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We theoretically study the magnetic phase diagram of a three-dimensional topological Kondo
insulator by means of real-space dynamical mean field theory. We find that ferromagnetically
ordered states become stable upon hole doping. Besides a wide ferromagnetic phase, we observe
surface magnetism close to half-filling, which corresponds to an A-type antiferromagnetic state.
We further study the impact of the magnetism on the symmetry protected surface states and find
that depending on the surface and the magnetization direction, surface states are still protected by
reflection symmetry present in our model. The symmetry protected surface states are shifted away
by the magnetization from their original high symmetry momenta in the Brillouin zone. Remarkably,
due to the magnetization, the surface states are deformed, resulting in the appearance of arcs in the
momentum resolved spectrum.

PACS numbers: 71.27.+a; 73.20.-r; 75.10.Lp; 75.30.Mb

I. INTRODUCTION

Topology has become a widely used tool in condensed
matter physics for predicting and analyzing symmetry
protected surface states which include fascinating par-
ticles such as Majorana-, Weyl- or Dirac-fermions1,2.
While the influence of topology in noninteracting sys-
tems is well understood by now, the interplay between
strong correlations and topology is still obscure. Strong
correlations are the origin for phenomena which cannot
be seen in noninteracting or weakly interacting systems,
such as magnetism, unconventional superconductivity or
quantum criticality. Naturally, questions arise such as
how the symmetry protected surface states change in the
presence of strong interactions or under the influence of
magnetism, and whether there are new phenomena which
can only be observed in strongly interacting topologically
nontrivial systems3–9.

One remarkable observation in strongly interacting
systems is the reduction of the classification of topo-
logical phases in the presence of correlations; the clas-
sification of topological phases changes due to strong
correlations10–13. Other interesting examples are so-
called topological Kondo insulators14–20, which are topo-
logically nontrivial f -electron materials including strong
correlations in the f -orbital. Candidate materials are
for example SmB6

21–26 or YbB12
27,28. The topologi-

cally nontrivial gap is here formed by a hybridization
between conduction- (c-) electrons and strongly interact-
ing f -electrons. Due to the presence of strong interac-
tions in localized orbitals, the Kondo effect and mag-
netism can often be observed in f -electron materials.
Thus, these topological Kondo insulators provide an op-
portunity to study the interplay between topology and
phenomena originating in strong correlations. For exam-
ple, the interplay between Kondo physics and topology
results in the Kondo breakdown, where the behavior of
the topological surface states completely changes at finite
temperature29–31. Furthermore, these materials have cre-

ated a stir in the condensed matter community because
of the observation of quantum oscillations in strong mag-
netic fields, which contradicts our common knowledge
about insulators32.

We here analyze another intriguing phenomenon based
on the interplay of nontrivial topology and strong corre-
lations, namely magnetism in a three-dimensional (3D)
topological Kondo insulator. Recently a topological
phase has been observed in the magnet Co2MnGa33

which might open a path for generating highly spin-
polarized currents. Furthermore, the Kondo insula-
tor SmB6 is known to have a magnetic phase under
pressure34–38, which might be an A-type antiferromag-
netic state. Thus, a study of magnetism in a topological
Kondo insulator and its impact on the symmetry pro-
tected surface states are highly desired.

In this paper, we use the real-space dynamical mean
field theory, which allows us to analyze the effect of strong
correlations in a topologically nontrivial f -electron mate-
rial and study bulk as well as surface properties. Besides
a ferromagnetic phase which is stable upon hole-doping,
we find an antiferromagnetic surface state close to half-
filling. Although the time-reversal symmetry is broken
by the magnetic state, surface states are still protected
by the reflection symmetry. We demonstrate that the
Dirac cones at the surface of the topological Kondo insu-
lator are shifted and deformed by the magnetization. A
remarkable effect of the magnetization on the Dirac cones
is the emergence of arcs in the spectrum, which appear
due to the energetic splitting of different spin directions.

This paper is organized as follows: In the next sec-
tion, we will introduce the model and shortly explain the
method used to analyze magnetic states. This is followed
by sections discussing the phase diagram, the bulk prop-
erties and the impact of the magnetism on the surface
states. A conclusion finishes the paper.
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Figure 1: Left: Schematic picture of the model used in the
real-space DMFT. Right: (a) Bulk band structure of the non-
interacting model for hybridization strength V = 0.06. (b)
Noninteracting band structure for a slab-calculation includ-
ing 100 layers with open surfaces. Visible are the Dirac cones
at (kx, ky) = (0, 0) and (π, 0). Another Dirac cone exists at
(0, π), which is not shown.

