented by a 3D cubic density of states (DoS) with full
bandwidth, D = 3 eV. The random disorder potential,
Vi, is drawn from a box distribution P (Vi) of width W
and represented as P (Vi) = 1

2W Θ(W − |Vi|), where Θ(x)
is a step function. The disorder averaging is represented
using the shorthand notation, 〈. . .〉 =

∫
dViP (Vi)(. . .).

The particle-hole (p-h) symmetry is imposed by setting
µ = U/2. We define the onsite energy as, εi = −U/2+Vi
for the rest of the paper.

The AHM has been explored using various methods
like quantum Monte Carlo33,36, dynamical mean field
theory based approaches37–43, and Hatree-Fock based
approaches22,44. However, in order to understand the dy-
namical signatures of the QCP, more sophisticated and
advanced theory is required. The theory should be able
to tackle the dynamical scales generated by strong cor-
relations and its interplay with the spatial fluctuations
brought on by disorder; hence we require a multiscale
approach. We develop a multiscale approach where we
incorporate the dynamical spatial fluctuations due to dis-
order within the framework of TMDCA34.

The TMDCA34 is based on the same self-consistent
framework of the standard DCA45–47. However, the cru-
cial difference with the standard DCA lies in the utiliza-
tion of an appropriately disorder averaged, (momentum,
K) dependent hybridization, Γ(K, ω). One starts with
the usual DCA cluster mapping of a d-dimensional pe-
riodic (or disorder averaged to restore translational in-
variance) lattice in momentum space. The cluster con-
sists of Nc = Ldc cells in d dimensions, with K being the
cell momentum and Lc being the linear dimension of the
cluster. This cluster is then embedded into a self consis-
tently obtained effective medium, given by Γ(K, ω). We
now outline the steps below:

1. While initializing the problem, one can consider it
to be a uniform field, given by Γinit.

2. With this, one can obtain the cluster excluded
Green’s function, G(K, ω), given by, G(K, ω) =

[ω+ − Γinit − ε̄K]
−1

, where ε̄K is the coarse-grained
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FIG. 2. Flowchart representing the multiscale approach used in the current calculations. The TMDCA self-
consistency ensures the systematic and explicit incorporation of short-range correlations, due to disorder into the (stat-DMFT
like) loop that utilizes the local moment approach to solve for the strong correlation problem at a single site level.

bare dispersion. Hence, spatial correlations up to
a range ξ . Lc are explicitly retained, while the
longer length scale physics are described at a mean-
field level.

3. G(K, ω) is then Fourier transformed to get the real
space cluster excluded Green’s function, Gi,j(ω) =∑

K G(K, ω) exp[iK.(ri − rj)]

4. Then for a given disorder configuration, V̂ , we
may calculate the cluster Green’s function Ĝc(V̂ , ω)
with the effects of disorder and electron-electron in-
teractions incorporated.

We now discuss the second stage of the self-consistent
computational setup involving the treatment of the
electron-electron interactions. Our primary focus is to
explore the influence of disorder induced dynamical spa-
tial fluctuations on the Kondo physics governed by U .
This requires us to use a non-perturbative many-body
impurity solver that can capture the single particle spec-
trum over all energy scales efficiently. We utilize the
local moment approach (LMA)48–51 in order to obtain

the interaction self-energy, Σ̂(ω) that is calculated in real
space. Each site in the TMDCA cluster is mapped on to a
single impurity Anderson model, the self-energy of which

is calculated using the LMA. We now outline the steps
involved in this self-consistency below:

1. For this part of the calculation, we utilize the di-
agonal part of Gi,j(ω) calculated previously. This
serves as an initial guess input site-local hybridiza-
tion, ∆init

i (ω) = 1
ω+−1/Gii(ω) to the impurity solver

along with the local site energy, εi.

2. The inverse cluster Green’s function,[
Ĝc(V̂ , ω)

]−1

= Ĝ−1(ω) − Σ̂(ω) − ε̂ is then

calculated utilizing the interaction self-energy,
Σ̂(ω) obtained from the impurity solver. Note

that, Σ̂(ω) and ε̂ are diagonal matrices and Ĝ(ω)
has off-diagonal elements.

3. A new ∆i(ω) is calculated using the relation,

∆i(ω) = ω+ − Σi(ω)− εi − 1/Gcii(V̂ , ω);

4. in the subsequent iterations within the cluster
solver, each site is thus provided with a site de-
pendent ∆i(ω) input to the impurity solver.

