
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Electronic structure theory of strained two-dimensional
materials with hexagonal symmetry

Shiang Fang, Stephen Carr, Miguel A. Cazalilla, and Efthimios Kaxiras
Phys. Rev. B 98, 075106 — Published  6 August 2018

DOI: 10.1103/PhysRevB.98.075106

http://dx.doi.org/10.1103/PhysRevB.98.075106


Electronic Structure Theory of Strained Two-Dimensional Materials with Hexagonal
Symmetry

Shiang Fang,1 Stephen Carr,1 Miguel A. Cazalilla,2, 3 and Efthimios Kaxiras1, 4
1Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.

2Department of Physics, National Tsing Hua University and National
Center for Theoretical Sciences (NCTS), Hsinchu 30013, Taiwan

3Donostia International Physics Center (DIPC),
Manuel de Lardizabal, 4. 20018, San Sebastian, Spain

4John A. Paulson School of Engineering and Applied Sciences,
Harvard University, Cambridge, Massachusetts 02138, USA.

(Dated: May 18, 2018)

We derive electronic tight-binding Hamiltonians for strained graphene, hexagonal boron nitride
and transition metal dichalcogenides based on Wannier transformation of ab initio density functional
theory calculations. Our microscopic models include strain effects to leading order that respect
the hexagonal crystal symmetry and local crystal configuration, and are beyond the central force
approximation which assumes only pair-wise distance dependence. Based on these models, we also
derive and analyze the effective low-energy Hamiltonians. Our ab initio approaches complement the
symmetry group representation construction for such effective low-energy Hamiltonians and provide
the values of the coefficients for each symmetry-allowed term. These models are relevant for the
design of electronic device applications, since they provide the framework for describing the coupling
of electrons to other degrees of freedom including phonons, spin and the electromagnetic field. The
models can also serve as the basis for exploring the physics of many-body systems of interesting
quantum phases.

PACS numbers: 71.15.-m, 73.22.-f, 74.78.Fk,

I. INTRODUCTION

Strain effects are important in the physics of van
der Waals two-dimensional materials1,2, which feature
covalent bonding within each single layer and weaker
attraction between layers. Instead of being geometri-
cally flat, these materials exhibit ripples and corruga-
tions, features that are ubiquitously observed, for ex-
ample, in free-standing graphene3 and in samples on
a substrate4. After the discovery of graphene, the
list of two dimensional materials has been constantly
growing, and includes now several materials, such as
hexagonal boron nitride (hBN)5, black phosphorus6, and
transition metal dichalcogenides (TMDCs)7 with chemi-
cal composition MX2 (M= transition metal atoms Mo,
W; and X= chalcogen atoms S, Se, Te.). These lay-
ered materials exhibit interesting behavior ranging from
topological phases8 to superconductivity9, magnetism10,
topological order and anyonic excitations in fractional
quantum Hall liquids11, and other strongly correlated
phases that arise due to the reduced dimensionality
and screening12. The list of their possible applica-
tions is also constantly expanding, including devices for
optoelectronics7, plasmonics13 and valleytronics14, which
involve structures based on single-layer or heterostruc-
ture form15. These stable layers can sustain a sub-
stantial amount of external strain, as high as 25% in
graphene16. Kirigami structures based on graphene17 al-
low even higher degree of stretchability and resilience.
Scanning tunneling microscopy (STM)18 or atomic force
microscopy (AFM)19 tips can be used to introduce in-

dentation and strain in a controlled manner. The strain-
induced time-reversal symmetric pseudomagnetic field in
graphene has been shown to reach 300T20. A desirable
functionality would be to use strain and deformation to
manipulate the flow of electrons or excitons in the de-
sign of layered-material based devices21,22, and the asso-
ciated nanostructures such as nanoribbons23. To achieve
this goal, reliable quantitative understanding and model-
ing of the strained-layered properties are crucial and call
for a more systematic treatment than what is presently
available.

Conventional approaches for modeling can be classi-
fied in two categories: The top-down method treats the
deformed layers as a manifold with curvature and local
metric tensor structure, analogous to a membrane in soft
matter24 and to general relativity in curved space-time25.
In this approach, once the differential geometry tensors
are constructed from the deformed layers, they couple
to the low energy effective field theories as symmetry-
allowed gauge fields, potentials and connections26–30.
The bottom-up approach relies on computationally de-
manding first-principles calculations31 or on scaling of
tight-binding matrix elements in the presence of the lat-
tice deformation1,32,33. The scaling of these coupling
terms is usually parametrized empirically as a function of
pair-wise distances, which is known as the central force
approximation, in the form of Grüneisen parameters34.
In practice, these empirical parameters are usually ob-
tained from fitting band structure calculations of the de-
formed crystal, which is relatively insensitive to the un-
derlying orbital character and composition of the cou-
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pling terms. Potential pitfalls in this approach include
overfitting of the band structure, distortions in the wave-
function character and the breakdown of the approxima-
tions invoked. Another issue arises from bridging the
top-down and bottom-up approaches as pointed out by
Yang35: the proper "metric" and the emergent geometry
in the low-energy model should stem from the deforma-
tion of the underlying tight-binding Hamiltonian, rather
than being of purely geometric origin. It is thus valuable
to derive from an ab initio perspective the tight-binding
parameters of the strained layered crystals, especially for
materials with multiple orbital symmetries and compli-
cated character. Previously, we have demonstrated an
efficient and reliable method for modeling layered mate-
rials and their vertical stacking36,37 including intra- and
inter-layer coupling terms based on the Wannier trans-
formation of electronic band structures obtained from
density functional theory (DFT) calculations, without
having to rely on empirical fitting parameters. Here we
generalize the Wannier method38 to monolayers with in-
plane strain and derive the relevant models, compati-
ble with the underlying crystal symmetry. In increas-
ing order of complexity with the underlying orbital con-
tent, we construct suchWannier tight-binding Hamiltoni-
ans (TBH) for graphene, hexagonal boron nitride (hBN)
and four TMDCs. These models are valid in the pres-
ence of slowly-varying in-plane strain field, providing the
electronic coupling to long-wavelength in-plane acous-
tic phonon modes39,40. We also derive the correspond-
ing effective low-energy theories coupled with the strain
field, consistent with the effective models derived from
the principles of symmetry group representations, which
by itself can identify all symmetry-allowed terms41,42 but
is insufficient to provide estimates for the values of the
coupling constants involved. Our ab initio Wannier tight
binding approach thus complements the powerful symme-
try group analysis, gives accurate values of the param-
eters in the model, and empowers calculations of large-
scale structures of strained materials43,44 and finite size
system with coupling to external fields45.