II. MODEL AND METHOD

For the purpose of describing magnetism in a topolog-
ical Kondo insulator, we use a Hamiltonian in a three-
dimensional (3D) cubic lattice, which includes two spin-
degenerate orbitals. The orbitals correspond to a con-
duction (c) electron band and an f -electron band. The
Hamiltonian reads

H = H0 +Hint

H0 =
∑
k

∑
σ={↑,↓}

∑
o={c,f}

εokc
†
k,σ,ock,σ,o

+V
∑

k,τ1,mτ2

c†k,τ1,cck,τ2,f sin kxσ
x
τ1τ2

+V
∑

k,τ1,mτ2

c†k,τ1,cck,τ2,f sin kyσ
y
τ1τ2

+V
∑

k,τ1,mτ2

c†k,τ1,cck,τ2,f sin kzσ
z
τ1τ2

+0.2
∑
i,σ

ni,σ,c

εck = −0.1(cos(kx) + cos(ky) + cos(kz))

+0.075 cos(kx) cos(ky)

+0.075 cos(ky) cos(kz)

+0.075 cos(kx) cos(kz)

+0.15 cos(kx) cos(ky) cos(kz)

εfk = −0.1εck

Hint = U
∑
i

ni,↑,fni,↓,f .

The operator c†k,σ,o creates an electron with momentum

k, spin direction σ in orbital o ∈ {c, f}. εok describes
the energy depending on the momentum for each or-
bital. The energies have been chosen in a way that

there are band inversions between c-electrons and f -
electrons at (π, 0, 0), (0, π, 0), and (0, 0, π) in the Bril-
louin zone, which resembles qualitatively the band struc-
ture of SmB6. We include nearest neighbor, next-nearest
neighbor and next-next-nearest neighbor hopping on a
cubic lattice. Due to the hybridization, V , between the
c-electron band and the f -electron band, a gap opens in
the bulk spectrum, see Fig. 1. We will later use the hy-
bridization strength V as a free parameter in the model.
σx, σy, σz are the Pauli matrices. The operator ni,σ,c
and ni,σ,f are local density operators on lattice site i
for the c-electrons and f -electrons, respectively. Finally,
Hint describes a repulsive local density-density interac-
tion in the f -electron band, necessary to describe the
Kondo effect in strongly interacting f -electron systems.
Throughout this paper we set U = 0.8.

Because there is an odd number of band inversions
between the c-electron band and the f -electron band,
which have different parity, combined with a gap in the
bulk spectrum, this model is a 3D strong topological
insulator14,15,39–41. The noninteracting band structure
with open surfaces, depicted in Fig. 1(b), shows the sur-
face states at (kx, ky) = (0, 0) and (π, 0) on the surface.
Another surface state exists at (kx, ky) = (0, π), which is
not shown in Fig. 1(b). The inclusion of strong interac-
tions into the f -electron band leads to the Kondo effect
and a renormalization of the band gap. One remark-
able effect of the interaction is the emergence of strongly
correlated surface states, which can result in a Kondo
breakdown on the surface at finite temperatures29,30.

In order to analyze a strongly correlated and topo-
logically nontrivial system with open surfaces, we use
the real-space dynamical mean field theory (DMFT).
DMFT42 maps a lattice model onto a quantum impurity
model, which must be solved self-consistently. DMFT
thereby includes local fluctuations exactly and is there-
fore well suited to study the Kondo effect in f -electron
materials. The real-space DMFT maps each atom of a
finite lattice onto a separate quantum impurity model.
Thus, the effect of inhomogeneities such as impurities or
surfaces can be included into this theory.

To properly study the above described Hamiltonian,
we perform calculations for a homogeneous system,
studying bulk properties, and for slabs consisting of 20
layers, see Fig. 1. For the homogeneous system we use
single-site DMFT focusing on nonmagnetic and ferro-
magnetic states. The slab calculations are done using
the real-space DMFT with open boundary conditions,
where each layer is mapped onto its own quantum impu-
rity model. Thus, the quantum impurity model consists
of the interacting f electron, which is coupled to an ef-
fective band of conduction electrons. A local self-energy
is calculated for each layer, which is consistent with the
approximations made in DMFT. These self-energies are
then inserted into the 3D model with open surfaces,
from which Green’s functions and new input for layer-
dependent quantum impurity models can be calculated.
This is done until self-consistency is reached. This pro-
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Figure 2: Phase diagram for different number of c-electrons,
nc, and hybridization strengths, V , for a system consisting of
20 layers with open boundaries. A c-electron filling of nc = 0.9
corresponds to a half-filled system nc + nf = 2. (a) Magne-
tization for the surface layer. (b) Magnetization of the layer
in the middle of the slab. The magnetic phase below the blue
line corresponds to the ferromagnetic phase. The magnetic
phase below the green line corresponds to an A-type antifer-
romagnetic phase. The white area at small V in the phase
diagram corresponds to a magnetic phase which cannot be
described by our ansatz.