5. The iterative loop within the real-space cluster
solver is repeated until

∫
∆i(ω)dω converges for all

Nc sites within some tolerance.
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FIG. 3. Disorder averaged electronic self energy: (a) The low energy part of the average self-energy, -ImΣave(R = 0;ω)
is shown for U = 1.6, Nc = 38 and various W ’s as indicated. A clear crossover from a Fermi liquid, ∼ ω2 to non-Fermi
liquid ∼ |ω|α is observed. On a linear scale this features as the formation of a cusp at low energies. (b) (Main panel) Some
representative data (W = 2.25, 2.5, 2.7, 3.1) of (a) are plotted on a log-log scale to deduce the power, α as a function
of W and also deduce the crossover frequency, ω∗ (using a procedure demonstrated in Figure 8 of Appendix B), beyond

which -ImΣave(R = 0;ω) evolves from ∼ ω2 (black dashed line) to |ω|α(W ) (orange dashed-dotted line), where α(W ) ≈
1.7, 1.3, 1.1, 0.7 for W = 2.25, 2.5, 2.7, 3.1 respectively, as shown in main panel. Note that a value approximately equal to
-ImΣave(R = 0;ω = 0)(= a0) has been subtracted. (b) (Inset) A similar analysis as in (b) (main panel) is illustrated for a
relatively lower W , namely, W = 1.6. Here, the crossover occurs at a sufficiently higher energy identified as the peak of the
respective distribution (shown in Fig. 11) of Appendix D.

Note that this scheme resembles the stat-DMFT formu-
lation in the sense that the diagonal Green’s functions
of a finite (Nc × Nc) real-space cluster are being solved
self-consistently within a DMFT like scheme. In all the
results presented below, we use Nc = 38 and U = 1.6
unless otherwise specified.

The converged Ĝc(V, ω), from the above cluster
solver in real space, is Fourier transformed to K space
and the typical density of states, ρctyp(K, ω) is con-
structed using the following ansatz: ρctyp(K, ω) =

exp
(

1
Nc

∑Nc

i=1

〈
ln ρci (ω, V̂ )

〉)〈
ρc(K,ω,V̂ )

1
Nc

∑
i ρ

c
i (ω,V̂ )

〉
. The

typical cluster Green’s function, Gctyp(K, ω) is then
obtained via Hilbert transform of Gtyp(K, ω) =∫ ρtyp(K,ω′)dω′

ω−ω′ . The coarse-grained Green’s func-

tion, Ḡ(K, ω) is then calculated via, Ḡ(K, ω) =∫ Nc
0 (K,ε) dε

[Gc
typ(K,ω)]

−1
+Γ(K,ω)−ε+ε̄(K)

, where, N c
0 (K, ε) repre-

sents the bare partial DoS with which we can further
calculate the new momentum dependent hybridization,
Γ(K, ω) as Γnew(K, ω) = Γold + ζ

[
(Gctyp)

−1 − (Ḡ)−1
]
,

where ζ is a mixing factor used to get smooth conver-
gence and is typically set to a value of 0.5. At conver-
gence, Gctyp(ω) = Ḡ(ω) within some tolerance. We out-
line this whole procedure in the form of a flowchart in
Fig. 2.

We now conclude this section with a brief discussion
about the LMA. This technique has been successfully uti-
lized in several impurity48,52–54 and lattice models within
DMFT55–59, describing both FL and nFL phases of the

respective models. In fact, the LMA, although approxi-
mate, has been shown to capture almost all of the aspects
of Kondo physics in the conventional single impurity
Anderson model, in “an almost exact” way, as evident
from the agreement with Bethe Ansatz, numerical renor-
malization group50,60–62, and even with experiments55,57.
Moreover, the LMA has been successfully utilized (and
benchmarked with numerical renormalization group cal-
culations) to understand the physics due to local quan-
tum phase transitions between a Fermi liquid (Kondo
screened phase) and a local moment phase consisting of
unquenched ‘impurity’ moments52–54. Recently, it has
also been applied to disordered systems within coherent
potential approximation63,64, and again, good agreement
with NRG results was found, and a new non-Fermi liq-
uid mechanism was also proposed. LMA was also imple-
mented for the Anderson-Hubbard model within typical
medium theory65, which was again in good agreement
with NRG calculations43.

The current implementation of LMA considers infinite
resummation of a specific class of diagrams describing
dynamical spin-flip scattering processes inherent to the
physics of the Kondo effect. We refer interested readers
to several previous works for more details, e.g.48,52,54–56.
Thus, the current formalism of LMA makes it a per-
fectly suitable tool for handling local quantum criti-
cal points involving criticality due to the breakdown of
Kondo screening. These spin-flip processes generate a
peak at a low energy scale, ωm, in the imaginary part of
the transverse spin polarization propagator, where ωm is
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of the order of the Kondo scale, TK . In clean systems
the Fermi liquid to local moment formation is therefore
signaled as a spin-flip pole in the imaginary part of the
transverse spin polarization propagator. In a disordered
system this pole would occur at certain sites where the
local moment forms.