For the underpinning density functional theory calcu-
lations, we adopted the exchange correlation functional
parametrized by Perdew, Burke and Ernzerhof (PBE)46.
Conventional DFT functionals tend to underestimate the
band gap values derived from the experimental results.
On the experimental side, various factors from the di-
electric screening of the substrates47 and doping48 might
further complicate the comparisons to theoretical band
structure. In terms of the theoretical calculations, differ-
ent choices of functionals such as HSE0649 or more ad-
vanced GW calculations for quasi-particle energies50 can
be adopted to improve the band gap values. In previous
work, we surveyed briefly the comparison between the-
oretical calculations and experimental measurements31.
Here, we focus on the modeling of strain correction terms
of the two-dimensional crystals with hexagonal symme-
try. Further improvements of the electronic band struc-
tures from different choices of the functionals and more

advanced GW calculations are compatible with the Wan-
nier construction method36 and the analysis presented
here will apply with modified parameters.

The paper is organized as follows: In Sec. II, we
first elaborate on the conventions of crystal structure and
the assumptions involved in strain field modeling in our
work. We then apply these methods to construct tight-
binding Hamiltonians for the in-plane strained crystals
in graphene, hBN and TMDCs. In Sec. III, we de-
rive the effective low-energy Hamiltonians, based on the
strained tight-binding Hamiltonians, and compare with
symmetry group analysis. We conclude in Sec IV, which
summarizes our work and points out the potential gen-
eralizations and applications of our models. We elabo-
rate on the numerical framework for DFT calculations
and Wannier constructions in Appendix A. In the Ap-
pendix B, we give the mathematical background of the
symmetry group analysis and provide guidance for gen-
eralizing to other scenarios relevant to layered materials.
The values of the tight-binding parameters including the
effect of strain, for four TMDCs are also tabulated in the
Appendix51.

II. TIGHT-BINDING HAMILTONIAN FOR
STRAINED LAYERED MATERIALS

We develop the tight-binding Hamiltonians for the
strained layered structures by following exactly the same
procedure as in our earlier work for ideal layers36,37 (see
Appendix A for more detailed descriptions, and Fig. 2
where the steps from DFT to Wannier model construc-
tion for the WSe2 monolayer crystal are illustrated.).
From the macroscopic point of view, the strain field is de-
scribed within continuum elasticity theory. For strained
layers, it is equally important to specify the underlying
deformed microscopic configurations. Here, we provide
the connection between the macroscopic elastic theory
and the microscopic atomic details, using the generalized
Cauchy-Born rule for the local optimum strain configura-
tion of basis atoms, which might show violations in the re-
stricted elastic relations. After establishing the deformed
crystal structure, the tight-binding Wannier Hamiltoni-
ans of the relevant selected bands are constructed and
truncated to retain only a few near neighbors, as appro-
priate for each layer type. These strain scaling param-
eters are tabulated along specific bond directions with
simpler expressions, while other equivalent bonds are re-
lated by symmetry transformations.

A. General Formulation of Strained Lattices

Graphene, hBN, and the TMDC layered materials in-
vestigated in our work share the hexagonal lattice system
and the honeycomb crystal structure with periodic lat-
tice vectors a1 = ax̂, a2 = a(−1

2 x̂ +
√

3
2 ŷ) where a is

the lattice constant. Two basis sites are located in the
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projected layer plane δB = 0 and δA = (2a1 + a2)/3.
In hBN, the Nitrogen atom occupies the δB site. The
TMDC layer consists of three atomic sublayers in each
single layer unit as shown in Fig. 1 (b), with chalco-
gen atoms at projected sublattice sites δA and at height
±d0 above and below the plane of the metal atoms. For
the reciprocal space representation, these crystals share
the Brillouin zone shown in Fig. 1 (c), with special k
points K± = ± 4π

3a x̂ where the valleys appear in the band
structure.

(a) (b)

(c)
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FIG. 1. The conventions for the honeycomb hexagonal crystal
structure: (a) Top view of the crystal lattice with primitive
vectors ai with A (B) basis atoms shown as blue (red) solid
circles. In hBN, Boron (Nitrogen) atoms occupy sublattice
A (B) sites, while in TMDCs metal atoms (chalcogen pairs)
sit at B (A) sites. The three thick black arrows labeled by
ti denote the hopping bonds used in strained graphene and
hBN up to third nearest neighbors in Eq. (6). For TMDCs,
the hoppings from M sites are denoted by the thick orange
arrows instead for Eq. (10) and (11). (b) Perspective side
view of the trilayer structure in TMDC. (c) Brillouin zone in
momentum space.

The slowly varying in-plane strain field can be de-
scribed by the displacement deformation vector field
u = (ux(x, y), uy(x, y)). The coordinates x and y de-
note the undistorted crystal coordinate, which is mapped
to the new position (x + ux(x, y), y + uy(x, y)) in space.
Since a constant displacement field introduces no physi-
cal changes to the layers, the strain field is characterized
by the derivative of u, defined in tensor form

uij =
1

2
(∂iuj + ∂jui) (1)

with i, j=x, y. This 2nd-rank tensor can be decomposed
into the trace scalar part uxx + uyy, and the doublet
(uxx − uyy, −2uxy) which forms a two-dimensional ir-
reducible representation of the C3v symmetry group of
the crystal. There is also a rotational piece, ωxy =
∂xuy − ∂yux which we take ωxy = 0 by choosing the

proper set of coordinates. We can further simplify the
modeling by applying the local density approximation to
the strain effects, that is, by assuming locally the tight-
binding parameters are approximated by the strained pe-
riodic crystal with constant uij . In the following, these
strain model parameters are extracted from the Wannier
transformation of DFT calculations with periodic unit
cells for the uniformly strained crystals. A structure
with non-uniform strain can be modeled by combining
these local-strain tight-binding parameters which have
only long-wavelength variations compared to the lattice
constants.

The key steps in constructing these microscopic Hamil-
tonians are:

(i) In linear elastic theory, the deformed microscopic
displacement vector v′ = (v′x, v

′
y, v
′
z) between atomic sites

is
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FIG. 2. Wannier tight-binding Hamiltonian construction from DFT for the WSe2 monolayer: (a) DFT band structure, blue
circles (without spin-orbit coupling) with the eleven p− d hybrid bands which are relevant for low-energy electronic properties,
used to derive the Wannier tight-binding Hamiltonian (red lines). (b) Wannier Hamiltonian results with truncation to limit the
range of neighbor coupling terms. (c) Hamiltonian augmented by the atomic spin-orbit coupling terms (red lines), compared
with the full DFT calculation with spin-orbit coupling included (blue circles).

v′x = vx + vx∂xux + vy∂yux

v′y = vy + vx∂xuy + vy∂yuy

v′z = vz

(2)

with v = (vx, vy, vz) the unstrained vector. Though these
relations hold for the primitive lattice vectors, strictly
speaking this approximation, the Cauchy-Born rule52,53,
is only valid for a Bravais lattice with a single atom ba-
sis. For a strained primitive unit cell with multiple basis
atoms, the relative position or orientation of these atoms
varies, in addition to the relations prescribed by Eq. (2).
For example, in layered materials such as phosphorene,
TMDCs and puckered graphene-like materials, there is a
height variation in the position of individual atoms under
strain. We adopt the approximation of Eq. (2) in mod-
eling graphene and hBN for simplicity. We include the
height corrections for the chalcogen atoms in TMDCs by
generalizing the above Cauchy-Born approximation.

