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Abstract

We present the electronic band structures of states with the same symmetry as the three-

sublattice planar antiferromagnetic order of the triangular lattice. Such states can also be defined

on the honeycomb lattice provided the spin density waves lie on the bonds. We identify cases

which are consistent with observations on twisted bilayer graphene: a correlated insulator with an

energy gap, yielding a single doubly-degenerate Fermi surface upon hole doping. We also discuss

extensions to metallic states which preserve spin rotation invariance, with fluctuating spin density

waves and bulk Z2 topological order.
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I. INTRODUCTION

Twisted graphene bilayers [1–6] have recently been observed [7, 8] to exhibit correlated

insulating behavior and superconductivity for twist angles close to the magic angle. This

has stimulated much theoretical interest [9–37] on correlated electron phases on triangular

and honeycomb lattices.

While there is a significant debate on the precise nature of the needed lattice model to

describe these phenomena, experimental observations [38] clearly indicate that the electron

charge density is concentrated on a moiré triangular lattice. This suggests that the conse-

quences of local correlations should be similar to those on the triangular lattice. On the

other hand, symmetry and topological aspects of the band structure require that the model

be formulated using the Wannier orbitals of a honeycomb lattice [10–12].

In this paper, we explore the electronic band structure of states with the space group and

spin-rotation symmetries of 120◦ coplanar antiferromagnetism on the triangular lattice. By

transforming to a rotating reference frame [39–41], our results can also be applied to more

exotic topologically ordered states which preserve spin rotation invariance, as we will describe

in Appendix A. One of our main observations is that such triangular antiferromagnetic states

can also appear on the honeycomb lattice, after we allow for non-zero inter-site spin moments.

The symmetry of the triangular antiferromagnet is such that all on-site spin moments on

the honeycomb lattice vanish, and so such a state will not be observable in studies [22, 26]

which only examine on-site moments.

Given the variety of experimental situations, we explore the band structure in a number

of different models, all of which have two electrons per unit cell in the correlated insulator.

We start in Section II by studying a triangular lattice model with two orbitals per site [9, 21].

The spins of the electrons in the two orbitals are parallel on the same site, while for each

orbital the spin is antiferromagnetically ordered on the triangular lattice.

Multiple papers assert that any tight-binding model for the bilayer graphene system

should be constructed on a honeycomb lattice; in Section III we study the 120◦ antifer-

romagnet from this perspective [10–12]. While these works agree that the tight-binding

model should have two orbitals per lattice site, Refs. 11 and 12 implement a ‘valley rotation

symmetry’ in a different manner than Ref. 10. In Section III A, we consider the model of

Ref. 11 and 12 at quarter-filling. We next study antiferromagnetism in the model of Ref. 10
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lattice orbitals/site order parameter insulating FS structure

triangular 2 on-site AF 3 3

honeycomb 2

AF on bonds, diagonal
7 N/A

in orbital indices

AF on bonds, non-diagonal
3 3

in orbital indices

honeycomb 1

AF on bonds 7 N/A

KVBS 3 7

AF on bonds & KVBS 3 3

TABLE I: Summary of results presented in this paper. In the third column, “AF order”

refers to the 120◦ coplanar antiferromagnetic order described in Sec. II, while “KVBS”

refers to Kekulé valence bond solid order described in Sec. III B. The fourth column

indicates whether an insulating state with two electrons per unit cell is possible for each

model. For those models that allow for an insulator, the final column indicates whether

the experimentally observed twofold degenerate Fermi surfaces can be obtained on the

hole-doped side of the insulating state.

in the ‘intervalley coherent’ phase in Section III B. Half of the original degrees of freedom

are gapped out in this phase so that the appropriate description is a honeycomb lattice with

no orbital degeneracy at half-filling [10, 26].

Our aim is to search for cases consistent with observations in Refs. 7 and 8: an energy

gap in a correlated insulator, and a single doubly-degenerate hole Fermi surface on the

hole-doped side. We will show that the half-filled triangular lattice model of Section II, and

the quarter-filled honeycomb lattice model of Section III A can display the required features.

The half-filled honeycomb lattice model of Section III B requires the additional valence bond

ordering [26]. These results are summarized in Tab. I.

II. MAGNETIC ORDER ON THE TRIANGULAR LATTICE

We begin by first considering a minimal, phenomenological model on the triangular lattice

[9, 21].

Close to charge-neutrality, the low-energy degrees of freedom of two non-interacting
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FIG. 1: Moiré superlattice resulting from two graphene sheets, indicated in red and blue,

twisted by angle θ relative to each other. Here we focus on commensurate twist angles and

assume that the rotation axis goes through the AA site [11, 12]. The regions of local AA,

AB, and BA stacking each form a triangular lattice. The generators of the point group D3

of the system are illustrated in the inset, where the twist angle θ has been chosen larger to

make the geometry more clearly visible.

graphene layers are given by Dirac fermions at the two valleys, Klbz and K ′lbz. Here, the

subscript “lbz” is used to emphasize that these are momenta belonging to the large Bril-

louin zone (BZ) of the individual graphene layers. (Technically, when the graphene sheets

are twisted relative to one another, these momentum must be as well; since the twist an-

gle is small, there is no difficulty in identifying which Dirac point momenta on either layer

should be associated with Klbz and K ′lbz.) The momentum transfer between the two valleys

is very large and mixing is typically assumed to only occur between states originating from

the same valley [1]. Motivated by the experimental observation that the electronic density

is concentrated in the vicinity of the AA stacking regions of the moiré superlattice [38],

which form a triangular lattice (see gray dots in Fig. 1), Xu and Balents [9] introduced the

4



r

r

g

g

g

b

b b

r

(a)

e1

e2

(b)

FIG. 2: (a) Schematic of the triangular antiferromagnetism on the honeycomb lattice. The

red, green, and blue (r, g, and b) hexagons label the three spin orientations indicated by

the arrows at the hexagon centers: Sred = (−1/2,
√

3/2, 0, 0), Sgreen = (−1/2,−
√

3/2, 0),

Sblue = (1, 0, 0). The spins on the red, green, or blue bonds have the same orientation as

the spin of that colour. All types of bonds considered are shown emanating from a single

site. (b) Triangular lattice sites are shown as squares. The dual honeycomb lattice sites

are indicated by turquoise and orange circles, corresponding to the A and B sublattices,

respectively. The primitive vectors, e1 and e2, are drawn in navy, and τA,B indicate which

honeycomb lattice site is associated to each site of the triangular lattice: rA,B = r + τA,B.

Hubbard-like Hamiltonian H4 = H4
t +H4

int with degenerate valley-orbitals on each site:

H4
t = −t

∑
〈r,r′〉

∑
v

(
c†v,rcv,r′ + H.c.