The generalization of LMA to symmetry breaking
phase transitions and cluster geometries involving non-
local Coulomb interaction effects is not straightforward.
The many-body diagrams considered within the LMA
should be accordingly adapted to handle such situations.
The extension of LMA to clusters has been attempted
in the present work, in an approximate way, through
an integration of the DCA (and TMDCA) with a stat-
DMFT like cluster solver based on LMA. This extension
for a disordered interacting system, indeed deciphers a
generic microscopic mechanism for observing non-Fermi
liquid dynamics due to disorder and local Coulomb in-
teractions as described in the subsequent sections of this
paper. However, we agree that a true cluster extension
of LMA has not yet been carried out.

3. RESULTS AND DISCUSSIONS

3.1. Scattering dynamics

One of the main highlights of this work is the identifi-
cation of a critical low energy scale, ω∗ such that in pres-
ence of disorder the scattering dynamics has the usual
FL form only at energies, ω < ω∗. In order to iden-
tify ω∗ we probe the imaginary part of the disorder av-
eraged electronic self-energy, Σave(K, ω), obtained from
the Dyson’s equation involving the arithmetic average of
Gc(K, ω), (the average being denoted as 〈Gc(K, ω)〉ave),
that in turn is obtained from the Hilbert transform of
〈ρc(K, ω, V )〉, where, ρc(K, ω, V ) = − 1

π ImGc(K, ω, V ).
The disorder averaged self-energy, Σave(K, ω) is then ob-
tained as following,

Σave(K, ω) = G−1(K, ω)− 〈Gc(K, ω)〉−1
ave, (2)

with the local self-energy being, Σave(R = 0, ω) =∑
K Σave(K, ω).
In Figure 3(a) we plot −ImΣave(R = 0;ω) as a func-

tion of increasing W , with frequency plotted on a linear
scale. The non-zero, ω = 0, contribution (a0) in the self-
energy represents the static elastic impurity scattering,
while the |ω| → 0 has both inelastic and elastic contribu-
tions. Also, physically consistent is the observation that
at sufficiently weak disorder, e.g. W = 0.8, a0 is suffi-
ciently small such that we can expect a Drude like ex-
pression and an arbitrarily large d.c. conductivity. This
picture however breaks down as one increases W . Beyond
a certain disorder strength, W = 2.25, even on a linear
scale, the lineshape develops a clear cusp in the imme-
diate vicinity of the Fermi energy. Thus, for W & 2.25,
we can identify a vanishingly small emergent low energy

scale, ω∗ beyond which the FL behavior crosses over to
nFL dynamics. Thus, for ω∗ < |ω| < Λ, the scatter-
ing dynamics can be represented by a power law energy
dependence, given by, −ImΣave(R = 0;ω) ∼ |ω|α(W ),
where Λ is high energy cut-off frequency. This is further
highlighted in Figure 3(b) where we plot the low fre-
quency regime of −ImΣave(ω)−a0 on a log-log scale. The
∼ |ω|α(W ) functional dependence is shown as the orange
dashed-dotted lines in Figure 3(b) and the exponent, α,
obtained with this fitting is found to be dependent on W .

1 1.5 2 2.5 3 3.5 4

disorder strength (W)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

C
ro

ss
o
v
er

 f
re

q
u
en

cy
(ω

∗
) 

an
d
 r

an
g
e

FIG. 4. FL to nFL crossover energy scale (ω∗) and en-
ergy range (δω∗): The ω∗ (shaded squares) and δω∗ (verti-
cal bars) are estimated using the method described in the cap-
tion of Figure 8 and are plotted as a function of W . Both ω∗

and δω∗ decrease rapidly as W increases providing evidence
of the approach towards a disorder driven quantum critical
point that separates a Fermi liquid phase from a non-Fermi
liquid phase at higher disorder. This quantifies the boundary
marked as ‘crossover scale’ in Fig. 1.

Furthermore, a closer look at the data reveals a region
of frequencies over which the ImΣave crosses over from
ω2 to |ω|α(W ) dynamics. Thus, for each disorder strength
we should not only estimate an approximate crossover
point, ω∗ but also a crossover region, δω∗. An exam-
ple of such an analysis is shown in Figure 8(a,b) of Ap-
pendix B. In Figure 4 we therefore plot the extracted ω∗

as a function of W (represented as shaded squares) and
also mark the crossover region, δω∗, as vertical bars. We
observe that with increasing disorder, both ω∗ and δω∗

decrease sharply providing evidence for an ensuing QCP.
The crossover frequency, ω∗, thus emerges as a unique
vanishing energy scale indicating the emergence of a dis-
order induced non-Fermi liquid at a critical W = Wc.
In other words, the emergence of an arbitrarily small FL
to nFL crossover energy scale, ω∗, with increasing dis-
order, should lead to a qualitative change in the ground
state at W = Wc. As summarized in the schematic rep-
resented by Fig. 1, our calculations thus bring out the
(low-) energy boundary that separates the non-Fermi liq-
uid physics of the disorder driven QCP from the conven-
tional FL.