vides us the possibility to analyze the impact of the mag-
netic state on the surface states. Single-site DMFT for
bulk ferromagnetism as well as the real-space DMFT cal-
culations are performed self-consistently. For solving the
quantum impurity models, we use the numerical renor-
malization group43,44, which is well suited to calculate
real-frequency spectral functions and self-energies at low
temperatures with high resolution around the Fermi en-
ergy for arbitrary interaction strengths45,46.

Because we map each layer of our model onto a single
quantum impurity model, our ansatz only includes solu-
tions where all atoms in the same layer have the same
properties. Thus, we can only describe in-plane ferro-
magnetic or paramagnetic (vanishing magnetization) so-
lutions. In order to stabilize magnetic states, we dope
holes into the c-electron band changing the number of
c-electrons from nc = 0.9 to 0.4.The f -electron number
is kept fixed at nf = 1.1. Thus, the model is half-filled
for nc = 0.9. We perform all calculations at T = 0.

III. PHASE DIAGRAM

Figure 2 depicts the phase diagram obtained in our cal-
culations. The magnetization of the f electrons, mf =
n↑,f − n↓,f is shown for different hybridization strengths
and number of conduction electrons, nc = n↑,c+n↓c. Be-
cause the calculations are done for a system with open

Figure 3: Magnetizations for hybridization strength V =
0.045 and different numbers of c-electrons, nc, showing the
ferromagnetic phase and the surface magnetic phase.

surfaces, the magnetization is generally different at the
surface (panel a) and the layer in the middle of the slab
(panel b). Depending on the hybridization strength, the
phase diagram includes three different phases: When the
hybridization strength is large, the system forms a non-
magnetic state. At intermediate hybridization strengths,
0.04 ≤ V ≤ 0.07 and conduction electron filling nc < 0.9,
we find in-plane ferromagnetic states. For hybridization
strengths V < 0.04, our calculations do not converge in-
dicating that the magnetic solution cannot be described
by in-plane ferromagnetic states. Because the magne-
tization in the bulk of the material vanishes smoothly
towards the nonmagnetic phase, the phase transition
between the ferromagnetic phase and the nonmagnetic
phase is second order.

This phase diagram fits into the more general Doniach
phase diagram,47 which describes the competition be-
tween the Kondo effect and the RKKY interaction. Large
hybridization strengths result in a strong screening by
the Kondo effect and thus the formation of nonmagnetic
states. Small hybridization strengths result in a weak
Kondo screening so that a magnetic state is formed due
to the RKKY interaction. Furthermore, in calculations
for the Kondo lattice it was found that for small hy-
bridization strengths a phase transition within the mag-
netic phase can be observed, which qualitatively agrees
with the phase transition found here at V ≈ 0.04.48,49

Generally, the surface magnetization is larger than the
bulk magnetization, which can be understood as an ef-
fective increase of correlations at the surface. However,
besides the normal ferromagnetic state, where surface
and bulk are magnetized in the same direction, we find
magnetic states, which are in-plane ferromagnetic, but
the magnetization oscillates depending on the layer. A
so-called A-type antiferromagnetic state, with in-plane
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Figure 4: Local Spectral functions for the ferromagnetic state
nc = 0.7 and V = 0.05 showing separately all four orbitals.

ferromagnetic and out-of-plane antiferromagnetic order,
is formed.38 Furthermore, the magnetization quickly de-
creases when going from the surface into the bulk. These
solutions can be found for c-electron fillings close to half-
filling and form a region in the phase diagram which is
surrounded by a green line in Fig. 2. We note that be-
cause our ansatz does only include in-plane ferromagnetic
states, we cannot rule out the possibility of an antiferro-
magnetic Néel state in this parameter region. The study
of a possible Néel state is left as future study. Further-
more, we note that close to the phase boundary of the
ferromagnetic phase, the magnetization of the A-type an-
tiferromagnetic phase does not completely vanish in the
middle of our slab consisting of 20 layers. We believe
that this is a finite size effect and that the magnetiza-
tion would vanish in the bulk for large enough systems.
We thus believe that the A-type antiferromagnetic phase
corresponds to a surface magnetic phase. Characteris-
tic magnetization curves are shown in Fig. 3. Black
and red lines show examples of the magnetization of the
A-type surface magnetic states. The magnetization oscil-
lates and vanishes in the bulk. The green and blue line,
one the other hand, are examples of the ferromagnetic
state. For these solutions, the magnetization slightly de-
creases when going from the surface into the bulk, but it
never becomes zero.