(ii) To incorporate the strain effects in the tight-
binding Hamiltonians, the t0αβ hopping integral between
α, β orbitals on different sites is assumed to scale with
the pair distance |δαβ |, known as the central force ap-
proximation. Up to leading order linear response, the
strained hopping integral can be approximated as54

t′αβ = t0αβ + µδαβ · (δαβ ·5) · u, µ =
1

|δαβ |
[
dtαβ
d|δαβ |

] (3)

Some empirical models go beyond the linear order by
proposing a functional form which depends on the pair
distance, such as exponential functions1,32 or algebraic
functions of |r|.55 For the orbitals that are not s-like,
the hopping integrals within the two-center Slater-Koster
approximation56 can be decomposed into various chan-
nels related to the angular momentum projection, such
as the σ and π bonds in p-p orbital coupling. The scal-
ing can be applied to each channel as a function of pair
distance. In general, the scaling of the hopping inte-
gral reflects the shapes of the orbitals and the changes
in the crystal field potential. These translate into more
involved forms of scaling beyond merely the pair dis-
tance dependence. For example, if the crystal is stretched
along a direction that is perpendicular to the bond, the
central force approximation would dictate no change for
the hopping, which is not accurate. Here, we derive the
models up to linear order in the strain and beyond the
central force approximation. All the terms that couple
(uxx+uyy), (uxx−uyy) and uxy are retained in the Hamil-
tonian, and their forms are constrained by the underlying
crystal symmetry. Thus, the hoppings along a bond ac-
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quire corrections when the crystal is stretched along the
perpendicular direction to the bond, which captures the
local environment change. Many layered materials in-
volve orbitals beyond s-like ones, and have a more com-
plicated geometry for atomic configurations and relative
orientations.

(iii) Treatments of strain effects on tight-binding
Hamiltonians typically involve only the scaling of hop-
ping terms and neglect the variations for on-site energy
terms. The on-site energy variations will be relevant for a
layer with non-uniform strain field, also called the defor-
mation potential. We extract the relevant potential in-
formation and work function from DFT calculations and
define the energy reference point to be zero at the vac-
uum level outside the layer. In experiments, the presence
of a substrate or encapsulating layers, and the charge re-
distribution in the layer with non-uniform strain result in
further modification of the electrostatic environment, the
screening for interactions and hence of the onsite terms.
Solving the self-consistent potential profile is beyond the
scope of the current treatment.

(iv) To complete our discussion in the presence of the
macroscopic perpendicular (out-of-plane) displacements
h for the layer or the flexural phonon mode in the long
wavelength, we can define the generalized strain tensor26

ũij =
1

2
(∂iuj + ∂jui + ∂ih∂jh) (4)

We expect ũij to capture part of the contributions to
the strained tight-binding Hamiltonians. Due to (mirror)
symmetry breaking and curvature effects, other terms
with derivatives of h that couple states of different sectors
can also appear, which can lead to interesting phenomena
such as spin-lattice couplings in layered materials34,57,58.
Capturing these contributions require a Wannier trans-
formation to extract parameters for a curved layer in a
supercell geometry, which we leave for future work.

B. Application to Monolayer Graphene and hBN

In graphene, the semi-metallic gapless pz bands fea-
ture relativistic linear Dirac dispersion at low-energy near
the K points of the BZ. Most of the electronic proper-

ties can be explained by the simple two-band model in-
volving only the pz orbitals. hBN can be viewed as a
closely related structure to graphene, with a gapped in-
sulating band structure introduced by the Semenoff mass
terms59 from the sublattice symmetry breaking. For the
monolayer modeling of strained graphene and hBN, the
distorted atomic positions at the A/B basis sites are as-
sumed to follow Eq. (2). In terms of electronic modeling,
we retain only pz orbitals up to third nearest neighbor
coupling. This is adequate to give a very good descrip-
tion of the key features of the band structure, especially
at the band extrema37. To model the strain effects for
graphene and hBN, we first start with the on-site poten-
tial energy term, which is defined relative to the DFT
vacuum level outside the layer and can be written as

ε = ε0 + α0(uxx + uyy) (5)

to leading order in uij . The linear coupling to the two-
dimensional representation (uxx − uyy,−2uxy) is forbid-
den from the underlying crystal and pz orbital symme-
try. For the near-neighbor hopping terms, the strain-
dependent tight-binding parameters can be written as

tr = t0r+αr(uxx+uyy)+βr[ωr
y (uxx−uyy)+2ωr

xuxy] (6)

where r is the bond vector, ω̂r = (ωr
x, ω

r
y ) (|ω̂| = 1) is the

associated unit vector, and αr and βr are the strain re-
sponse parameters. The ω̂r unit vector is parallel to the
bonding direction for the first and third neighbor hop-
ping, but perpendicular to the second neighbor hopping
direction (see Eq. (15) for the first neighbor example).
This form is constrained by the irreducible representa-
tion of the underlying crystal symmetry. The central
force approximation would further constrain the αr and
βr parameters. For example, the nearest neighbor terms
under this approximation would have α1 = −β1, which
clearly is not sufficient as our detailed modeling shows.

For graphene and hBN, the relevant parameters that
enter Eq. (6) are tabulated in Table I with unit vector
defined as ω̂θ = cos(θ)x̂+ sin(θ)ŷ. In this table, only the
independent hopping terms along specific directions as
shown in Fig. 1 (a) are tabulated. The rest of the bonds
at the equivalent positions can be related by appropriate
symmetry operations.

C. Application to Transition Metal Dichalcogenides

The monolayer TMDCs with H structure are semicon-
ductors with a direct band gap (typically 1-2 eV), with
band structures that have similar features to those of
hBN (an insulator) with the band edges at the K valleys.
We start our formulation with the tight-binding Hamilto-
nian in the monolayer TMDC crystal. The relevant states

consist of seven valence bands and four conduction bands,
which are hybrids of metal d orbitals and chalcogen p or-
bitals. In Fig. 2 we illustrate the DFT (blue circles) and
Wannier construction for WSe2 monolayer crystal with
the tight-binding bands for these p− d orbital hybrids in
red lines. The xy layer mirror symmetry can be utilized
to classify these states into odd and even sectors, with
the band edges being in the even sector. We focus on
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TABLE I. On-site, Eq. (5), and nearest neighbor hopping parameters, Eq. (6), for graphene and hBN. For hBN, the superscript
indicates the starting point of the hopping matrix element (otherwise from A site to B site.). The vector δ = (a1 +2a2)/3 and
the units are in eV. The last column specifies the corresponding ω̂r unit vectors as in Eq. (6).