Finally, we note that the ω∗ in Figure 4 appears to
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deviate and even slightly approach saturation. We spec-
ulate that this is due to numerical intractability of the
system close to the localization transition, and that the
crossover scale should in fact vanish eventually at a fi-
nite critical disorder, Wc. The main reasons for such a
numerical bottleneck are that: (i) the regime of vanish-
ing ω∗ entails impurity sites with vanishing Kondo scales,
which is very hard to capture, and (ii) the Anderson-Mott
insulating regime exhibits a spectral function with singu-
larities that appear as a line of poles, which is again very
difficult to capture numerically. The apparent saturation
is thus a result of this numerical drawback. The physi-
cal reasons behind this numerical difficulty also indicate
that one needs to go beyond the current formalism to
be able to simultaneously handle the local moments that
would form in presence of the remaining Kondo screened
moments.

Furthermore, the existence of a finite critical disorder
has been found in three works, which have considered ei-
ther a closely related system or the same system as in the
present manuscript. (a)The 2-loop RG work of Finkel-
stein and Punnoose31 established the existence of a QCP
at a finite Wc in an interacting, disordered two dimen-
sional electron gas with an anomalous enhancement in
the magnetic susceptibility near the QCP. (b) Typical
medium theory calculations (Nc = 1 limit of TMDCA)
using NRG as the impurity solver43, and using LMA by
the present authors65, have established that the critical
disorder is finite in the disordered Hubbard model. (c)
Recent exact TMDCA calculations (by two of our cur-
rent authors)35 indicate a finite critical disorder for An-
derson localization, WAL

c in the weak-coupling regime of
the three-dimensional Hubbard model. The realization of
a vanishingly small ω∗ indicates emergent local moment
formation that is naturally influenced by the states at
the band center because of Kondo effect. Furthermore,
these states have a natural tendency to Anderson localize
at WAL

c . Thus, although Wc, at which ω∗ vanishes, may
not coincide with WAL

c , it can definitely be considered as
a lower bound for Anderson localization of the system,
i.e Wc ≤ WAL

c . Thus, if the latter is finite, the former
must also be finite.

The systematic incorporation of the short range spatial
fluctuations due to disorder is of paramount importance
in order to observe such nFL scattering. We corrobo-
rate this through Figure 5 where we plot the imaginary
part of the average local self-energy, Σave(R = 0;ω),
with a0 subtracted, for different cluster sizes, namely,
Nc = 1, 12, 28, 38. We emphasize that, the analysis of
the low energy frequency dependence of the scattering
dynamics is better understood with the subtraction of
a0. (For a comparison of a0 we urge the reader to refer
to Figure 7 in Appendix A.) This comparison illustrated
in Figure 5 highlights that the systematic inclusion of
short range correlations due to disorder with increasing
Nc is absolutely crucial for the non-Fermi liquid dynam-
ics manifested through the vanishingly small, emergent
energy scale ω∗. Clearly, the low energy frequency de-

pendence of -ImΣave(R = 0, ω) for Nc = 28 and Nc = 38
are hard to distinguish, with α ≈ 1.2, 1.1 for Nc = 28, 38
respectively. (A similar tendency is noted for a0 as the
Nc is systematically increased as illustrated in Figure 7
in Appendix A.) The respective ω∗ ≈ 10−4, 4× 10−5 for
Nc = 28, 38 respectively. This would thereby imply a
strong tendency for α(W ) to saturate with increasing Nc
and additionally suggests that Nc = 38 is indeed close to
the true thermodynamic limit.

While a precise statement about the absolute value of
α(W ) should involve analysis for Nc > 38, the evidence
of an α(W ) considerably less than the Fermi liquid value
of 2 is already guaranteed by Nc = 28 and Nc = 38. The
rapid approach to the thermodynamic limit within the
TMDCA is encouraging and is also in agreement with
recent calculations on the 3D Anderson disorder model
for non-interacting34 and weakly interacting systems35

with the TMDCA framework, that have also shown rapid
convergence as a function of increasing cluster size.
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FIG. 5. Comparison of the low energy dynamics of the
imaginary part of the average self-energy for different
cluster sizes: -ImΣave(R = 0, ω) is shown for U = 1.6 and
W = 2.7 with a0 =-ImΣave(R = 0, ω = 0) subtracted. The
dotted lines represent fits to the Fermi liquid form, given by
∼ aω2. While small cluster sizes of Nc = 1, 12 fit well to this
form, the systematic deviation is clearly noticeable for Nc =
28, 38 evident from the development of a low energy cusp.
Moreover, for both Nc = 28 and Nc = 38, the ImΣave(R =
0, ω) demonstrate very similar frequency dependence, with
estimated α(W ) ≈ 1.2, 1.1 for Nc = 28, 38 respectively,
indicating a rapid saturation of α(W ) with increasing Nc.