)
, (1a)

H4
int = U

∑
r

(∑
v

c†v,rcv,r

)2

− V
∑
r

(∑
v

c†v,rσcv,r

)2

. (1b)

Here, cv,r annihilates an electron at triangular lattice site r = r1e1 + r1e2, r1,2 ∈ Z (see

Fig. 2(a)) and valley v ∈ {Klbz,K
′
lbz}. An additional spin index has been suppressed. In the

noninteracting term, Eq. (1a), 〈r, r′〉 refers to nearest neighbors and t > 0 will be assumed

as we are interested in describing the nearly flat bands below charge neutrality.
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This model is invariant under the following spatial symmetry operations: superlattice

translation Tj along ej, j = 1, 2 (see Fig. 2(b)), two-fold rotation C2y about the y-direction,

which can alternatively be viewed as a reflection about y for the two-dimensional tight-

binding model, and six-fold rotation C6 perpendicular to the graphene sheets. These trans-

form the Bravais lattice vector r as

T1 : (r1, r2)→ (r1 + 1, r2), T2 : (r1, r2)→ (r1, r2 + 1),

C2y : (r1, r2)→ (−r2,−r1), C6 : (r1, r2)→ (r1 + r2,−r1). (2)

We remark that C6 should be viewed as an approximate symmetry of the model since the

microscopic twisted bilayer structure in Fig. 1 only has three-fold rotation symmetry C3

[11, 12]. We will come back to the issue of enhanced rotational symmetry when discussing

the honeycomb-lattice models in Sec. III below.

As we alluded to in the introduction, there are several issues with using a triangular lattice

model to describe the bilayer graphene system. Notably, a model on the triangular lattice

cannot give rise to the irreducible representations observed in band structure computations

at the high symmetry points Γ and K in the Brillouin zone [10–12]. Nevertheless, the

triangular lattice model can be seen as a simple, phenomenological caricature of the system

to gain physical intuition. We also note that triangular lattice models have been proposed

to describe the moiré bands arising in twisted transition metal dichalcogenide heterobilayers

[42]. In this work, we will use the model to motivate the symmetry of the order parameter

for the correlated insulating states of twisted bilayer graphene at low twist angles. We will

construct an order parameter with the same symmetries for the honeycomb-lattice models

below, which is capable of reproducing the correct irreducible representations, and compare

the resulting spectra in the magnetically ordered state in the different models.

The interaction term in Eq. (1b), proposed in Ref. 9, consists of a local repulsion, U > 0,

and a Hund’s coupling, V > 0. For these interactions, it is natural to expect 120◦ coplanar

spin order with the spin in both valleys oriented parallel in the half-filled triangular model

(i.e. at quarter filling of the nearly flat bands). For the insulating state, one can eliminate

the charge degrees of freedom from Eq. (1) by a Schrieffer-Wolff transformation to obtain

a Heisenberg model for the spins (in the |t|, V � U limit). Analytical and numerical

studies [43–45] have shown that such an ordered state is preferred for the nearest-neighbor

Heisenberg model on the triangular lattice. Turning on a weak positive V would then favor
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FIG. 3: The spectrum of the triangular lattice model with 120◦ coplanar spin-order,

H4
t +H4

mag, along the one-dimensional momentum cut indicated in (a) is shown in (b).

The Brillouin zone (BZ) of the moiré lattice is the large hexagon depicted in black. It

contains the reduced BZ, colored in blue, which is 1/3 the size of the full BZ. (c) and (d)

show the Fermi surfaces (red and orange solid lines) in the magnetic BZ along with the

momentum dependence of the band that crosses the Fermi energy [indicated in red and

orange in part (b)] upon hole and electron doping of the half-filled state, respectively. In

all plots, we have chosen P0/t = 2.5 leading to a full gap at half-filling of the triangular

lattice, which corresponds to quarter filling of the flat-bands.

parallel orientation of spins on the two orbitals at the same site. At the mean-field level,

this order can be represented by the term [46]

H4
mag = P0

∑
r

P(K · r) ·
∑
v

c†v,rσcv,r, (3a)

7



where

P(θ) = (cos θ, sin θ, 0) , K =
4π

3
e1 =

4π

3

(√
3

2
x̂+

1

2
ŷ

)
, (3b)

and is illustrated in Fig. 2(a).

As pointed out in Ref. 21, the detailed form of the interactions is unclear, even in the

model on the triangular lattice. In particular, the extended Wannier orbitals might give rise

to non-negligible further neighbor spin-exchange interactions, and phonon-mediated inter-

actions can reduce on-site repulsion. These effects lead to geometric frustration which can,

in principle, destabilize the 120◦ magnetically ordered phase and lead to a distinct magnetic

ordering pattern or a quantum-disordered spin liquid phase. Nonetheless, our assumption

of 120◦ antiferromagnetic order, defined in Eq. (3), is supported by the observation that

it is the only configuration (besides ferromagnetic spin order) that preserves all the lattice

symmetries in Eq. (2) in all spin-rotation invariant observables, such the charge density (see

Appendix B for details). In Ref. 7, it was shown that the correlated insulating state can

be suppressed by the application of a magnetic field, and the critical Zeeman coupling is

estimated to be comparable to the thermal excitation gap. Since this is incompatible with

ferromagnetic spin order, we believe that the order parameter in Eq. (3) is the most natural

starting point.

In Fig. 3, we show the spectrum and resulting Fermi surfaces upon doping of the insulating

state obtained from the mean-field Hamiltonian H4
t + H4

mag. We first note that the order

parameter in Eq. (3) can induce a full gap for sufficiently large P0/t (see Fig. 3(b)). As we

will see below, this is different in the honeycomb lattice model. Secondly, in this regime,

as displayed in Fig. 3(c), we obtain a single, doubly degenerate, hole Fermi surface on the

hole-doped side, which is consistent with the quantum oscillations reported in Refs. 7 and

8. Fig. 3(d) shows, for completeness, that this model predicts three inequivalent electron

pockets for the electron-doped case.

The Fermi surface structure above generalizes to the case where the antiferromagnetic

order is ‘quantum-fluctuating’ so that spin rotation invariance is preserved [39–41]. Such

states have Z2 topological order (similar to that of the ‘toric code’) co-existing with gapless

fermionic excitations on Fermi surfaces like those discussed above. This generalization is

described in more detail in Appendix A.
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III. MAGNETIC ORDER ON THE HONEYCOMB LATTICE

In the previous section, we used a triangular lattice model to motivate the 120◦ coplanar

antiferromagnetic state as a natural candidate for the correlated insulator with two electrons

per unit cell. However, although the charge is concentrated on the points of a triangular

lattice, symmetry arguments imply that a proper tight-binding model should be formulated

on a honeycomb lattice [10–13]. In this section, we study the 120◦ antiferromagnet state in

the context of two different honeycomb lattice models which we introduce below.

For both of these models, there exists a caveat to any study of the 120◦ antiferromagnet:

this state cannot be represented as an on-site magnetic order parameter on the honeycomb

lattice. This is readily understood through inspection of Fig. 2(a); any site of the honeycomb

lattice is surrounded by all three spin configurations of the 120◦ coplanar state (the three

different colors), and, hence, cannot be consistently assigned one of those values without

breaking the lattice symmetries. We discuss this more rigorously in Appendix C.

However, an order parameter can be formulated so long as it lies on the bonds:

H7
mag =

∑
r

P(K · r) ·

∑
r′,r′′

α,β

fαβa,a′c
†
α,r+aσcβ,r+a′

 , (4)

where α, β label the sublattice and, potentially, an orbital index, and a, a′, r are Bravais

lattice vectors. In this paper, we limit our study to magnetic bond order located on nearest-

neighbour, next-nearest neighbour and third-nearest neighbour bonds. The relation of the

magnetic moment on each bond to the magnetic moment of the hexagon centre is constrained

by the symmetries of the model, and the appropriate correspondence is shown in Fig. 2(a).

It is actually very natural for this type of non-local order parameter to arise in the bilayer

graphene system. Given that charge is concentrated at the centre of the honeycomb plaquette

[38], the system must be described by the Wannier orbitals that decay very slowly with the

distance from their centre, resulting in an exceptionally large overlap between distant sites

[13].