Graphene
on-site εC0 = −3.613 αC

0 = −4.878

δ t01 = −2.822 α1 = 4.007 β1 = −3.087 ω̂π/2
a1 t02 = 0.254 α2 = −0.463 β2 = 0.802 ω̂π/2

δ − a1 − 2a2 t
0
3 = −0.180 α3 = 0.624 β3 = 0.479 ω̂−π/2

hBN
On-site εB0 = −1.287 αB

0 = −4.778

εN0 = −5.393 αN
0 = −2.227

δ t01 = −2.683 α1 = 3.142 β1 = −2.386 ω̂π/2
a1 t0B

2 = 0.048 αB
2 = 0.176 βB

2 = 1.061 ω̂π/2
a1 t0N

2 = 0.218 αN
2 = −0.231 βN

2 = 0.721 ω̂π/2
δ − a1 − 2a2 t

0
3 = −0.228 α3 = 0.419 β3 = 0.598 ω̂−π/2

the spinless models and group the odd/even orbitals as
ΨA = (φx = d

(o)
xz , φy = d

(o)
yz ,−), ΨB = (φx = p

(o)
x , φy =

p
(o)
y , φz = p

(o)
z ), ΨC = (φx = d

(e)
xy , φy = d

(e)
x2−y2 , φz = d

(e)
z2 )

and ΨD = (φx = p
(e)
x , φy = p

(e)
y , φz = p

(e)
z ) with the xy

mirror plane still being a symmetry of the crystal when
in-plane strain is included, the (o/e) superscript denoting
the odd/even sector (the z component is omitted in the
ΨA group). The grouping and the φx, φy and φz labelings
are related to the x-, y-, z-like orbitals under three-fold
rotation symmetry of the crystal. For the Hamiltonians
below, we will classify coupling terms between different
groups of orbitals as

〈Ψi|H|Ψ′j〉 =

Hxx Hxy Hxz

Hyx Hyy Hyz

Hzx Hzy Hzz

 (7)

where Hαβ = 〈φiα|H|φ′
j
β〉. For the strained TMDC

monolayer crystal, the local optimum atomic configura-
tions show that the distance dX−X for the chalcogen pair
varies as

1

2
dX−X = d0 − d1(uxx + uyy) (8)

with the form constrained by the three-fold rotation crys-
tal symmetry. The pair distance stretches when the crys-
tal is compressed and the relevant parameters are tabu-
lated in Table II.

In the original tight-binding Hamiltonian of the TMDC
crystal36, we included the onsite terms and up to third
neighbor couplings. The first and third neighbor cou-
plings are of the M-X type, while the second neighbor is
of M-M or X-X type. We investigate the strain correction
to these Hamiltonian terms:

(i) The on-site terms include not only the on-site en-

TABLE II. The lattice constants (for unstrained TMDCs) a
(Å), and the distance between chalcogen atoms dX−X (Å) in
the strained TMDCs, given by Eq. (8).

MoS2 MoSe2 WS2 WSe2

a 3.182 3.317 3.182 3.316

d0 1.564 1.669 1.574 1.680

d1 0.517 0.572 0.560 0.611

ergy but also hybridization between different orbitals at
the same site. The total on-site Hamiltonian has four
terms H(0)

ii (i = A,B,C,D), and they share the same
form. Within each sector, this symmetric form is sim-
plified with the three-fold rotation symmetry and the yz
mirror symmetry:

Ĥ(0) =

ε1 0 0

0 ε1 0

0 0 ε0

 + (uxx + uyy)

α
(0)
1 0 0

0 α
(0)
1 0

0 0 α
(0)
0

+

(uxx − uyy)

β
(0)
0 0 0

0 −β(0)
0 β

(0)
1

0 β
(0)
1 0

 + 2uxy

 0 β
(0)
0 β

(0)
1

β
(0)
0 0 0

β
(0)
1 0 0


(9)

for all four TMDCs.

(ii) First and third neighbor couplings are hoppings
from M atoms to X atoms (at −(a1 + 2a2)/3 and 2(a1 +
2a2)/3 respectively). There are two groups for the first
neighbor couplingH(1)

BA, H
(1)
DC and one group for the third

neighbor term H
(3)
DC (H(3)

BA is neglected). They all have
the following scaling form with strain:
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Ĥ(n) =

t
(n)
0 0 0

0 t
(n)
1 t

(n)
2

0 t
(n)
3 t

(n)
4

 + (uxx + uyy)

α
(n)
0 0 0

0 α
(n)
1 α

(n)
2

0 α
(n)
3 α

(n)
4

+

(uxx − uyy)

β
(n)
0 0 0

0 β
(n)
1 β

(n)
2

0 β
(n)
3 β

(n)
4

 + 2uxy

 0 β
(n)
5 β

(n)
6

β
(n)
7 0 0

β
(n)
8 0 0


(10)

where n = 1, 3 for the first and the third neighbor cou-
plings.

(iii) The second neighbor hoppings are between M-M
and X-X pairs (at a1 position) and there are four kinds
of terms, H(2)

ii (i = A,B,C,D). They all share the same
following form:

Ĥ(2) =

 t
(2)
0 t

(2)
3 t

(2)
4

−t(2)
3 t

(2)
1 t

(2)
5

−t(2)
4 t

(2)
5 t

(2)
2

 + (uxx + uyy)

 α
(2)
0 α

(2)
3 α

(2)
4

−α(2)
3 α

(2)
1 α

(2)
5

−α(2)
4 α

(2)
5 α

(2)
2

+

(uxx − uyy)

 β
(2)
0 β

(2)
3 β

(2)
4

−β(2)
3 β

(2)
1 β

(2)
5

−β(2)
4 β

(2)
5 β

(2)
2

 + 2uxy

 0 β
(2)
6 β

(2)
7

β
(2)
6 0 β

(2)
8

β
(2)
7 −β(2)

8 0


(11)

For convenience, the values of the parameters that en-
ter in the expressions for on-site (superscript 0), first- and
third-neighbor (superscript 1 and 3) and second-neighbor
(superscript 2) hoppings are collected in a sequence of

Tables in the Appendix.
Thus far, we considered only the hopping along one

specific direction, which gives the simplest expressions
for the hopping matrix elements. The equivalent terms
are related to this by the three-fold rotation symmetry
or Hermitian conjugation. There are no new independent
parameters associated with these terms in the equivalent
directions. The form of these hopping directions in the
presence of the strain field involves a simple transfor-
mation. For example, for the bond δ′ which is rotated
counterclockwise by 2π/3 from the bond δ, the hopping
is

Hδ′(uxx, uyy, 2uxy) = Û†RHδ(u
′
xx, u

′
yy, 2u

′
xy)ÛR

u′xx = uxx/4 + 3uyy/4−
√

3uxy/2

u′yy = 3uxx/4 + uyy/4 +
√

3uxy/2

2u′xy =
√

3uxx/2−
√

3uyy/2− uxy

(12)

For graphene and hBN, UR = 1. For TMDCs, Hδ and
Hδ′ are the 3 × 3 matrices, as parametrized for the
Hamiltonians above, and

ÛR =

 −1/2
√

3/2 0

−
√

3/2 −1/2 0

0 0 1

 (13)

with Û3
R = 1. This three-fold rotation operation together

with the Hermitian conjugate which reverse the bond
direction complete the parametrization of all equivalent
bonds in the tight-binding Hamiltonian.