IV. BULK SPECTRAL PROPERTIES

Before examining the impact of the magnetic order on
the metallic surface states, let us firstly look at the bulk
properties. Because states exhibiting surface magnetism
are nonmagnetic in the bulk, these states have a renor-
malized bulk gap similar to nonmagnetic states, which is
shifted away from the Fermi energy because of the hole-

Figure 5: Phase diagram as function of the number of c-
electrons, nc, and hybridization strength, V . The plot shows
the particle numbers (a) nc↑ + nf↓ and (b) nc↓ + nf↑ for the
middle layer of the slab. The blue line in (b) surrounds the
parameter where nc↓ + nf↑ = 1.1.

doping. We will, therefore, focus in this section on states
exhibiting bulk ferromagnetism.

Figure 4 shows a typical local spectral function in the
ferromagnetic state for a c-electron filling of nc = 0.7.
The direction of the magnetization is the z-direction.

Clearly resolved is a strong reduction of the spectral
weight at the Fermi energy in the local spectral function
for three of the four orbitals and a peak at the Fermi en-
ergy for the f -electron with down-spin. At first sight, the
existence of such dip structures close to the Fermi energy
might be astonishing, because the total filling of the sys-
tem is nc + nf = 0.7 + 1.1 = 1.8 and thus not half-filled.
However, a gap at the Fermi energy for certain spin di-
rections is a commonly observed feature in the ferromag-
netic state of a Kondo lattice, resulting in a half-metallic
state.50–56 C-electrons and f -electrons adapt their filling
in the ferromagnetic state so that a commensurable sit-
uation is created for one of the hybridized spin-sectors.
The driving force behind this commensurability condi-
tion is the Kondo effect. A closer look at the spectral
functions presented in Fig. 4 reveals, however, that this
dip is not exactly at the Fermi energy, but slightly above.

To further investigate this, we directly show the com-
mensurability condition in Fig. 5. It is important to note
that the hybridization used in the model Hamiltonian
couples the spins of the c- and f -electrons using all three
Pauli-matrices. Thus, the spin-up (spin-down) compo-
nent of the c-electron is coupled to spin-up and spin-down
of the f -electron, while in the calculations for a peri-
odic Anderson model showing a perfect commensurabil-
ity, the spin-up (spin-down) component of the c-electron
is only coupled to the spin-up (spin-down) component of
the f -electron. Because there is a coupling between all
spin-components, the ferromagnetic state is frustrated.
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Figure 6: Momentum resolved spectral functions of the bulk
ferromagnetic state for the spin sector {|c ↓〉, |f ↑〉} . Panel
(a) shows a cut through the whole Brillouin zone. Panel (b)
shows cuts through the kx−ky-plane for fixed kz, which jumps
at the red line from 0 to π.

In our model Hamiltonian the coupling between the up-
spin (down-spin) component of the c-electron and down-
spin (up-spin) component of the f -electron occurs in x-
and y-direction (sin kxσ

x and sin kyσ
y), while a coupling

between the up-spin (down-spin) and the up-spin (down-
spin) occurs in z-direction (sin kzσ

z).
We show in Fig. 5 the occupation numbers for nc↑+nf↓

(panel a) and nc↓ + nf↑ (panel b). In Fig. 5(b), we ob-
serve a large area of the parameter (surrounded by a
blue line) where nc↓ + nf↑ = 1.1 and does not change
although the conduction electron number is varied. This
phase of constant occupation resembles the ferromagnetic
bulk phase in Fig. 2. Only at the boundary of the ferro-
magnetic phase, the occupation number changes slightly.
On the other hand, in panel (a), nc↑ + nf↓, there is no
area of constant occupation. We can thus identify the
spin-down component of the c-electron combined with
the up-spin component of the f -electron as the spin sec-
tor with commensurability. However, because of the frus-
tration occurring due to the hybridization in z direction,
the combined occupation is not unity, but slightly larger
than one. As a consequence, the gap, which is visible in
the local density of states for these orbitals, is slightly
shifted above the Fermi energy.