We note that the symmetry arguments presented above and detailed in Appendix C also

imply that a symmetry-preserving representation of the 120◦ coplanar state cannot give rise

to a finite spin moment on the honeycomb lattice sites. We have checked explicitly for the

states we construct that the on-site spin expectation values vanish.
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In the following, we first consider a honeycomb lattice model with two orbitals per site

in Section III A before turning to a honeycomb model without orbital degrees of freedom in

Section III B. For both models, we focus on a situation where the order parameter represents

a true breaking of symmetry. While we do not explicitly address the possibility below, this

generalizes to a scenario in which the order parameter is quantum fluctuating, exactly as

discussed at the end of Section II and in Appendix A.

A. Honeycomb model with orbitals at quarter-filling

In this section, we obtain an insulating state at quarter-filling using the honeycomb model

proposed by Refs. 11 and 12. We begin by describing their model before discussing different

magnetic bond order parameters and their effects.

Refs. 11 and 12 obtain their model by studying the symmetry transformation properties

of Bloch functions and comparing against numerical calculations of the microscopic system

[13, 47, 48]. Since their starting point is the microscopic model, they do not assume the full

symmetries of the triangular lattice (Eq. (2)). In particular, instead of C6, they study the

action of C3:

C3 : (r1, r2)→ (r1 + r2,−r1). (5)

This is in agreement with the symmetries shown in the inset of Fig. 1.

Both Refs. 11 and 12 conclude that two orbitals distinguished by their angular momentum

in the z-direction, Lz = ±1, should lie at each point of the honeycomb lattice. We label

fermions as cµ,±,r, where µ = A,B specifies the sublattice and ‘±’ specifies the Lz eigenvalue.

The unit cell position is given by r = r1e1 +r2e2, r1,2 ∈ Z, which we take to lie at the centre

of the honeycomb plaquettes (shown as black squares in Fig. 2(b)). The fermion cµ,±,r is

located at r + τµ, µ = A,B where τµ is defined in Fig. 2(b). Note that the spin index is

suppressed; as above, we assume these indices are acted on by the Pauli matrices σ`. Finally,

it is convenient to use a vector notation, cµ,r = (cµ,+,r, cµ,−,r)T , µ = A,B and let the Pauli

matrices τ ` act on this pseudospin space. Under a C3 rotation, the fermions transform as

C3 : cA,r → e2πiτ
z/3cA,r′−e1+e2 , cB,r → e2πiτ

z/3cB,r′−e1 (6)

where r = (r1, r2) and r′ = (r1 + r2,−r1). It follows that the pseudospin symmetry gener-

ated by τ ` is not an on-site symmetry of the model, but is intertwined with the rotational
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symmetry in a nontrivial manner.

The microscopic provenance of these two orbitals is as follows: cA,+,r and cB,+,r originate

from fermions near the Dirac point Klbz, while cA,−,r and cB,−,r originate from fermions near

the Dirac point K ′lbz [11]. As we discussed at the beginning of Section II, scattering between

fermions from different valleys on different layers involves a very large momentum transfer.

Intervalley hopping terms are therefore assumed to be small in relation to the other terms

of the Hamiltonian.

We now discuss the magnetic insulating state. Including the sublattice, orbital, and spin

degrees of freedom, a total of eight fermions can occupy the unit cell, so that the insulator

with electron filling nf = 2 should occur at quarter-filling. We start with a generic hopping

Hamiltonian H7
t = H1 +H2 +H3 where H1, H2, and H3 correspond to nearest, next-nearest,

and third-nearest neighbour hopping terms respectively:

H1 = −t1
∑
r

(
c†A,rcB,r + c†A,rcB,r−e1 + c†A,rcB,r−e2 + H.c.

)
H2 = −t2

2

∑
r

∑
µ=A,B

(
c†µ,rcµ,r−e1 + c†µ,rcµ,r+e2 + c†µ,rcµ,r+e1−e2 + H.c.

)
H3 = −t3

∑
r

(
c†A,rcB,r−e1−e2 + c†A,rcB,r+e1−e2 + c†A,rcB,r−e1+e2 + H.c.

)
. (7)

Our energy scale in this section and the next is set by t1 = 1. It turns out that H2 will

not have a qualitative effect on our results and so we set t2 = 0 for the remainder of this

section. The resulting band structure captures the essential features of the microscopic band

structure calculations, including the Dirac points at K and K ′ and extrema at the Γ-point.

In Appendix D 3 we show that it is not sufficient to only consider magnetic form factors

which are diagonal in the orbital indices. The symmetry constraints of the coplanar magnetic

order imply that a gap cannot be induced at this filling without orbital mixing. This is in

contrast to the triangular lattice model in which an insulator was obtained without any

orbital mixing. We therefore must consider orbital-mixing order parameters. For practical

purposes, we limited our study to bonds no further than third nearest-neighbour apart.

With this constraint, among the many possible form factors which preserve both C3 and

C2y, only one leads to a gap at quarter-filling:

H7
mag = P2

∑
r

P(K · r) ·
(
c†A,r−e1+e2

τxσcA,r + c†A,rτ2π/3σcA,r+e2 + c†A,r+e2
τ4π/3σcA,r−e1+e2

+ c†B,rτ
xσcB,r−e1+e2 + c†B,r−e1+e2

τ2π/3σcB,r−e1 + c†B,r−e1τ4π/3σcB,r + H.c.
)

(8)
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where τθ is shorthand for τx cos θ + τ y sin θ. Here, the magnetic moment is positioned

on next-nearest neighbour bonds and points in the direction indicated by the diagram in

Fig. 2(a). The bond direction dependent nature of the inter-orbital coupling is a consequence

of the non-trivial action of the C3 symmetry on the orbital space. While H7
mag breaks the

pseudospin symmetry generated by τ `, it preserves the physical symmetries of the model.

Since H7
mag connects different orbitals, this term involves tunneling between the different

valleys of the microscopic model on different layers, which we originally assumed was negli-

gible. However, as the band dispersion close to the magic angle is very flat, there can be a

substantial enhancement of the interactions discussed in Section II, leading to the magnetic

order we consider.

The band structure of H7 = H7
t + H7

mag is plotted in Figs. 4(a) and (c) for (P2, t3) =

(0.75,−0.15) and for (P2, t3) = (0.9, 0.0) respectively. For both parameter sets, a gap at

quarter-filling is clearly visible above the red-coloured band. As a result of some acciden-

tal symmetries, all bands in this model are two-fold degenerate and the spectrum is even

about the chemical potential (which is zero in Figs. 4(a) and (c)); we discuss this briefly in

Appendix E.

The Fermi surfaces that are obtained by doping below quarter-filling (in particular, both

correspond to a filling nf = 1.87) are shown in Figs. 4(b) and (d). From Fig. 4(b), we

see that a single, doubly-degenerate Fermi surface results when P2 = 0.75 and t3 = −0.15.

This is in agreement with the Shubnikov-de Haas (SdH) oscillations observed below quarter-

filling in Refs. 7 and 8. Additional terms in the Hamiltonian are allowed which will remove

the degeneracy of the Fermi surfaces, but, provided the breaking is not too large, an SdH

measurement is unlikely to distinguish the difference in area.

Conversely, when P2 = 0.9 and t3 = 0, two concentric, doubly-degenerate Fermi surfaces

are present, as shown in Fig. 4(d). This case is not consistent with the measurements of

Refs. 7 and 8. Moreover, for larger values of P2 (or smaller filling fractions), these Fermi

surfaces break up into six smaller ones.