Additionally, as a manifestation of the nFL scattering
dynamics, the spectral lineshape, shown in Appendix C,
also develops a cusp, in the vicinity of the Fermi-energy
that becomes more pronounced as ω∗ → 0 and one ap-
proaches QCP. The evolution of the low energy spectral
lineshape is depicted in Fig. 10 of Appendix C. In Fig-
ure 9 of Appendix C we also report the behavior of the
typical density of states, ρtyp(ω) and the arithmetically
averaged density of states, ρarith(ω) over all energy scales
for different W ’s and two different interaction strengths,
namely U = 1.6, 2.0.

Finally, how would this observation manifest in the
temperature dependence of the resistivity? Let us as-
sume that there are no vertex corrections just like in
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infinite dimensions. Then the DC resistivity is given
by, σDC =

∫∞
−∞ dω

(
−∂nF

∂ω

)
1

2|ImΣ(ω)| . At zero tempera-

ture, T = 0, this corresponds to a finite resistivity de-
termined by the elastic scattering off the random po-
tential. It can be readily seen that at T 6= 0, in a
clean FL, where ImΣ(ω) ∼ ω2 this corresponds to ∼ T 2

behavior of the resistivity at low temperatures, when
T � T ∗ where T ∗ is the FL coherence scale repre-
sented by the Kondo scale in infinite dimensions. Let us
now apply this naive picture to the present calculations,
where we may express ImΣ(ω → 0) as, ImΣ(ω → 0) ∼
a0 + ω2Θ (|ω∗| − |ω|) + |ω|αΘ (|ω∗∗| − |ω|) Θ (|ω| − |ω∗|).
Clearly, now ρ(T ) crosses over from a T 2 behavior to a
Tα(W ) behavior thus bearing signatures of a nFL beyond
a temperature, T ∗ associated with ω∗. While such an
ImΣ has indeed been observed in this work, the above
expression should be used with care. This is because
the vertex corrections have been completely ignored even
though we are treating short-range fluctuations due to
the random potential. Nevertheless, it paves the way for
a manifestation of the nFL scattering dynamics on the
transport quantities in such systems, and the complete
analysis including vertex corrections is left as a future
challenge.
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FIG. 6. Distribution of Kondo scales: In presence of dis-
order, one obtains a distribution of Kondo scales as shown
in the main panel on a linear scale for U = 1.6, Nc = 38
and increasing W = 1.6, 2.5, 2.9, 3.1. For low enough disor-
der, W = 1.6, the distribution is marked by the presence of
prominent maximum and a lower TK tail bounded from be-
low. At intermediate W , (W = 2.5), even lower scales emerge
indicated by a broader lower TK tail and a broader maximum
of the distribution that gradually merges with the tail. At
sufficiently, large W , (W = 3.1), as ω∗ → 0 (in Fig. 4), the
distribution tends to acquire a finite intercept (P (TK = 0) as
TK → 0. This becomes evident in the inset. (Inset) P (TK)
is plotted on a log-log scale to highlight the evolution of the
lower TK tail.

3.2. Distribution of Kondo scales

We measure the distribution of Kondo scales P (TK) on
the cluster following the method we employed previously
for Nc = 165. In our previous study for Nc = 165, we
found that P (TK) was dominated by a single sharp peak
defining a typical value at the bottom of the distribution.
As a result, the calculations reveal a FL characterized by
this typical value. In the current calculations we find
that as we increase the cluster size Nc the distribution of
impurity environments also increases yielding a broader
distribution P (TK). (In Fig. 5 of Appendix A we also
plot the self energy for different Nc’s and see that the nFL
character emerges with increasing Nc.) We now look into
the evolution of P (TK) by gradually increasing W , at a
fixed U = 1.6 and cluster size, Nc = 38. The main panel
of Fig. 6 illustrates P (TK) on a linear scale. At lower

W ’s, P (TK) demonstrates a prominent peak, T peakK lead-
ing to largely Kondo Fermi liquid formation at roughly
this energy scale. As we increase W , the lower TK tails
grow further spanning even lower energies, such that at

W = 2.9 the tail merges with the T peakK resulting in a
broad distribution. At such W ’s, extremely low Kondo
scales i.e TK . 10−5, emerge to be highly probable. For
higher W ’s (e.g. W = 3.1), as ω∗ → 0, the P (TK) tends
to acquire a finite intercept (P (TK = 0) as TK → 0. This
behavior is even more evident in the inset of Fig. 6 where
the respective P (TK) is plotted on a log-log scale. Fig. 6

is in fact reminiscent of the P (TK) ∼ T β−1
K form ob-

tained in earlier calculations in the strong coupling limit
(20,42,66, that related the W ’s with β < 1 to electronic
Griffiths phases and an associated nFL behavior of the
response functions.