For the unstrained TMDC crystal with only εi and t
(i)
j

terms for each interaction, the present model corresponds
exactly to the one in our previous work36. The crucial
spin-splitting of the bands can be generalized by doubling
the orbitals by the spin degrees of freedom and incorpo-
rating the spin-orbit coupling as the atomic on-site λL·S
terms36. The symmetry-allowed spin-dependent hopping
terms beyond these on-site atomic contributions are ne-
glected in this work, but can be extracted and further
modeled based on the Wannier procedure. In Fig. 3, we
compare the full DFT calculations as shown in (a) to the
simplified TBH in (b) for the pristine WSe2 crystal and
the ones with±2% isotropic strain applied. In (c) and (d)
we compare the DFT results with spin-orbit coupling to
the TBH augmented with atomic λL·S on-site terms. We
find good agreement between the full DFT calculations
and our TBH results. We also note that the couplings to
isotropic strain (uxx+uyy) have the same form as the un-
strained couplings, while the terms with (uxx− uyy) and
uxy break this form in a pattern that respects the crystal
symmetry by forming appropriate symmetry invariants.

The previous modeling of the graphene and hBN cases is
similar to the Hzz terms here; details on the symmetry
constraint derivations can be found in the Appendix B.

As a final comment, we discuss some of the important
features of the band structure described by our tight-
binding Hamiltonian in the presence of strain. The band
gap at the K valley scales linearly with the isotropic bi-
axial strain as shown in Fig. 4 for MoS2. The slope
agrees well between the tight-binding Hamiltonian (red
line) which gives -103 meV/% and the full DFT calcu-
lation (blue line) with -110 meV/%. The relative offset
of the two can be corrected by adding more terms of
longer range to the truncated Hamiltonian. The slope is
also in good agreement with photoluminescence experi-
ments, measured at -105 meV/% with substrate thermal
expansion60 and -99meV/% with suspended monolayer
MoS2

61. To compare all four TMDCs, recent optical ex-
periments show that MoSe2 < MoS2 < WSe2 < WS2

for the bandgap shifts under biaxial strain62 and the se-
quence is consistent with our DFT and tight-binding re-
sults. The slopes for four TMDCs can be inferred from
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FIG. 3. Comparison of the (a) DFT and (b) TBH electronic band structure without spin-orbit coupling for a monolayer WSe2
crystal with isotropic strain. The black dashed lines are the bands from the pristine crystal while the red (blue) solid ones
are from the crystal with −2% (+2%) isotropic strain. The high energy bands in the DFT calculations are those beyond the
p− d hybrids included in the TBH basis. The vacuum level is at zero energy. (c) and (d), similar comparison with spin-orbit
coupling.
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FIG. 4. The energy gap between the highest valence band and
the lowest conduction band at K valley for a MoS2 monolayer
crystal under isotropic strain (a) without and (b) with spin-
orbit coupling corrections included. The blue (red) lines are
from DFT (TBH) calculations. The slopes agree well for the
strain effects.

the f4 parameters in Table IV for the effective Hamilto-
nians.

III. EFFECTIVE HAMILTONIANS

In this section, we derive the effective Hamiltonian to
illustrate the strain effects on the electronic band struc-
ture and the symmetry properties, at specific k points
relevant to the low energy degrees of freedom. In the lit-
erature, many effective Hamiltonians have been proposed
with various levels of accuracy, including the coupling
terms to external fields such as strain and electromag-
netic fields. One way to arrive at these effective Hamil-
tonians is through the construction of invariants under
the irreducible symmetry group representation41,42, from
objects such as the momentum k, strain tensor uij and
other fields present. Though symmetry group analysis
alone cannot determine the numerical coupling param-
eters, it is useful to identify all the symmetry allowed
terms in the effective theory. An alternative way of de-
riving the effective Hamiltonians is based on the expan-
sion of the tight-binding Hamiltonians for the material33.
The additional irrelevant high energy bands at the expan-
sion k point can be integrated out63 and various effective
terms can be generated in the reduced space of the low
energy bands. The order of expansion can be controlled
and the numerical coupling constants can be derived from
the tight-binding Hamiltonian parameters. In the follow-
ing, we rederive the lowest order effective Hamiltonians
and show that they are consistent with the ones in the
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literature, which is a cross-check of the symmetry prop-
erties of our tight-binding Hamiltonians. Higher order
effective terms can be generated by further expanding
the model33.

A. Monolayer Graphene

For the single layer graphene, the electronic band
structure exhibits linear gapless Dirac cones at two in-
equivalent K± points. Around the K+ point, we de-
fine the wavefunction as Ψ+

k = (ΨA
(K++k),Ψ

B
(K++k)) for

the components on the A/B sublattice at momentum
(K+ +k), and σ̂ the Pauli matrices on sublattice indices.
The three nearest B sites from the central A site are
located at

δ
(1)
1 =

a√
3

(0, 1), δ
(1)
2 =

a√
3

(
−
√

3

2
,
−1

2
), δ

(1)
3 =

a√
3

(

√
3

2
,
−1

2
)

(14)
with a the lattice constant. Under uniform strain, the
changes in the hopping strength from A to B sites are

δt
(1)
1 = α1(uxx + uyy) + β1(uxx − uyy)

δt
(1)
2 = α1(uxx + uyy)− β1(uxx − uyy)/2−

√
3β1uxy

δt
(1)
3 = α1(uxx + uyy)− β1(uxx − uyy)/2 +

√
3β1uxy

(15)

using the transformation rule of Eq. (12). The same
procedure applies to the second and third neighbors. To-
gether with the on-site terms, we arrive at the k · p
Hamiltonian after expanding the tight-binding Hamilto-
nian HTB(k) at K+.

HK+ = vFH0(k) + a′0H
′
0 +

5∑
i=1

aiHi(k) (16)

with k = (kx, ky) the momentum measured from K+ and
the definition for each term and the coefficients are given
in Table III. H0 gives the usual Dirac Hamiltonian with
linear dispersion with H ′0 + H1 the shift in Dirac en-
ergy from the on-site and second nearest neighbor con-
tributions. The Hi terms with i > 0 are the strain
induced contributions42. H2 is the pseudo gauge field
term which shifts the Dirac point. In the non-uniformly
strained crystal, this term will depend on the spatial po-
sition and is responsible for generating pseudo Landau
levels. A term H6 = [∂y(uxx−uyy)+2∂xuxy]σ̂z implies a
gap-opening in the presence of non-uniform strain field42
which can be estimated from the changes of on-site terms
in the uniform strain field.

TABLE III. Effective low-energy Hamiltonians at K+ valley including strain terms for graphene. σ̂x, σ̂y are Pauli matrices,
with length l = a/

√
3 where a is the graphene lattice constant. The numerical values are from the upper part of Table I for

graphene with units of energy.