For both parameter choices, above quarter-filling, there are three electron pockets, similar

to what is found on the triangular lattice and shown in Fig. 3(d).

We have also studied the consequences of adding H7
mag to the effective tight-binding

Hamiltonian detailed in Ref. 13 (we included up to fifth nearest-neighbour hoppings). While

this term does induce a gap at quarter-filling when P2 is sufficiently strong, we do not obtain a

12
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FIG. 4: (a), (b) P2 = 0.75, t3 = −0.15. (a) The band structure of the Hamiltonian

H7
t +H7

mag along the momentum cut in Fig. 3(a). As a result of a residual anti-unitary

symmetry, all bands plotted are two-fold degenerate. (b) Band structure of the band

immediately below the gap at one quarter-filling; this corresponds to the band drawn in

red in (a). The Fermi surface which is obtained upon hole doping is also drawn in red. The

magnetic BZ is outlined in black. (c), (d) P2 = 0.9, t3 = 0. (c) and (d) show the same

information as (a) and (b) but without third-nearest-neighbour hopping.

single Fermi surface on the hole-doped side. It is not too surprising that our simple magnetic

order parameter is insufficient in the presence of significant hopping between distant sites;

when this is the case, magnetic bond order should also be present on these further-neighbour

13



bonds. It would be interesting to study this further in a self-consistent fashion.

B. Honeycomb model at half-filling

In this section, we study the 120◦ coplanar antiferromagnet in the context of the model of

Ref. 10. We work with a honeycomb model without orbital index and study the state that

occurs at half-filling. We conclude that the 120◦ magnetic order by itself cannot describe the

insulating state. When magnetic order coexists with valence bond solid order, an insulating

state with the desired hole structure is obtained.

The approach of Ref. 10 differs from that of Refs. 11 and 12 in several respects. First,

the authors of Ref. 10 argue that, provided the twist angle is small, the symmetries of the

triangular lattice (given in Eq. (2)) are approximately correct. In particular, they assume

a C6 symmetry instead of C3. This choice is exact for commensurate angles provided the

two graphene sheets are rotated about the hexagon centers as opposed to Fig. 1 where the

sheets have been rotated about the honeycomb site. It is argued in Refs. 10 and 14 that

the C6 symmetry is approximately preserved regardless of the precise angle or centre of

rotation. Further, since intervalley scattering is assumed to be negligible, they note that

global phase transformations may be performed independently on fermions originating from

different valleys, and that this implies an emergent U(1)v valley symmetry. Topological

constraints prevent them from constructing a tight-binding model that preserves both the

lattice and U(1)v symmetries. As a result, the model they present does not possess the

U(1)v symmetry; it is only obtained through a non-local projection.

We do not work with the fully symmetric tight-binding model of Ref. 10, but instead

assume that the U(1)v valley symmetry is spontaneously broken, resulting in what the

authors of Ref. 10 term ‘intervalley coherent’ (IVC) order. They argue that this is the natural

starting point for a study of the insulating state at nf = 2. No topological obstructions

remain once the U(1)v symmetry has been broken, and we assume that a generic tight-

binding model on the honeycomb lattice is a sufficient description. Half of the degrees

of freedom are gapped out by the IVC order, and, in contrast to the previous section’s

model, the appropriate lattice Hamiltonian should only have a single orbital per lattice site.

Similar to the triangular lattice model of Section II, the insulating state of interest occurs

at half -filling.
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With the exception of the now-absent orbital index, we use the same notation as in the

previous section. As above, the hopping Hamiltonian is H7
t = H1 + H2 + H3, where H1,2,3

are provided in Eq. (7).

We now consider the effect at half-filling of adding magnetic bond order to H7
t . A natural

first attempt is to place the order on nearest-neighbour bonds:

H7 ′
mag = P1

∑
r

P(K · r) ·
(
c†A,r−e1σcB,r−e1 + c†A,rσcB,r−e2 + c†A,r+e1

σcB,r + H.c.
)
. (9)

Inspection of Fig. 2 shows that this term satisfies the necessary symmetries. Unfortunately,

this order parameter cannot induce a gap at half-filling. For example, in Fig. 5(a), we plot

the band structure of H7
t +H7 ′

mag with P1 = 0.2 and t2 = t3 = 0 (as in the previous section,

the energy scale is set by t1 = 1). Clearly, no gap is induced, as the Dirac cone at K is

still present. In fact, similar to Section III A, no choice of order parameter for the 120◦

antiferromagnetic phase can induce a gap at half-filling; we prove this in Appendix D 4.

Conversely, it has been shown that Kekulé valence band solid (KVBS) order is capable of

fully gapping the honeycomb band structure at half-filling [26]. The KVBS order parameter

is illustrated in the inset on the top right of Fig. 5(b). We see that, like the 120◦ anti-

ferromagnet, KVBS order breaks the translational symmetry and enlarges the unit cell to

three hexagons. A mean-field representation of this order is obtained by coupling fermions

at momentum K and −K:

H7
vbs = −V

3

∑
r

[(
cos (K · 2r) +

1

2

)
c†A,rcB,r +

(
cos (K · [2r − e1]) +

1

2

)
c†A,rcB,r−e1

+

(
cos (K · [2r − e2]) +

1

2

)
c†A,rcB,r−e2

]
. (10)

(The factor of 1/2 is added to substract off a constant piece that would otherwise contribute

to H1.) Since K · 2r = −K · r mod 2π, it is clear that the band structure should be

calculated in the same reduced BZ as illustrated in Fig. 3(a). In Fig. 5(b) we plot the band

structure of H7
t +H7

vbs with V = 2.0 and t2 = t3 = 0; the gap at half-filling is clearly visible.

The possibility that KVBS order is present in bilayer graphene is further supported by

quantum Monte Carlo (QMC) simulations. Ref. 26 showed that within a certain parame-

ter regime this order is in fact favoured when the interactions appropriate for the bilayer

graphene system are included. While promising, they find two doubly-degenerate hole pock-

ets below half-filling; this has twice the number of degrees of freedom needed to describe
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FIG. 5: (a), (b), (c), and (e) plot the band structure along the cut in Fig. 3(a) for various

values of P1 and V . The orders present are shown in the inset on the top right. (d) and (f)

show the Fermi surfaces which are obtained by hole-doping the models of (c) and (e),

respectively. These are superposed on a color plot of the upper band (coloured orange).

(a) V = 0.0, P1 = 0.2. (b) V = 2.0, P1 = 0.0. Here, all bands have a two-fold spin

degeneracy. (c), (d) V = 2.0, P1 = 2.0. The red and orange bands contribute the red and

orange Fermi surfaces in (d). (e), (f) V = 2.0, P1 = 0.9. The same as shown in (c) and (d),

but with a larger magnetic moment.
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the SdH oscillations [7, 8]. This discrepancy with experiment is also apparent in the mean-

field band structure plot of Fig. 5(b). Further mean-field calculations indicate that a single

doubly-degenerate Fermi surface is obtained when t3 is large and negative (t3 . −1.1), but

this is not seen in the QMC simulation.

A mean-field band structure with a single pocket can also be obtained by turning on a

next-nearest neighbour hopping term, but it must also be large, of the order of t1: t2 . −0.8.

Since this term breaks the particle-hole symmetry, the model has a sign problem and cannot

be studied using QMC.