Strongly correlated systems with prevalent Kondo
screening currently offer two kinds of QCP3,4; one rep-
resents the conventional Hertz-Millis-Moriya scenario in
which the Kondo scale remains non-vanishing even after a
magnetic transition. In the other kind, dubbed the local
quantum critical scenario, the magnetic transition is ac-
companied by the breakdown of the Kondo singlet. Our
calculations show that the vanishing low energy scale, ω∗

identifying the QCP is concomitant with P (TK = 0) be-
ing non-zero. Thus we may infer a Kondo destruction
scenario of the associated QCP, driving the system to-
wards formation of local moments, an essential aspect
of strongly correlated disordered systems67–71. However,
the simultaneous occurrence of a broad P (TK), spanning
several orders of energy scales also emphasize a mech-
anism different from that of the local QCP picture72.
The spatial inhomogeneity due to disorder plays an es-
sential role in causing Kondo destruction at a finite frac-
tion of sites, while the remaining sites continue to retain
local FL character across the ω∗ → 0 transition. Our re-
sults thus demonstrate a different kind of QCP. It differs
from the local QCP in the exponents in the QC regime,
e.g. α, changes continuously as the QCP is approached.
With increasing disorder, presumably, there would be a
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‘Phase 2’, as illustrated in Fig. 1, identifying the nature of
which is beyond the scope of the current work. It is how-
ever worth mentioning that self-consistent unrestricted
Hartree Fock studies22,44,73,74 predict distinct mean-field
magnetic ground states owing to the formation of local
moments including a spin glass phase22,44,75,76.

4. CONCLUSIONS

We present a study investigating the influence of short-
ranged, dynamical fluctuations due to disorder on the
effective Kondo screening in a disordered, strongly corre-
lated system, within the TMDCA framework. We focus
on the disorder averaged scattering dynamics. Our find-
ings reveal the existence of an intrinsic energy scale, ω∗,
that behaves like a critical boundary separating the dis-
order induced nFL dynamics from the conventional FL
scattering in strongly correlated disordered systems. In
other words as the local moments emerge, exemplified by
the conventional phenomenology of a broad distribution
of Kondo scales, an intrinsic energy scale of the global
system, namely, ω∗ also tends to continuously vanish such
that the system remains a FL only at energies, |ω| < ω∗.
This suggests that the rare regions of ‘emerging’ local
moments, dubbed as Griffiths singularities, act as pre-
cursors to a disorder driven QCP that was heretofore
unidentified. The systematic feedback of the instabilities
induced by these local moments, into the underlying FL
from which they emerge, give rise to this intrinsic energy
scale which would manifest as disorder induced nFL ex-
citations in proximity to the QCP. We speculate that the
ω∗ → 0 signals the onset of a Griffiths phase, since the
fraction of sites with TK → 0 might act as nucleation cen-
ters for clusters of local moments in an otherwise Fermi
liquid system, albeit with a distribution of Kondo scales.

The results presented here provide a first step in un-
derstanding the role of spatial fluctuations due to dis-
order on electron correlations within an efficient compu-
tational framework. An essential ingredient missing in
these results is the absence of the physics due to the in-
tersite Rudderman-Kittel-Kasuya-Yosida interaction be-
tween the emerging local moments. The framework pre-
sented here opens an interesting avenue to incorporate
spatially nonlocal intersite correlations into single par-
ticle quantities in either the charge channel (nearest-
neighbor) or the spin channel (exchange) in a single the-
ory, including non-local fluctuations due to disorder be-
yond stat-DMFT. This direction is left as a future chal-
lenge.
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Appendix A: Scattering dynamics for different
cluster size

In all our calculations presented in the main text we
considered a specific cluster size of Nc = 38. In the Fig-
ure 5 of main text we demonstrated that the low en-
ergy frequency dependence of the disorder averaged self-
energy indeed tends to converge to a particular functional
form with increasing Nc. In order to justify this state-
ment we had compared -ImΣave(R = 0;ω) − a0 for dif-
ferent Nc at a fixed W = 2.7. In Figure 7 we show the
same, but without subtracting the zero frequency com-
ponent, a0. Similar to the observation for the low energy
frequency dependence, the a0 values for Nc = 28 and
Nc = 38 also appear close enough quantitatively.
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FIG. 7. Comparison of the low energy dynamics of the
imaginary part of the average self-energy for different
cluster sizes: the imaginary part of the average self-energy,
given by -ImΣave(R = 0, ω) is shown for U = 1.6 and W = 2.7
on a wider energy range compared to Figure 5. The dotted
lines represent fits to the Fermi liquid form, given by ∼ aω2.
While small cluster sizes of Nc = 1, 12 fit well to this form,
the systematic deviation is clearly noticeable for Nc = 28, 38.