H0 σ̂xkxl + σ̂ykyl − 3
2 t

0
1 + 3t03

H ′0 1 εC0 − 3t02
H1 (uxx + uyy)1 αC

0 − 3α2

H2 (uxx − uyy)σ̂x − 2uxyσ̂y
3
2 (β1 − β3)

H3 [(uxx − uyy)kxl − 2uxykyl]1 9
2β2

H4 (uxx + uyy)(σ̂xkx + σ̂yky) − 3
2 (α1 + β1

2 − 2α3 + β3)

H5 uij σ̂ikj l; i, j = x, y 3
2β1 + 3β3

B. Transition Metal Dichalcogenides

The spinless TMDC tight-binding Hamiltonian con-
sists of eleven bands. We project the full model to the
reduced two-band model at the K+ point, consisting of
the highest valence band Φv (of dx2−y2 + idxy character)
and the lowest conduction band Φc (of dz2 character)
and we investigate the effects of uniform uij strain field.
The spin-orbit coupling can be incorporated with addi-
tional spin dependent terms. The full Hamiltonian is
HTB(k) = H0

TB(k) + Hstrain. To derive the leading or-
der effective two-band Hamiltonian, we expand the un-

strained H0
TB(k) to linear order in k and take the strain

partHstrain to be proportional to the strain field uij with-
out additional k dependence. The reduced band effective
Hamiltonian can be determined by the matrix elements
Heff
i,j = 〈Φi|HTB(k)|Φj〉, (i, j) = (c, v), labeling the va-

lence (v) and conduction (c) bands. We choose the con-
vention Φ+

k = (Φc(K++k),Φ
v
(K++k)), with σ̂ acting upon

those two band indices. For the unstrained TMDC, the
effective k · p Hamiltonian takes the form of a massive
Dirac fermion54:
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H0
TB = f01 +

f1

2
σ̂z + f2a(kxσ̂x + kyσ̂y) (17)

with a the lattice constant (see Table II), f0 the midgap
position relative to the vacuum level, f1 the mass gap
term and f2 the velocity in the Dirac equation. The spin
splitting can be captured by adding (1±σ̂z)ŝz terms with
ŝ the Pauli matrices on the spin indices of the enlarged
spin-band Hilbert space. For the lowest order correction
terms in the presence of deformations54, the additional
strain terms in the Hamiltonian are

Hstrain =f3

∑
i

uii + f4

∑
i

uiiσ̂z

+ f5[(uxx − uyy)σ̂x − 2uxyσ̂y]

(18)

with f3 (f4) modifying the midgap position (massive
gap), and f5 the pseudo gauge field term. Each term
contributes a symmetry invariant term by the appropri-
ate product of various objects54. The values of the pa-
rameters for all four TMDCs are given in Table IV based
on the expansion of the tight-binding Hamiltonian. For
the higher-order corrections in k and the strain field uij
in this reduced band Hamiltonian, there are two kinds of
terms that contribute: the ones from the direct expansion
of the full Hamiltonian within the subspace, and the vir-
tual coupling process to higher levels via Schrieffer-Wolff
transformation33,63.

When an out-of-plane deformation and curvature are
present in the layer, the mirror symmetry is broken and
the odd/even states can mix. With the spin-orbit cou-
plings taken into account, various types of coupling terms
will be generated which relate spin, band, strain field and
curvature57,58, and have been shown to introduce a spin-
lattice coupling as an in-plane effective magnetic field in
the TMDC lattice34.

TABLE IV. TMDC k · p theory parameters at K with the
units in eV.

TBH f0 f1 f2 f3 f4 f5

MoS2 −5.07 1.79 1.06 −5.47 −2.59 2.20

MoSe2 −4.59 1.55 0.88 −5.01 −2.28 1.84

WS2 −4.66 1.95 1.22 −5.82 −3.59 2.27

WSe2 −4.23 1.65 1.02 −5.26 −3.02 2.03

IV. CONCLUSION

We constructed ab initio tight-binding models for the
strained layered materials using Wannier transforma-
tion of DFT calculations which bridges the microscopic
tight-binding Hamiltonians and the effective Hamiltoni-
ans based on symmetry principles, using graphene, hBN,

and TMDCs as prototypical examples. This method
is free from any empirical fitting procedures and cap-
tures the microscopic details of the electronic coupling
to the strain field, or equivalently the long-wavelength
in-plane acoustic phonons. These models apply to sys-
tems with multiple orbitals of distinct symmetries, going
beyond the single scaling Grüneisen parameter approach
and the central force approximation. Though the lin-
ear response regime is assumed throughout the present
treatment, aharmonic couplings at larger strain can be
included in a similar way. The method can also be gen-
eralized to extract the electronic coupling to long wave-
length optical phonon modes and the interlayer coupling
in the vertically compressed layer stacks.

These microscopic strain models are relevant for a
wide range of applications, including: straintronics43,
that is, engineering the strain field to obtain the de-
sired electronic properties such as band gaps and effective
masses; the realization of stretchable electronic devices
based on the layered materials64; exploiting the interplay
between moiré patterns, commensurate-incommensurate
transitions65 and distortions66 which result from twisted
bilayer structure that already strongly modifies the
monolayer Dirac dispersion and induces insulating states
from the superlattice67; exploring the effects of topo-
logical lattice defects1,68; induced interference effects
from lattice deformation69; understanding of electronic
scattering and mobility from lattice deformations. The
pseudo magnetic field, that does not break time-reversal
symmetry, induced by the strain field may be utilized to
probe many-body physics through the quantum oscilla-
tions without magnetic field70, or fractional Josephson
effect when coupled with a superconductor71. Beyond
the applications involving static strain fields, we also ex-
pect that our microscopic analysis is applicable to the
dynamical strain field generated by oscillating acoustic
waves72, which can be used as an experimental probe
of other excitations in materials, or as a means to real-
ize periodically modulated Floquet Hamiltonians, which
will be relevant for studies of non-equilibrium or topolog-
ical phases73. This extracted electron-phonon coupling is
also relevant to understand the Raman spectroscopy39,40
and other phonon-mediated phenomena.
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Appendix A NUMERICAL METHODS FOR DFT
AND WANNIER CONSTRUCTION

The DFT calculations in this work were carried out us-
ing the Vienna Ab initio Simulation Package (VASP)74,75
with Projector Augmented-Wave (PAW) type of pseudo-
potentials, parametrized by Perdew, Burke and Ernzer-
hof (PBE)46. A slab geometry with a 20 Å vacuum region
is used to reduce the interactions between periodic im-
ages. The DFT calculations for TMDCs are converged
with plane-wave energy cutoff 450 eV and a reciprocal
space grid sampling of size 29 × 29 × 1.

The extended Bloch wavefunction basis can be trans-
formed into the maximally-localized Wannier functions
(MLWF) basis as implemented in the Wannier90 code38.
With this transformation, the effective tight-binding
Hamiltonian for a designated group of bands of the ma-
terial can be constructed. This not only gives an efficient
numerical method to reproduce DFT results but also pro-
vides a physically transparent picture of localized atomic
orbitals and their hybridizations. From the calculations
with and without spin-orbit coupling, we find that a sim-
ple atomic onsite L · S term captures well the full DFT
band structure with spin-orbit coupling included. Our
work is based on the systematic analysis of such tight-
binding Hamiltonians with strain applied in the DFT cal-
culations, which inherit the ab initio information without
fitting procedures for the numerical parameters. Further
corrections for band gaps from advanced GW calcula-
tions or other choices of exchange correlation functionals
are also compatible with Wannier constructions.