In order to obtain more information about the bulk
excitation spectrum, we show momentum-resolved spec-
tral functions of both spin-sectors in Figs. 6 and 7.
Figure 6 shows the spectral function for the spin-sector
{|c ↓〉, |f ↑〉}, which approximately fulfills the commensu-
rability condition nc↓+nf↑ ≈ 1. The gap observed in the
local spectral functions is also clearly visible here. Look-
ing at Fig. 6(a), which shows a cut through the whole
3D Brillouin zone, we see that bands enter into the gap
(see panel (a) between (π, π, π) → (0, 0, 0) → (0, 0, π)).

Figure 7: Same as Fig. 6, but for the spin sector {|c ↑〉, |f ↓〉}.

Thus, the gap structure visible in Fig. 4 is not a full
gap. It is however instructive to constrain the momentum
space to kz = 0 and kz = π, whose spectral functions are
shown in panel (b). For these momenta, (kx, ky, kz = 0)
and (kx, ky, kz = π), the coupling between spin-up (spin-
down) component of the c-electrons and the spin-up
(spin-down) component of the f -electrons vanishes. For
these momenta, a situation similar to the periodic An-
derson model for which a full gap has been observed is
reproduced. Indeed, bands do not enter the gap for these
momentum planes; for these momenta we find a full gap
for the spin sector with approximate commensurability
condition.

The momentum resolved spectral function for the other
spin-sector, {|c ↑〉, |f ↓〉}, is shown in Fig. 7. A general
feature of the spectral function of the spin sector without
commensurability is the strong correlation effect, which
leads to a strong broadening around the gap. Thus, there
is no real gap for this spin-sector, but an energy region
without quasi-particle bands. However, a closer look at
the spectral function shown in Fig. 7(a), which shows a
cut through the 3D Brillouin zone, reveals that there is
at least one quasi-particle band which enters this ”gap”
region between (0, 0, 0) → (0, 0, π). If we constrain the
plot to the (kx, ky, kz = 0) and (kx, ky, kz = π momentum
planes, see Fig. 7(b), we can see that this band is absent.

V. SURFACE STATES

Up to now, we have looked at the bulk properties of the
system and found a ferromagnetic phase. Next, we want
to analyze the effect of the magnetic phase on the symme-
try protected surface states, which manifests themselves
as Dirac cones in the momentum resolved spectrum.
The Dirac cones at the open surface in the noninteract-
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Figure 8: Momentum resolved spectrum for nc = 0.7, V =
0.05 in the ferromagnetic phase with magnetization in z-
direction for the {|c ↓〉, |f ↑〉} spin sector. The calculation
is done for a slab of 20 layers with open boundary condition
in z-direction. Thus, the magnetization is perpendicular to
the surface. The plot shows the spectrum of the surface layer
for (kx, ky) ∈ ([−1, 1], [−1, 1]) for which in the noninteracting
spectrum a Dirac cone exists.

ing spectrum, which are located in the Brillouin zone at
(0, 0), (π, 0), and (0, π), are protected by time-reversal
symmetry. Thus, it is not astonishing to find that in
a ferromagnetically ordered system (magnetization in z-
direction) the surface states have vanished on the z-
surface. Figure 8 shows the momentum resolved spectral
function (kx, ky, energy) of the z-surface for V = 0.05
and nc = 0.7. Figure 8 was thereby obtained by comput-
ing the spectral function for fixed momentum (kx, ky).
Whenever there is a peak in the spectral function de-
pending on the energy, we plot a single dot. Thus, the
spectrum does not include information about the height
of the peak in the spectral function. Due to the bulk
magnetization of nf↑ − nf↓ = 0.27 which increases at
the surface to nf↑ − nf↓ = 0.35 the surface states are
fully gapped; there is no Dirac cone visible in the surface
spectrum.

However, the situation is different when looking at dif-
ferent surfaces. While in Fig. 8 we analyze the z-surface
for a magnetization in z-direction, in Fig. 9 we show
the surface spectrum in x-direction (the magnetization
is still in z-direction) for the {|c ↓〉, |f ↑〉} spin sector.
Thus, this situation corresponds to an in-plane magnetic
state. We see at the first sight that the spectrum is not
gapped. Taking into account the knowledge about the
bulk spectrum, we conclude that these bands are sur-
face states. In Fig. 10, we show the momentum resolved
spectral function of the surface layer for a cut through
the surface Brillouin zone, which also clearly shows states
going through the bulk gap. The position of these surface
states is thereby approximately at the same momenta as

Figure 9: The same as Fig. 8, but with open surface in x-
direction, which corresponds to an in-plane magnetization at
the surface.