Appendix B: Estimation of the crossover energy
scale and range:

In this section we demonstrate the procedure by which
we estimate the ω∗ and the δω∗ plotted in Figure 4 us-
ing two representative examples. The δω∗ obtained from
this analysis may be interpreted as a range of frequencies
over which the estimated ω∗ may exist. In Figure 8(a,b)
we plot the disorder averaged electron self-energy, -
ImΣave(R = 0, ω) (with -ImΣave(R = 0, ω = 0 = a0)
subtracted) as a function of energy for disorder strength,
(a)W = 2.7eV and (b)W = 3.1eV. We identify a range of
frequencies, δω∗, that is bounded by two frequencies ω1

and ω2 over which the scattering dynamics crosses over
from Fermi liquid (ω2) like to non-Fermi liquid (|ω|α)
behavior, such that ω1 < ω∗ < ω2. The crossover fre-
quency for each disorder strength is thereby estimated as
ω∗ = ω1+ω2

2 .
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FIG. 8. Procedure for obtaining the crossover fre-
quency ω∗ and the crossover region: The disorder av-
eraged electron self-energy, -ImΣave(R = 0, ω) is plotted as
a function of energy, for disorder strength, (a)W = 2.7eV
and (b)W = 3.1eV. We notice that there exists a range of
frequencies over which the low energy scattering dynamics
crosses over from Fermi liquid (ω2) like to non-Fermi liquid
(|ω|α) behavior. This crossover range, symbolized by δω∗, is
bounded by two such frequencies as shown by the red (open)
squares in (a) and (b). The respective crossover frequency, ω∗

is thereby estimated as the midpoint of this region. For (a)
W = 2.7eV we obtain ω∗ ≈ 4×10−5eV with a crossover range
lying approximately between 3 × 10−5eV - 5 × 10−5eV over
which the FL excitations crossover to approximately |ω| like
behavior. (b) For W = 3.1eV we obtain ω∗ ≈ 8×10−6eV with
a crossover range lying between 4 × 10−6eV - 1.3 × 10−5eV
over which the FL excitations crossover to an approximately
|ω|0.7 like behavior.

Appendix C: Density of states

In this section we analyse the density of states for dis-
order strengths considering Nc = 38. In Fig. 9 we com-
pare the average (ρarith) and the typical (ρtyp) DoS, for
different disorder strengths and two representative pa-
rameters for U . In agreement with conventional obser-
vation for non-interacting disordered systems, ρtyp and
ρarith look similar at low W , showing appreciable differ-
ences at higher W ’s. It is worth noting that for W = 2.0,
the Hubbard bands broaden for U = 2.0 as compared to
U = 1.6, indicating the system at U = 1.6(U/W < 1)
feels an effectively higher interaction strength compared
to U = 2.0(U/W = 1). In the main panel of Fig. 10
we demonstrate the evolution of the low energy features
of ρarith(R = 0, ω) for different W ’s at U = 1.6 and
Nc = 38.

The average DOS (ADOS) also follow similar features
as the average self-energy, Σave(R = 0;ω) in the sense
that with increasing disorder, the ADOS also starts de-
veloping a singular (cusp-like) feature on the low energy
scales. A clear deviation from the Fermi liquid lineshape
can be observed for W = 2.7 from the inset of Fig. 10
where the quantity ρarith(R; 0)− ρarith(R;ω) is plotted
for W = 2.0 and W = 2.7.
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FIG. 9. Density of states: The arithmetically averaged
density of states ρarith(R = 0, ω) (ADOS) is compared with
the geometrically averaged density of states, ρtyp(R = 0, ω)
(TDOS) at two representative U = 1.6, 2.0 and Nc = 38, for
different W ’s.
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FIG. 10. Density of states at low energy scales: [Main
panel]: The low energy form of the arithmetically averaged
density of states (DoS), ρarith(ω) at U = 1.6 and cluster size,
Nc = 38 is plotted for different disorder strengths, W . The
development of cusp in the low energy spectral lineshape is
evident. [Inset]: Two representative data for W = 2.0 and
W = 2.7 are plotted with the ρarith(R = 0; 0) subtracted.
The low energy form of ρarith(R = 0; 0) − ρarith(R = 0;ω)
for W = 2.0 fits well to a form ∼ ω2 as dictated by the Fermi
liquid (FL) theory where as for W = 2.7 clear deviation from
the conventional lineshape is evident. However, note that at
the lowest energy scales a FL form should still hold because
the self-energy is still a FL at the lowest energy scales.