We show that a state with coexisting KVBS order and magnetic order located on nearest-

neighbour bonds can return a single hole-pocket without requiring |t2| or |t3| large – in par-

ticular, we let t2 = t3 = 0. Figs. 5(c) and (d) show the spectrum of H7 ′ = H7
t +H7 ′

mag +H7
vbs

when P1 = 0.2 and V = 2.0. The two bands below half-filling are plotted in red and orange

in the momentum cut plot in Fig. 5(c), while the Fermi surfaces obtained by hole-doping are

plotted in Fig. 5(d) using the same colours as in (c). They demonstrate that even a relatively

modest magnetic moment is sufficient to remove the unwanted pair of Fermi surfaces. While

the two Fermi surfaces are not identical, distinguishing this scenario from the case of two

exactly degenerate Fermi surfaces is difficult to establish by quantum oscillations. Moreover,

as the magnetic moment is increased, the two Fermi surfaces approach one another. When

P1 = 0.9 and V = 2.0, the two bands and the corresponding Fermi surfaces are nearly

degenerate, as shown in Figs. 5(e) and (f).

IV. CONCLUSIONS

We have presented the electronic structures of antiferromagnetically ordered states in

twisted bilayer graphene. As the electronic charge density takes the form of a triangular

lattice [38], and antiferromagnetism is primarily due to local Coulomb repulsion between the

electrons, we only considered states with the symmetry of the 120◦ coplanar antiferromag-

netic order of the triangular lattice [33]. Previous studies have determined the electronic

structure of such states for electrons in tight-binding models on the triangular lattice [46].

We showed here that the same order can also appear on tight-binding models on the honey-

comb lattice, by allowing for momentum-dependent form factors in the magnetic moments so

that the spin density is centered on the bonds of the honeycomb lattice. This mechanism is

17



similar to the bond-centered charge density waves considered in the context of the cuprates

[49–51]. The usual antiferromagnetic state on the honeycomb lattice [22, 26] has two sub-

lattices, and the spin density is centered on the sites; in contrast, the state we considered

had vanishing spin density on the sites of the honeycomb lattice.

Cao et al. [7, 8] have observed quantum oscillations in the hole-doped metal away from

the correlated insulator. The electronic orbitals relevant to this observation are in Figs. 3(b)

and (c) for the triangular lattice, and in Fig. 4 for the honeycomb lattice. There are pa-

rameters with a single doubly-degenerate Fermi surface centered at the Γ point, which is

consistent with observations.

In Section III B, we also considered cases where the antiferromagnetic order co-exists

with intervalley coherent and/or valence bond solid order on the honeycomb lattice and

demonstrate that Fermi surfaces consistent with experiment can be obtained.

Our results can also be extended to cases where the antiferromagnetically ordered is not

long-ranged, but is quantum fluctuating in a state with Z2 (i.e. toric code) topological

order. As discussed in Appendix A, such states have fractionalized fermionic ‘chargons’

which inherit the electronic Fermi surfaces of the states described in the main part of the

paper, and so will exhibit similar quantum oscillations.
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Appendix A: Quantum fluctuating antiferromagnetism

This appendix briefly reviews the generalization of antiferromagnetically ordered states

to cases where the antiferromagnetism is ‘fluctuating’ and spin rotation invariance is pre-
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served. Provided certain topological defects in the antiferromagnetic order are suppressed,

the resulting ‘quantum disordered’ state has Z2 topological order (similar to that in the

‘toric code’) and preserves gapless fermionic excitations along the Fermi surfaces described

in the body of the paper [39–41].

With the aim of placing this discussion in the wider context of the extensive studies of

spin liquids, and doped spin liquids, in theories of the cuprates, it is useful to introduce

some formalism which places the spin and Nambu pseudospin rotations on an equal footing.

To this end, we introduce the matrix fermionic operator

Cr =

 cr↑ −c†r↓
cr↓ c†r↑

 (A1)

We will drop the valley index in this appendix; all the fermions can also carry an implicit

valley index. Global spin rotations (denoted here SU(2)s) act via left-multiplication on Cr

by a SU(2) matrix. Similarly, global Nambu pseudospin rotations (denoted here SU(2)c) act

via right-multiplication on Cr by a SU(2) matrix. Note that the pseudospin rotations about

the z axis correspond simply to the U(1) charge conservation symmetry. The full SU(2)c

rotation is not a symmetry of the Hamiltonians we have considered.

One common way to introduce exotic states with fractionalization is to transform to a

rotating reference frame in pseudospin space. This is accomplished by writing [52–54]

Cr = FrRrc (A2)

where the F are fermionic spinons defined as in Eq. (A1)

Fr =

 fr↑ −f †r↓
fr↓ f †r↑

 (A3)

while Rrc is a c-number SU(2) matrix. This formulation has ‘gauged’ SU(2)c to SU(2)cg.

Under the SU(2)cg generated by Ur, the field transformations are

SU(2)cg : Cr → Cr, Fr → FrUr, Rrc → U †rRrc , (A4)

while the global SU(2)c is

SU(2)c : Cr → Cr U, Fr → Fr, Rrc → Rrc U . (A5)
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Note that the SU(2)cg gauge invariance is exact, even though the Hamiltonian is not invariant

under SU(2)c. The resulting SU(2)cg gauge theory for F and R describes various insulating

spin liquid states in its deconfined states, while confining phases acquire various broken

symmetries [52, 53, 55–58]. The doped spin liquids can describe exotic metallic states,

provided the Rrc bosons remain uncondensed. Because the Rrc carry U(1) charge, the non-

zero charge density requires a non-zero temperature to keep the bosons uncondensed, at

least in the most natural mean field theories. The metallic states can also acquire Fermi

surfaces of the F spinons, but there is no simple relationship between the volumes enclosed

by the spinon Fermi surfaces and doping density, because

C†rCr 6= F †rFr . (A6)

This feature makes such metallic spin liquids unattractive for graphene.

The other approach, which has a direct connection between Fermi surface volume and

doping density, is obtained by transforming to a rotating reference frame in spin space. This

is accomplished by writing instead [39–41]

Cr = RrsΨr , (A7)

where the Ψr are fermionic chargons defined as in Eq. (A1)

Ψr =

 ψr+ −ψ†r−
ψr− ψ†r+

 , (A8)

while Rrs is a c-number SU(2) matrix. This formulation has now gauged SU(2)s to SU(2)sg.

Under the SU(2)sg generated by Ur, the field transformations are

SU(2)sg : Cr → Cr, Ψr → UrΨr, Rrs → RrsU
†
r , (A9)

while the global SU(2)s is

SU(2)s : Cr → UCr, Ψr → Ψr, Rrs → URrc . (A10)

Now a theory of bosonic spinons, Rrs, and fermionic chargons Ψr, yields the metallic states

with fluctuating antiferromagnetism we wish to describe. Because now

C†rCr = Ψ†rΨr , (A11)
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the doping density is directly connected to the volumes enclosed by the Ψr Fermi surfaces.