Figure 10: Momentum resolved spectrum for nc = 0.7, V =
0.05 in the ferromagnetic phase for the {|c ↓〉, |f ↑〉} spin
sector. The plot shows the spectral intensity on the surface
layer in x-direction. The momentum is labeled as (ky, kz).
The momentum ky increases on the path betweem (ky, kz) =
(−π, π)→ (0, π)→ (π, π).

the symmetry protected Dirac cones in the nonmagnetic
system, namely at (ky, kz) = (0, 0), (π, 0), and (0, π).

How can we understand the existence of these surface
states and are these surface states protected by any sym-
metries or just accidental? As the time-reversal symme-
try is broken by the magnetization, this symmetry cannot
protect any surface states spanning the gap. The answer
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to this question comes here from the cubic symmetry of
the model Hamiltonian, a symmetry which is also pre-
served in the Kondo insulator SmB6. Because of the
cubic symmetry, the Hamiltonian conserves the follow-
ing reflection symmetry, even in the presence of a mag-
netization along the z-direction: Rz = iσzτzPz, where
σz and τz are Pauli matrices acting on the spin-indices
and orbital-indices, respectively; Pz flips the sign of kz
(Pz : kz → −kz). In the case of a magnetization in x-
or y-direction we can define operators Rx = iσxτzPx or
Ry = iσyτzPy, which still commute with the Hamilto-
nian.

The presence of this symmetry guarantees that the
Hamiltonian can be separated into two subspaces, which
do not couple to each other even in the presence of a mag-
netization. In the case of a magnetization in z-direction,
the Hamiltonian is separated on the reflection invariant
planes in the Brillouin zone, kz = 0 or kz = π, into
the {|c ↑〉, |f ↓〉} spin sector and {|c ↓〉, |f ↑〉} spin sec-
tor which correspond to the plus- (RzΨ = Ψ) and minus-
(RzΨ = −Ψ) subspaces of the reflection operator, respec-
tively. Thus, this separation shown above is not acciden-
tal, but originates in the reflection symmetry.19,29,57,58

From now on, we will focus on the minus sector of the
reflection operator, {|c ↓〉, |f ↑〉} spin sector, constrained
to the kz = 0 or kz = π plane of the Brillouin zone. We
have demonstrated above that this sector is gapped in the
bulk when constrained to these planes in the Brillouin
zone. Thus, the Chern number is well defined. In the
presence of electron correlations, the Chern number can
be calculated from the Green’s function as7,59,60

N =
εµνρ

24π2

∫
d3kTr

(
G−1

∂G

∂kµ
G−1

∂G

∂kν
G−1

∂G

∂kρ

)
, (1)

with k := (ω, kx, ky). εµνρ denotes the total anti-
symmetric Levi-Civita symbol satisfying ε012 = 1. The
Green’s function is defined on the imaginary axis G(k) :=
G(iω,k).

In the work of Wang and Zhang 41 , it was shown that as
long as the self-energy is non-singular, replacing the full
Green’s function G with the simplified Green’s function

G̃−1(iω,k) = iωρ0 −Heff (k), (2)

Heff (k) = H(k) + ReΣ(iω = 0),

= n0(k)ρ0 + n(k)ρi, (3)

does not change the value of the Chern number. The
Pauli matrices ρi act on the two states spanning the mi-
nus sector of the reflection, {|c ↓〉, |f ↑〉}.(We have con-
firmed the absence of any singularity in the self-energy
by direct computation; the imaginary part of the self-
energy vanishes around the gap.) In the case, where the
effective Hamiltonian Heff is two-dimensional, a further
simplification is possible. The coefficient-vector n, which
is defined in Eq. (3), can be used to efficiently calculate
the Chern number of the minus sector of the reflection

reading

N =
1

4π

∫
d2k~̂n ·

(
∂~̂n

∂kx
× ∂~̂n

∂ky

)
, (4)

where ~̂n := ~n/
√
~n · ~n.

Calculating the Chern number for the ferromagnetic
phase, we find that the Chern number N = 2 for kz = 0
and N = −1 for kz = π. These nonzero Chern numbers
are the evidence for the existence of two chiral surface
states for kz = 0 and one chiral surface state for kz =
π spanning the gap in the {|c ↓〉, |f ↑〉} spin sector, if
Rz = iσzτzPz is conserved. This means that we have
symmetry protected surface states on the surfaces in x-
and y-direction for a magnetization in z-direction. Thus,
the system realizes a ferromagnetic topological crystalline
half-metallic state. These values of the Chern number
can also be easily verified in the spectrum shown in Fig.
10. For the kz = 0 plane, we find two chiral states at
(ky, kz) = (−π, 0) and (0, 0) running from left to right
for increasing energy, which corresponds to the Chern
number N = 2, and one chiral state at (ky, kz) = (0, π)
running from right to left, which corresponds to N = −1.