Appendix B SYMMETRY AND IRREDUCIBLE
REPRESENTATIONS

The models presented in this paper can be thought of
as a set of linear equations which describe how an op-
erator O, such as the tight-binding energy between two
orbitals or the total mechanical energy, changes under
some real-space field X, like the strain uij . But even a
simple linear model for the next-nearest neighbor hop-
pings between chalcogen atoms in the TMDCs would be
complicated. Such a model is based on how three strain
fields affect the hoppings between nine pairs of orbitals
(pi to pj) in three bonding directions, needing a total of
81 (3 × 9 × 3) fitting parameters. The number of inde-
pendent parameters is smaller, as the symmetery opera-
tions of the crystal relate the values of some parameters
to one another, or require others to be zero. Therefore,
when modeling these two-dimensional materials it is vi-
tal to understand how the crystal symmetery constrains

linear models in order to validate computational results.
For example, if one DFT fitted parameter happens to be
orders of magnitude smaller than the rest of the param-
eters, it may be unclear if it should be taken as exactly
zero. Performing an analysis of the crystal symmetry can
clarify this problem as well as provide some insight into
how many calculations would be necessary to create a
complete model.

One method of understanding the crystal symmetry
constraints is through representation theory of finite
groups. By knowing what patterns of matrices are com-
patible with the point group of a given crystal, one can
enumerate all possible constrained terms which may arise
in the modeling process42. Another, more practical de-
scription of this process is as follows: modify the operator
O(X) under conjugate symmetry operations of the crys-
tal, denoted as S; for each S, one can then generate a set
of linear equations by requiring that the physical model
remains unchanged under the symmetry, namely

S−1[O(SXS−1)]S = O(X) (19)

Each S does not necessarily generate a unique set of equa-
tions, but applying all S yields the same constraints as
expected from representation theory. An example of this
second approach is how lattice strain affects a tensor-
valued operator, like the electric field gradient (EFG)76.
However, for the tight-binding energies, the approach is
not so obvious. Whereas scalar or tensor-valued quanti-
ties can be directly written as finite-dimensional repre-
sentations of the point group of the crystal, the Wannier
localization process can only be considered a representa-
tion if the Wannier orbitals themselves obey the crystal
symmetries. The localized orbitals must translate, ro-
tate, or reflect into a linear combination of themselves
under each crystal symmetry. In practice this does not
occur, as the Wannier orbitals are only defined to mini-
mize the spread in the electron density, sometimes break-
ing crystal symmetry in the process. In our modeling, the
Wannier orbitals have small asymmetries, although there
are approaches to ensure crystal symmetry exists in the
final Wannier orbitals77. Assuming they are symmetric
allows us to correctly constrain the model, eliminating
the numerically introduced asymmetry.

First, we consider the nearest-neighbor and 3rd-nearest
neighbor hoppings, that is, the ones between TMDC
atoms of the same species. Our model includes the C3

rotation symmetry by construction in Eq. (12), which
is simply an implementation of Eq. (19) with S taken
to be rotation by 2π/3. Then we need to consider only
the symmetry relating to the chosen bonding direction
t1, which is reflection through the y-z plane. The Hamil-
tonian must be invariant under this symmetry, but the
operation affects both the orbitals of the Hamiltonian
and the strain field components. Thus, the xy and xz
components of the Hamiltonian are constrained to cou-
ple only with uxy (both odd under mirror symmetry),
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while every other component couples only with uxx and
uyy (both even under mirror symmetry). For the sec-
ond nearest neighbor, a similar argument applies. In this
case the mirror plane lies halfway between the orbitals, so
now we must compare terms in the Hamiltonian to their
transpose (H(2)

ij andH(2)
ji ). The same rules can be used to

check that the 2nd nearest neighbor tight-binding terms
are consistent with the mirror symmetry constraint.

Finally, the onsite terms are constrained by the C3 ro-
tation symmetry explicitly. The uxx + uyy correction is

diagonal, as it is a 1-dimensional representation, and the
(uxx − uyy,−2uxy) corrections have their x and y com-
ponents rotate into one another as a valid 2-dimensional
representation.

From these considerations we have constructed the
form of the tight-binding Hamiltonians given in Eq. (9) -
(11). The following tables (V through VIII) contain the
values of the parameters that enter in the expressions of
the model Hamiltonians for the four common TMDCs,
namely MoS2, MoSe2, WS2, WSe2.

TABLE V. Onsite (H(0)
AA) and second neighbor hopping (H(2)

AA) strain terms in units of eV for MoS2, MoSe2, WS2, WSe2.

H
(n)
AA MoS2 MoSe2 WS2 WSe2

ε1 −4.873 −4.547 −4.327 −4.069

α
(0)
1 −2.498 −2.341 −2.631 −2.357

β
(0)
0 −0.890 −0.810 −0.986 −0.902

t
(2)
0 −0.206 −0.146 −0.198 −0.137

t
(2)
1 0.031 0.017 0.027 0.013

t
(2)
3 −0.257 −0.191 −0.310 −0.232

α
(2)
0 −0.258 −0.309 −0.453 −0.490

α
(2)
1 −0.202 −0.125 −0.213 −0.117

α
(2)
3 0.705 0.514 0.834 0.589

β
(2)
0 −0.676 −0.588 −0.942 −0.809

β
(2)
1 −0.192 −0.118 −0.175 −0.090

β
(2)
3 0.555 0.416 0.649 0.480

β
(2)
6 −0.095 −0.063 −0.076 −0.037

TABLE VI. Onsite strain terms (H(0)
BB , H

(0)
CC , H

(0)
DD) in units of eV for MoS2, MoSe2, WS2, WSe2.

MoS2 MoSe2 WS2 WSe2

H
(0)
BB H

(0)
CC H

(0)
DD H

(0)
BB H

(0)
CC H

(0)
DD H

(0)
BB H

(0)
CC H

(0)
DD H

(0)
BB H

(0)
CC H

(0)
DD

ε0 −6.720 −6.082 −8.839 −5.986 −5.559 −8.231 −6.838 −5.734 −9.078 −6.066 −5.267 −8.466

ε1 −7.235 −5.856 −7.850 −6.502 −5.314 −7.110 −7.250 −5.498 −8.033 −6.494 −5.001 −7.277

α
(0)
0 1.623 −1.021 −0.858 1.396 −1.090 −0.742 1.743 −1.212 0.158 1.385 −1.012 −0.050

α
(0)
1 −1.500 −1.817 −3.317 −1.440 −2.023 −3.316 −1.854 −1.916 −4.290 −1.724 −1.967 −4.138

β
(0)
0 −0.094 −0.370 −1.142 −0.121 −0.296 −1.146 0.089 −0.292 −1.390 0.059 −0.220 −1.337

β
(0)
1 0.273 −0.043 0.720 0.270 0.004 0.829 0.487 0.036 1.586 0.482 −0.022 1.507
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TABLE VII. First (H(1)
BA, H

(1)
DC) and third (H(3)

DC) neighbor hopping strain terms in units of eV for MoS2, MoSe2, WS2, WSe2.