Appendix D: Distribution of Kondo scales for lower
disorder strengths:

In Section 3 3.2 we only discussed the distribution of
Kondo scales for moderate to high disorder values. In
the following we briefly discuss the respective P (TK)
obtained for lower disorder strengths and also compare
them with the Nc = 1 or DMFT limit. In Fig. 11, we plot
P (TK) for several W ’s ranging from W = 0.8 to W = 2.0.

A well defined peak at an energy scale, T peakK can be

identified for these disorder strengths. Such T peakK ’s were
also identified within our TMT-DMFT calculations, and
were identified as universal low energy scales, within a
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local theory (see65 for details). In concurrence with the

local theory, T peakK initially increases and only beyond a
certain W does it start decreasing, reflecting upon an ini-
tial disorder-screening of U followed by a subsequent co-
operative effect where bothW and U tend to suppress the
effective hybridization resulting in reduced charge fluctu-
ations and thus manifesting as a reduced Kondo scale65.
However, unlike a local theory, inclusion of short-range
correlation effects of disorder, leads to the emergence of
a low-TK tail66 that was completely absent in the TMT-
DMFT calculations. In Fig. 11 this fact is illustrated
as blue-dashed line for Nc = 1 and as blue-solid line
with open circles for Nc = 38 and for a particular disor-
der strength of W = 2.0. For a relatively low disorder,
W = 0.8, the distribution is narrower, while long tails
spanning a wider range of TK ’s develop as W is gradu-
ally increased. More importantly, systematic inclusion of
short range correlation effects makes the system explore
low energy scales that were left untrod within a local
theory.
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FIG. 11. Distribution of Kondo scales for lower disor-
der strengths: The evolution of the distribution of Kondo
scales, P (TK), is demonstrated as a function of increasing
the disorder strength, shown for, W = 0.8, 1.2, 1.6, 2.0 at
a fixed interaction strength, U = 1.6. A well formed peak
at an energy, T peakK can be identified that initially shifts to-
wards higher energy scales and only beyond a certain disorder
strength shifts towards lower energy scales. At W = 0.8, a
relatively narrow distribution is obtained in contrast to higher
W ’s where P (TK) starts developing broad tails on the higher
TK side and also tails reaching lower and lower TK ’s as W is
increased. The Nc = 1 limit is also shown as a blue dashed
curve.
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7 A. Otop, S. Süllow, E. W. Scheidt, and J. A. Mydosh,
Phys. Rev. B 77, 045121 (2008).

8 D. MacLaughlin, O. Bernal, R. Heffner, G. Nieuwenhuys,
M. Rose, J. Sonier, B. Andraka, R. Chau, and M. Maple,
Phys.Rev.Lett 87, 066402 (2001).

9 C. Booth, D. MacLaughlin, R. Heffner, R. Chau,
M. Maple, and G. Kwei, Phys.Rev.Lett 81, 3960 (1998).

10 R. Jaramillo, S. D. Ha, D. M. Silevitch, and S. Ra-
manathan, Nature Physics 10, 304 (2014), arXiv:1309.7394
[cond-mat.str-el].

11 E. Mikheev, A. J. Hauser, B. Himmetoglu, N. E. Moreno,
A. Janotti, C. G. Van de Walle, and S. Stemmer, Science
Advances 1, e1500797 (2015), arXiv:1507.06619 [cond-
mat.str-el].

12 A. Damascelli, Z. Hussain, and Z.-X. Shen, Rev. Mod.
Phys. 75, 473 (2003).

13 N. Hussey, M. Abdel-Jawad, A. Carrington, A. Mackenzie,
and L. Balicas, Nature 425, 814 (2003).

14 B. Keimer, S. Kivelson, M. Norman, S. Uchida, and J. Za-
anen, Nature 518, 179 (2015).

15 S. V. Kravchenko and M. P. Sarachik, Reports on Progress
in Physics 67, 1 (2004).

16 N. D. Patel, A. Mukherjee, N. Kaushal, A. Moreo, and
E. Dagotto, ArXiv e-prints (2017), arXiv:1702.05612
[cond-mat.str-el].

17 O. Bernal, D. MacLaughlin, H. Lukefahr, and B. Andraka,
Phys.Rev.Lett 75, 2023 (1995).

18 E. Miranda, V. Dobrosavljević, and G. Kotliar, Phys. Rev.
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27 D. Popović, ArXiv e-prints (2016), arXiv:1603.06525
[cond-mat.str-el].

28 H.-L. Lee, J. P. Carini, D. V. Baxter, W. Henderson, and
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