We have seen in the paragraph above that the existence
of surface states on the x-surface for a ferromagnetic state
with magnetization in z-direction is protected by symme-
try in our Hamiltonian. We next want to ask, what is the
impact of the magnetization on the surface states, which
resemble Dirac cones in the nonmagnetic system? The
symmetry protection due to nontrivial topology works in
the ferromagnetic system only for the reflection invari-
ant planes; kz = 0 and kz = π for a magnetization in z-
direction. The topological surface states in the ferromag-
netic system constrained to these momentum planes take
the form of chiral edge modes. Away from these planes
the symmetry protection due to the reflection symmetry
does not work. In the nonmagnetic system, on the other
hand, we have full rotational invariant Dirac cones which
are formed by states from both spin-sectors, {|c ↑〉, |f ↓〉}
and {|c ↓〉, |f ↑〉}.

Figure 11(a)-(d) show a comparison between the sur-
face state of the nonmagnetic system (nc = 0.9, V =
0.06) and the ferromagnetic state (nc = 0.7, V = 0.06).
Figures 11(a) and 11(b) show three dimensional plots
(ky-kz-energy) of the surface state on the surface in x-
direction for the magnetic and nonmagnetic system, re-
spectively. Figures 11(c) and 11(d) show intensity plots
for fixed energy E = 0.019, approximately at the center
of the Dirac cone in the nonmagnetic system.

We immediately see from the comparison in Fig. 11 (a)
and (b) that the Dirac cone is strongly deformed by the
ferromagnetic state. While the lower dome of the Dirac
cone (energy E < 0.02) remains approximately as it is,
the upper dome and the Dirac point (energy E ≥ 0.02)
are moved to different momenta. For a better compari-
son we show intensity plots of the spectral function for
E = 0.019 in panels (c) and (d). Approximately at this
energy the Dirac cone contracts to a single point in the
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Figure 11: Comparison of the surface states between the non-
magnetic system and the ferromagnetic system. (a) Surface
state for momenta around (ky, kz) = (0, 0) in the magnetic
state (V = 0.06, nc = 0.7 and nf↑ − nf↓ = 0.2). (b) Same
as (a) but for the nonmagnetic state (V = 0.06, nc = 0.9
and nf↑ − nf↓ = 0.0). Panels (c) and (d) show cuts through
the Brillouin zone for energy E = 0.019 of panels (a) and
(b) respectively. (e) Position of the Dirac cone depending
on the surface magnetization for fixed hybridization strength
V = 0.06 changing the c-electron filling.

Brillouin zone. The spectral function shown here is the
sum of all orbitals calculated at the surface layer. Figure
11(d) shows the nonmagnetic state. Clearly visible are
regions of high intensity (white-blue) in the spectral func-
tion around (ky, kz) = (0, 0), (π, 0), (0, π). These regions
of high intensity correspond to the Dirac cones in the
spectrum and are located at the high symmetry points
in the Brillouin zone. Figure 11(c) shows the spectral
function at the same energy for the ferromagnetic state
of panel (a). It is clearly seen that the high intensity
regions in the spectral function have shifted away from
the high symmetry points in the Brillouin zone. The
Dirac cones on the kz = 0 plane is shifted to the right
and the Dirac cone on the kz = π plane is shifted to the
left. The Dirac cones are thereby still perfectly located
on the planes with kz = 0 and kz = π, which is due to
the reflection symmetry. Because we add the spectral in-
tensity of all orbitals in these plots, there is also a rather
high intensity at (ky, kz) = (π, π). This density of states
originates in the {|c ↑〉, |f ↓〉}- spin sector which is not
fully gapped. In Fig. 11(e), we finally show the position

Figure 12: Momentum resolved spectral function of the sur-
face layer for nc = 0.5 and V = 0.04 with surface magnetiza-
tion nf↑ − nf↓ = 0.6. The energy of the spectral function is
fixed to E = 0.005 below the center of the Dirac cone. Due
to the magnetization, the Dirac cone appears not as a ring in
the spectral function, but as an arc.

of the Dirac cone depending on the surface magnetiza-
tion. The position of the Dirac cone is calculated by
finding the maximum of the spectral density for kz = 0
and E = 0.019 depending on ky. We see that the posi-
tion of the Dirac cone behaves linearly with the surface
magnetization.