MoS2 MoSe2 WS2 WSe2

H
(1)
BA H

(1)
DC H

(3)
DC H

(1)
BA H

(1)
DC H

(3)
DC H

(1)
BA H

(1)
DC H

(3)
DC H

(1)
BA H

(1)
DC H

(3)
DC

t
(n)
0 −0.789 1.411 0.014 −0.695 1.268 0.017 −0.884 1.558 0.010 −0.773 1.399 0.017

t
(n)
1 2.158 0.652 −0.245 1.941 0.554 −0.215 2.302 0.664 −0.273 2.079 0.567 −0.242

t
(n)
2 - −0.940 −0.150 - −0.874 −0.155 - −0.993 −0.154 - −0.905 −0.161

t
(n)
3 −1.379 −0.954 −0.221 −1.326 −0.858 −0.223 −1.436 −0.943 −0.265 −1.401 −0.853 −0.263

t
(n)
4 - −0.883 −0.069 - −0.772 −0.069 - −1.005 −0.066 - −0.896 −0.068

α
(n)
0 0.545 −0.486 0.173 0.408 −0.407 0.175 0.585 −0.609 0.537 0.406 −0.493 0.468

α
(n)
1 −0.605 0.843 0.204 −0.417 0.825 0.185 −0.482 1.045 0.185 −0.322 0.917 0.202

α
(n)
2 - 2.178 0.567 - 1.928 0.554 - 2.827 0.623 - 2.409 0.653

α
(n)
3 1.845 0.446 0.744 1.718 0.272 0.760 1.826 0.071 1.055 1.764 0.022 1.050

α
(n)
4 - −0.208 0.035 - −0.298 0.062 - −0.241 −0.090 - −0.238 −0.021

β
(n)
0 −1.076 1.724 −0.178 −0.897 1.530 −0.164 −1.128 2.402 −0.345 −0.929 1.973 −0.321

β
(n)
1 0.401 −0.353 −1.069 0.264 −0.367 −0.995 0.140 −0.900 −1.110 −0.029 −0.877 −1.094

β
(n)
2 - −2.204 −0.070 - −1.995 −0.093 - −2.293 −0.125 - −2.153 −0.114

β
(n)
3 −2.100 −0.682 −0.267 −1.874 −0.510 −0.292 −1.990 −0.306 −0.120 −1.879 −0.276 −0.241

β
(n)
4 - −0.850 −0.281 - −0.727 −0.290 - −1.184 −0.536 - −0.897 −0.476

β
(n)
5 0.859 0.899 −0.690 0.770 0.761 −0.664 0.915 0.902 −1.093 0.798 0.761 −1.022

β
(n)
6 - −0.542 −0.382 - −0.475 −0.391 - −0.193 −0.644 - −0.300 −0.651

β
(n)
7 −0.377 −2.093 −0.340 −0.469 −1.841 −0.299 −0.634 −2.934 −0.535 −0.690 −2.447 −0.423

β
(n)
8 −0.836 1.101 0.015 −0.717 1.005 0.007 −0.944 1.427 −0.127 −0.793 1.082 −0.058
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TABLE VIII. Second neighbor hopping (H(2)
BB , H

(2)
CC , H

(2)
DD) strain terms in units of eV for MoS2, MoSe2, WS2, WSe2.

MoS2 MoSe2 WS2 WSe2

H
(2)
BB H

(2)
CC H

(2)
DD H

(2)
BB H

(2)
CC H

(2)
DD H

(2)
BB H

(2)
CC H

(2)
DD H

(2)
BB H

(2)
CC H

(2)
DD

t
(2)
0 0.865 0.275 0.912 0.964 0.251 0.991 0.873 0.355 0.965 0.977 0.320 1.047

t
(2)
1 −0.187 −0.558 0.006 −0.172 −0.473 −0.004 −0.218 −0.691 0.014 −0.198 −0.584 0.003

t
(2)
2 −0.174 −0.298 −0.192 −0.211 −0.264 −0.217 −0.175 −0.371 −0.212 −0.217 −0.333 −0.241

t
(2)
3 −0.070 −0.249 −0.038 −0.068 −0.201 −0.039 −0.099 −0.304 −0.101 −0.092 −0.245 −0.102

t
(2)
4 0.100 0.114 −0.106 0.076 0.096 −0.121 0.110 0.145 −0.163 0.079 0.124 −0.185

t
(2)
5 −0.068 0.410 0.008 −0.074 0.352 0.005 −0.082 0.488 −0.031 −0.091 0.423 −0.038

α
(2)
0 −1.841 −1.027 −1.425 −1.979 −0.951 −1.586 −1.844 −1.232 −1.122 −1.986 −1.127 −1.357

α
(2)
1 −0.027 1.544 −0.057 −0.103 1.333 −0.072 −0.067 1.947 −0.162 −0.152 1.617 −0.159

α
(2)
2 0.444 1.032 0.644 0.536 0.885 0.668 0.434 1.123 0.674 0.557 1.013 0.718

α
(2)
3 −0.045 0.206 −0.170 −0.059 0.195 −0.162 −0.042 0.462 −0.314 −0.074 0.325 −0.303

α
(2)
4 −0.210 0.285 −0.199 −0.123 0.236 −0.202 −0.208 0.365 −0.333 −0.105 0.291 −0.287

α
(2)
5 0.141 −0.738 0.065 0.142 −0.596 0.050 0.177 −0.654 0.105 0.188 −0.564 0.112

β
(2)
0 −2.203 −0.910 −2.013 −2.378 −0.793 −2.180 −2.254 −1.068 −1.920 −2.427 −0.966 −2.086

β
(2)
1 0.768 1.337 0.828 0.827 1.108 0.884 0.772 1.240 1.039 0.834 1.179 1.069

β
(2)
2 0.350 0.376 0.540 0.445 0.333 0.576 0.283 0.522 0.580 0.401 0.406 0.556

β
(2)
3 −0.065 −0.003 0.143 −0.016 0.008 0.155 −0.054 −0.083 0.345 0.015 −0.044 0.331

β
(2)
4 −0.208 0.188 −0.056 −0.146 0.126 −0.026 −0.198 0.179 0.062 −0.104 0.129 0.063

β
(2)
5 0.096 −0.779 0.082 0.112 −0.667 0.073 0.127 −0.863 0.130 0.152 −0.727 0.112

β
(2)
6 0.482 −0.634 0.744 0.567 −0.565 0.777 0.467 −0.960 0.858 0.550 −0.776 0.873

β
(2)
7 −0.146 0.288 0.051 −0.128 0.255 0.066 −0.128 0.484 0.146 −0.157 0.308 0.109

β
(2)
8 −0.089 −0.152 −0.099 −0.092 −0.110 −0.127 −0.117 −0.046 −0.236 −0.129 −0.099 −0.224
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