An important feature of the effective theory of the fermionic chargons, Ψr, is the presence

of a condensate in a Higgs field, H . This Higgs field is simply the antiferromagnetic order

parameter transformed to the rotating reference under Eq. (A7). If we denote the on-site

spin moment on the triangular lattice site by Sr, then the corresponding on-site Higgs field

is

σ ·Hr = R†rsσ · Sr Rrs . (A12)

There is a natural generalization of this rotation to the inter-site bi-local moments, Srr′ ,

defined on the links in our paper, and this generalizations yields a corresponding bi-local

Higgs field on the same links:

σ ·Hr,r′ = R†rsσ · Sr,r′ Rr′s . (A13)

The transformation of Hr is

SU(2)sg : σ ·Hr → Ur σ ·Hr U
†
r , (A14)

with the obvious generalization to bi-local Higgs fields. The needed states with Z2 topologi-

cal order are obtained when 〈Sr〉 = 0, but 〈Hr〉 6= 0 with precisely the same spatial pattern

as the antiferromagnetic order. Because the pattern of the 〈Hr〉 is non-collinear, the SU(2)sg

is broken down to Z2. With no continuous gauge invariance remaining unbroken, the fluc-

tuations of the gauge fields are suppressed, and can be safely ignored. The corresponding

effective Hamiltonians for the chargons, Ψr, in such metals with Z2 topological order have

the same spatial structure as that for the electrons Cr described in the body of the paper.

Appendix B: Symmetry constraints on magnetic order

The charge density pattern on the moiré honeycomb lattice has the symmetries of a

triangular lattice. This motivates us to look for magnetic order parameters which, while

breaking the global spin rotation symmetry, preserve all lattice symmetries in the charge

sector. In other words, any lattice symmetry operation combined with a global spin rotation

should be a symmetry of the Hamiltonian1. Spin singlet operators that act on the charge

1 Note that a local (site-dependent) spin rotation would modify the hopping term that involves electrons

at different sites, and is hence not allowed.
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sector would be insensitive to a global spin rotation, and therefore preserve the symmetry.

In this appendix, we prove that the only such state is the 120◦ coplanar antiferromagnet on

the triangular lattice (excluding the trivial ferromagnet).

We first show this for decoupled valley indices, taking a single orbital (or spin) at each

site of the triangular lattice. In presence of inter-orbital coupling, like the Hund’s coupling

in Eq. (1), the lattice symmetry operation needs to be combined with a global rotation that

is identical for the spins of the two different valleys. In this case, the only symmetry-allowed

state is the 120◦ coplanar antiferromagnet for each spin, with the spins on the two orbitals

either parallel or antiparallel. We argue that the energetics dictated by the Hund’s coupling

[9] as well as numerical evidence [22] seem to point towards parallel alignment of the spins

on different orbitals at the same site. At the end, we discuss additional possibilities that

arise on reducing the C6 symmetry of the triangular lattice to the C3 symmetry of the moiré

superlattice, as shown in Fig. 1.

If the magnetic order parameter P0P(r) (where P0 is the magnitude and P is a unit

vector indicating direction) has a spatially varying magnitude, the same will be true of

the expectation value of the SU(2) invariant operator 〈S2(r)〉 ∼ P 2
0 (r). Since this breaks

translation symmetry for a spin-singlet operator, we need P0 to be spatially uniform. Hence,

we choose P0 = 1 (any fixed value of P0 will work for the subsequent arguments). For any

symmetry operation X, we need a global spin-rotation UX such that UXX is a symmetry of

the Hamiltonian. Alternately, we need to find a SO(3) rotation R(n̂X , θX) that rotates the

magnetic order at each site X[r] to the original pattern at site r:

X[P(r)] = P(X[r]) = R(n̂X , θX)P(r) (B1)

Let us first consider the translation operators. Then we require:

T1[P(r)] = P(r + e1) = R(n̂T1 , θT1)P(r)

T2[P(r)] = P(r + e2) = R(n̂T2 , θT2)P(r) (B2)

Further, we know that P(r + e1 + e2) = T1T2[P(r)] = T2T1[P(r)], so the SO(3) rotation

matrices corresponding to these two operations must commute.

[R(n̂T1 , θT1), R(n̂T2 , θT2)] = 0 (B3)

Commuting operators preserve eigenspaces, and the axis of rotation is the only real eigenvec-

tor of a generic rotation operator in 3 spatial dimensions. Therefore for the two rotations to
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commute, they must be rotations about the same axis, i.e, n̂T1 = n̂T2
2. Exploiting the spin-

rotation symmetry of the underlying Hamiltonian, we can choose n̂T1 = n̂T2 = ẑ. Then, the

general magnetic order configuration is given by (re-defining θTi = θi for notational clarity):

P(r) = P(r1, r2) = [R(n̂T1 , θ1)]
r1 [R(n̂T2 , θ2)]

r2P(0, 0) = R(ẑ, r1θ1 + r2θ2)P(0, 0) (B4)

The magnetic order parameter at the origin, P(0, 0), has some component along the rotation

axis (ẑ) and some component perpendicular to the rotation axis, which we choose to be along

x̂ without loss of generality. Letting P(0, 0) = P(sinα, 0, cosα), we find that the most

general magnetic state which preserves translation symmetry is given by a conical spiral,

which is a commensurate/incommensurate antiferromagnet in-plane with an out-of-plane

ferromagnetic component,

P(r) = (sinα cos(Q · r), sinα sin(Q · r), cosα) , where Q · r = θ1r1 + θ2r2. (B5)

We now impose the point group symmetries, C6 and C2y. First, consider the rotation

C6. Using Eq. (2), we need a rotation R(n̂C6 , θC6) such that P(C6[r]) = R(n̂C6 , θC6)P(r).

If cosα 6= 0, then n̂C6 must be ẑ, as any other rotation axis would mix the constant ẑ

component with the spatially varying in-plane components. We then find the following

constraint.

θ1(r1 + r2)− θ2r1 = θ1r1 + θ2r2 + θC6 mod (2π), ∀ r1, r2 ∈ Z (B6)

One can check that the only solutions to Eq. (B6) are θ1 = θ2 = 0. This solution is the

ferromagnet, which trivially preserves all point group symmetries as well, and we ignore it

henceforth.

This leads us to consider coplanar states with cosα = 0. C6 fixes the origin, so we must

have R(n̂C6 , θC6)P(0, 0) = P(0, 0) = P(1, 0, 0). This constrains the rotation axis to x̂. By

examining any point with P · ŷ 6= 0, we see that θC6 = π is the only angle which preserves

the coplanar nature of the ordered state. Imposing P(C6[r]) = R(x̂, π)P(r), we find

θ1(r1 + r2)− θ2r1 = −(θ1r1 + θ2r2), ∀ r1, r2 ∈ Z (B7)

There only solution to Eq. (B7), given by θ1 = −θ2 = ±2π/3. Thus, imposing C6 already

restricts us to the 120◦ coplanar antiferromagnet with wave-vector Q = ±K.

2 π rotations about perpendicular axes also commute, but they lead to only ferromagnetic states on imposing

point group symmetries. The proof is a bit cumbersome, hence not presented.
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Finally, consider the reflection C2y, for which we need a rotation R(n̂C2y , θC2y)P(r) such

that P(C2y[r]) = R(n̂C2y , θC2y)P(r). We consider a rotation about n̂C2y = ẑ, which gives

− (θ1r2 + θ2r1) = θ1r1 + θ2r2 + θC2y mod 2π ∀ r1, r2 ∈ Z (B8)

There is a one-parameter family of solutions to Eq. (B8), given by θ1 = −θ2 and θC2y = 0,

for arbitrary cosα. However, the solution which preserved C6 was a specific member of this

family of solutions, as it had θ1 = −θ2 = ±2π/3 and cosα = 0. Thus, we conclude that the

only state which preserves all symmetries of the triangular lattice for spin-rotation invariant

observables is the 120◦ coplanar antiferromagnet (excluding the ferromagnet).