Above we have seen that the Dirac cones in the non-
magnetic system are changed to chiral states protected
by reflection symmetry in the ferromagnetic system and
seem to be shifted away from the high symmetry points
of the Brillouin zone. However, this is not the only effect
on the surface states. The Dirac cones in the nonmag-
netic system consists of c-electrons and f -electrons with
up- and down-spin direction. On the ferromagnetically
polarized surface, electrons with different spin-direction
have different energy. The consequence of this is shown
in Fig. 12, which shows the surface spectrum for energy
E = 0.005, which cuts through the Dirac cone. The spec-
trum includes all bands and spin-directions. In the case
of the nonmagnetic system, the spectrum shows rings of
high intensity around the high symmetry points where
the Dirac cones are located. In Fig. 12, we show that
in the ferromagnetic system an arc instead of the ring is
observed. The origin of this arc in the spectrum is dif-
ferent from the Weyl-semimetal. It arises because of the
magnetic polarization of the Dirac cone. There is only
one half of the Dirac cone present.The other half of the
Dirac cone has vanished due to the energy shift of the
electrons.

Before concluding, let us present some results about
the A-type antiferromagnetic state, where the magne-
tization vanishes in the bulk. First, because the bulk
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Figure 13: Spectrum of the A-type antiferromagnetic state
(nc = 0.8 and V = 0.04). (a) (ky-kz-energy) plot of the
spectrum on an x-surface. (b) Momentum-resolved spectrum
for E = 0.005.

is nonmagnetic, time-reversal symmetry and reflection
symmetry are conserved in the bulk. Thus, the symmetry
protection of topological states holds in the bulk. At the
surface, the time-reversal symmetry is broken, but the re-
flection symmetry for the direction of the magnetization
is conserved. A similar protection as in the ferromag-
netic state could work. On the other hand, due to the
antiferromagnetic ordering of different layers, the spin-
sectors {|c ↑〉, |f ↓〉} and {|c ↓〉, |f ↑〉} are not separated
any more. Thus, the surface states could be gapped out
due to hybridization with the other spin-sector. However,
our results show that even for the antiferromagnetic sur-
face state, Dirac-type surface states still exist, see Fig.
13. Because of the mixing of different spin-sectors, a
gapped sector does not exist anymore, the spectrum at
the surface includes different bands. Focusing on the mo-
menta around (ky, kz) = (0, 0), we see a deformed Dirac
cone which is shifted from (ky, kz) = (0, 0) to approxi-
mately (ky, kz) = (1, 0) due to a strong surface magneti-
zation, see Fig. 13(a). The spectral intensity for energy
E = 0.005 is shown in Fig. 13(b). We observe two re-
gions of high intensity (green-blue) for kz = 0 and one
region for kz = π, which coincides with the existence
of the Dirac cones in the ferromagnetic state. Thus, we
conclude that even for this antiferromagnetic state the

symmetry protected surface states exist. Furthermore,
we see that the Dirac cone at (ky, kz) = (1, 0) has an arc
shape due to the magnetic polarization. Besides these
deformed Dirac cones, we see broad bands with interme-
diate intensity (orange) around (ky, kz) = (π, π).

VI. CONCLUSIONS

We have analyzed the possibility of magnetically or-
dered states in a 3D cubic topological Kondo insulator.
We have demonstrated the existence of a wide ferromag-
netic phase which emerges upon hole doping. Besides this
phase, we find surface magnetic states close to half-filling,
which are A-type antiferromagnetically ordered. While
in the nonmagnetic system there are symmetry protected
surface states on all surfaces of this system, the surface
states are gapped out in the ferromagnetic state when the
magnetization is perpendicular to the surface. Surface
states for layers with in-plane magnetization are thereby
protected by reflection symmetry in our model, which is
also conserved in the candidate topological Kondo insu-
lator SmB6. The emergence or absence of surface states
depending on the magnetization direction could thereby
yield interesting technological applications. Switching
the magnetization direction by an external magnetic field
would generate or destroy the surface states spanning the
gap.

We have furthermore elucidated the impact of the mag-
netization on the surface states, which manifests them-
selves as Dirac cones in the nonmagnetic system. The
magnetization shifts the Dirac cones away from the high
symmetry points in the surface Brillouin zone. The shift
is thereby proportional to the surface magnetization.
Furthermore, while in the nonmagnetic system Dirac
cones appear as rings in the momentum resolved spec-
trum at fixed energy, these surface states are deformed
into arcs due to the magnetization. The arc thereby oc-
curs due to the energy shift of certain spin-directions.

This study shows that the interplay between strong
correlations and nontrivial topology has quite a few of
novel phenomena to be explored, which might be also
used in future applications.
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