Next, we study the case with two orbitals at each site. Without inter-orbital coupling,

each orbital can have its own magnetic moment arranged in the 120◦ coplanar antiferromag-

netic pattern on the triangular lattice, with an arbitrary angle between the two moments at

the same site. In presence of inter-orbital coupling that conserves the total spin at each site,

the only rotation generators allowed are those which rotate the total spin. For C6 rotations,

this implies that R(x̂, π) for each moment must be replaced by an appropriate π-rotation

about the same axis for both spins. However, the origin is a fixed point of C6, and therefore

such a rotation must not change either of the spins at the origin. Taken together, these

imply that the spins in the two orbitals at the origin (and therefore, on every site) must be

either parallel or antiparallel. The Hund’s coupling in Eq. (1) favors a parallel alignment,

and numerical studies of twisted bilayer graphene in Ref. 22 observe sizable antiferromag-

netic correlations at large U , which would not be the case if the spins in the two orbitals at

the same site were anti-aligned. Therefore, we conclude that the magnetic moments of the

two orbitals must be aligned at each site.

Finally, it is interesting to note that if we reduce the C6 symmetry to C3, then the same

conclusion holds if C2x is preserved, where C2x is π rotation about x̂, which in the effective

two-dimensional model corresponds to a reflection about x̂.

C2x : (r1, r2)→ (r2, r1) (B9)

Such a state preserves both C6 and C2y, as discussed earlier. However, a non-coplanar 120◦

conical antiferromagnet (of the form of Eq. (B5) with θ1 = −θ2 = ±2π/3 and cosα 6= 0)

is allowed if C3 and C2y are preserved instead, as is the case with the moiré superlattice of

twisted bilayer graphene (see Fig. 1). Such a state breaks C2x for spin singlet observables,
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and allows for non-zero on-site (ferromagnetic) moments on the honeycomb lattice sites.

However, it does not seem to be energetically favorable in the insulator on the triangular

lattice model [43–45], and an on-site ferromagnetic moment is yet to be observed in numerical

studies of the honeycomb lattice model in the context of bilayer graphene [22, 26].

Appendix C: Absence of local order parameter on the honeycomb lattice

As it is a central aspect of this work, we here provide the complete proof for why an on-

site magnetic order parameter cannot describe the 120◦ coplanar state for any honeycomb

lattice model.

To show this statement formally and see why the inclusion of several orbitals per hon-

eycomb site does not affect the result, consider the following general magnetic on-site order

parameter

Hmag =
∑
r

∑
µ=A,B

Pµ,r ·

( ∑
`=0,x,y,z

fµ,`(r) c†µ,rτ
`σcµ,r

)
, (C1)

where r is summed over the sites of the triangular lattice and fµ,`(r) is a form factor that

allows for arbitrary mixing of the different orbitals, on each honeycomb lattice site.

Consider a fixed site r = r0 on the µ sublattice. As can be seen in Fig. 2(a), three-

fold spatial rotation with axis perpendicular to the 2D plane and through the site rµ =

r+τµ accompanied by a three-fold rotation in spin space (with same or opposite orientation

depending on the sublattice µ = A or B) is a symmetry of the 120◦ coplanar order parameter

and, for commensurate twist angles, also of the twisted bilayer structure in Fig. 1. Invariance

of Eq. (C1) requires

Pµ,r0 ·
(
U †3σU3

)∑
`

fµ,`(r0) Ũ
†
3τ

`Ũ3 = (Pµ,r0 · σ)
∑
`

fµ,`(r0)τ
`, (C2)

where Ũ3 and U3 denote the representation of the symmetry operation in orbital and spin

space, respectively. U3 = e±i
2π
3
σz

2 with the sign depending on the sublattice as discussed

above. The explicit form of Ũ3 is irrelevant for the current argument. A non-zero order

parameter in Eq. (C1) requires that at least one of the components of the form factor

fµ,`(r0) be non-zero. Suppose we have fµ,`0(r0) 6= 0. Eq. (C2), in turn, requires that

1

2

∑
`

fµ,`(r0)tr
(
τ `0Ũ †3τ

`Ũ3

)
(C3)
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be non-zero as well, where the trace is taken over the orbital indices. Multiplying each side

of Eq. (C2) by τ `0 and tracing over the orbital indices implies that

R3Pµ,r0 = ±CPµ,r0 , C = fµ,`0(r0)/

[
1

2

∑
`

fµ,`(r0)tr
(
τ `0Ũ †3τ

`Ũ3

)]
6= 0, (C4)

must hold, where R3 rotates vectors by angle 2π/3 about the z axis. This is only consistent

with Pµ,r0 = Pµ,r0 ẑ (and C = ±1).

Although consistent with the three-fold rotation symmetry, Pµ,r0 = Pµ,r0 ẑ in Eq. (C1),

is clearly not a representation of the 120◦ coplanar state in Fig. 2(a) on the honeycomb

lattice: the latter is odd under π-rotation in spin space along the σz axis, while the order

parameter with Pµ,r0 = Pµ,r0 ẑ in Eq. (C1) will be even under this symmetry operation.

From the symmetry arguments presented above, it also follows that any symmetry-

preserving representation of the 120◦ coplanar state cannot give rise to a finite spin moment

on the honeycomb lattice sites: the three-fold rotation symmetry discussed above forces

the in-plane component of the spin expectation value to vanish, while the combination of

π-rotation along σz and time-reversal, which is a symmetry of 120◦ coplanar state, leads to

a vanishing z-component of the spin.

Appendix D: Symmetry constraints on the honeycomb lattice band structure

1. Symmetry action on fermions

In this appendix, we show how the symmetries (Eq. (2)) act on the fermions in Ref. 11

and 12’s models. We label the fermion operators at each site by their sublattice, A,B, as

vector with respect to their spin and momentum indices:

cµ,r = (cµ,+,↑, cµ,+,↓, cµ,−,↑, cµ,−,↓)
T , µ = A,B. (D1)

Pauli matrices τ ` act on the orbital index, ±, while Pauli matrices σ` act on the spin index.

The symmetries act on these operators as

T1 : cµ,r → cµ,r+e1 , T2 : cµ,r → cµ,r+e2 ,

C2y :

cA,r
cB,r

→ −τx
cB,C2y [r]

cA,C2y [r]

 , C3 :

cA,r
cB,r

→ −e2πiτz/3
cA,C3[r]−e1+e2

cB,C3[r]−e1

 . (D2)
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It will make sense to treat the sublattice index as a final pseudospin index: cr = (cA,r, cB,r)T .

We let this index be acted on by Pauli matrices η`.

2. Gauge transformation and momentum space represenation

In the main body of the text, we diagonalize the Hamiltonian in the magnetic BZ shown in

Fig. 4(a); however, it will be convenient in these appendices to work with gauge transformed

fermions

cµ,r = e−iσ
zK·r/2ψµ,r. (D3)

In terms of these ψ-fermions, the magnetic Hamiltonianm Hmag in Eq. (4), takes the form

Hmag =
∑
r

∑
µ,ν
a,a′

fµνa,a′ψ
†
µ,r+ae

iσzK·a/2σxe−iσ
zK·a′/2ψν,r+a′ , (D4)

where a and a′ are Bravais lattice vectors and fµνa,a′ is the form factor. Note that we have

dropped the “7” superscript since this appendix deals only with the honeycomb lattice. We

next express a generic hopping Hamiltonian in terms of the ψ fermions:

Ht =
∑
r

∑
µ,ν
a,a′

tµνa,a′c
†
µ,r+acν,r+a′ =

∑
r

∑
µ,ν
a,a′

tµνa,a′ψ
†
µ,r+ae

iσzK·(a−a′)/2ψν,r+a′ . (D5)

Both HM and Ht are translationally invariant and can be defined on the entire BZ – we

have eliminated the need to define a magnetic BZ. Instead, we can write

H = Ht +Hmag =

∫
d2k

(2π)2

∑
`=0,x,y,z

hµν` (k)ψ†µ,kσ
`ψν,k,

hµν` (k) =
1

2

∑
a,a′

sµνa,a′(`)e
ik·(a−a′)tr

(
σ`eiσ

zK·a/2σxe−iσ
zK·a′/2

)
, (D6)

where sµνa,a′(`) equals fµνa,a′ for ` = x, y and tµνa,a′ for ` = 0, z and the trace is performed over the

spin indices. The momenta are expressed in terms of the reciprocal vectors, k = k1g1 +k2g2,

where g1,2 are defined such that gi · ej = δij. k1 and k2 are both integrated from −π to π.

Finally, the sublattice degrees of freedom can be written in terms of the Pauli matrices

η`, giving

H =

∫
d2k

(2π)2
ψ†kh(k)ψk, h(k) =

∑
n,`

hn`(k)ηnσ`. (D7)
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3. Degeneracy constraints at quarter-filling

In this section, we demonstrate that given the symmetry action in Eq. (D2), a gap

cannot be induced a quarter-filling when both the magnetic order and hopping Hamiltonian

are diagonal in orbital space.

We consider the action of C2y on the Hamiltonian, using the form in Eq. (D3). This acts

on the momentum-space ψ fermions as

C2y : ψ(k1,k2) → ηxψ(−k2+π,k1+π). (D8)

Under this transformation, the point M = (0, π) is mapped to itself. It follows that in order

for this symmetry to be preserved preserved h(M ) = ηxh(M )ηx, which implies that

h(M ) =
∑

`=0,x,y,z

(
c0,`σ

` + cx,`η
xσ`
)
, (D9)

where c0,`, cx,` are real numbers.

We next consider the constraints imposed by the C3 symmetry. This acts on the ψ

fermions as

C3 : ψ(k1,k2) → e−ik1/2eik2U3ψ(−k1+k2+π,−k1+π), U3(k) = eik1η
z/2eiπη

zσz/3ei2πτ
z/3. (D10)

Again, M = (0, π) is mapped onto itself. Using the constraint imposed by C2y symmetry,

we conclude that∑
`

(
c0,`σ

` + cx,`η
xσ`
)

=
∑
`

(
c0,`U

†
3(M )σ`U3(M) + cx,`U

†
3(M)ηxσ`U3(M)

)
. (D11)

In order for the equality to hold, the Hamiltonian must take the form

h(M ) = c0,01+ c0,zσ
z + cx,xη

xσx + cx,yη
xσy. (D12)

This has eigenstates c0,0±
√
c2x,x + c2x,y + c20,z – proving that a degeneracy cannot be induced

at quarter-filling without breaking these symmetries.

4. Degeneracy constraints at half-filling

In this section we demonstrate that given the symmetry action in Eq. (D2) no gap

can be induced at 1/2-filling in a model without orbitals. As above, we work with the
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gauge-transformed fermions in Eq. (D3) and the Hamiltnonian in Eq. (D7). The arguments

are all identical to what we saw in the previous section, except at the momentum point

K/2 = 2π
3
g1 + π

3
g2 = (2π/3, π/3).

According to Eq. (D8), C2y maps K/2 back to itself. As above, we conclude that

h(K/2) =
∑
`

(
c′0,`σ

` + c′x,`η
xσ`
)
, (D13)

for real numbers c′0,`, c
′
x,`. K/2 is also mapped to itself under the C3 transformation in

Eq. (D10), implying that∑
`

(
c′0,`σ

` + c′x,`η
xσ`
)

=
∑
`

(
c′0,`U

†
3(K/2)σ`U3(K/2) + c′x,`U

†
3(K/2)ηxσ`U3(K/2)

)
.

(D14)

It follows that at K/2 the Hamiltonian must take the form

h(K/2) = c′0,01+ c′0,zσ
z + c′xη

x(1− σz), (D15)

where c′x = c′x,0 = −c′x,z Solving, we find doubly degenerate eigenvalues c′0,0 + c′0,z.

Appendix E: Symmetries of H7
t +H7

mag

The Hamiltonian H7
t + H7

mag has a number of symmetries in addition to the physical

symmetries discussed in the main text. It actually more convenient to use a slightly dif-

ferent version of the gauge-transformed fermions: ψk = e−iπσ
z/6ψ̃k. The momentum-space

representation in terms of the ψ̃k’s is of the form Eq. (D7).

We separate the kernel h(k) into two pieces: h(k) = ht(k) + hmag(k) (as above, we

suppress the “7” superscript). The magnetic contribution to the Hamiltonian takes the

form

hmag(k) = P0 (f0,xx(k)τxσx + f0,yx(k)τ yσx + fz,yx(k)ηzτ yσx + fz,yy(k)ηzτ yσy) , (E1)

where

f0,xx(k) = cos(k1 − k2)−
1

4
(cos k1 − cos k2), f0,yx(k) = −

√
3

4
(cos k1 + cos k2) ,

fz,yx(k) =

√
3

4
(cos k1 + cos k2) , fz,yy(k) =

3

4
(cos k1 − cos k2) . (E2)
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The hopping portion is given by

ht(k) = gx,0(k)ηx + gx,z(k)ηxσz + gy,0(k)ηy + gy,z(k)ηyσz (E3)

where

gj,0(k) =
1

2
(hj(k +K/2) + hj(k −K/2)) ,

gj,z(k) =
1

2
(hj(k +K/2)− hj(k −K/2)) , (E4)

and

hx(k) = −t1 (1 + cos k1 + cos k2)− t3
(

2 cos(k1 − k2) + cos(k1 + k2)
)
,

hy(k) = t1 (sin k1 + sin k2) + t3 sin(k1 + k2). (E5)

By inspection, we note that [h(k), τ zσz] = 0, implying that simultaneous rotations about

both the orbital and spin z-directions are conserved. (This is also clear from the real-space

representation in Eqs. (3a) and (7).) While time-reversal is broken, there is an anti-unitary

symmetry under which the sublattice and orbitals indices are interchanged: ηxτxh∗(k)τxηx =

h(k). Since τxηx and τ zσz anticommute, all bands must be two-fold degenerate, one with

τ zσz = +1 and the other with τ zσz = −1. In addition, there are two chiral symmetries:

{ηzτ z, h(k)} = {ηzσz, h(k)} = 0. These constrain the spectrum to be even about zero (or

the chemical potential, when it is present).
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arXiv:1805.06906 [cond-mat.str-el].

[34] J. Pizarro, M. Calderón, and E. Bascones, “The nature of correlations in the insulating states

of twisted bilayer graphene,” ArXiv e-prints (2018), arXiv:1805.07303 [cond-mat.str-el].

[35] Y.-H. Zhang, D. Mao, Y. Cao, P. Jarillo-Herrero, and T. Senthil, “Moiré Superlattice with
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