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The diamagnetic susceptibility of a superconductor is directly related to its superfluid density.
Mutual inductance is a highly sensitive method for characterizing thin films; however, in traditional
mutual inductance measurements, the measured response is a non-trivial average over the area of
the mutual inductance coils, which are typically of millimeter size. Here we measure localized,
isolated features in the diamagnetic susceptibility of Nb superconducting thin films with lithograph-
ically defined through holes, δ-doped SrTiO3, and the 2D electron system at the interface between
LaAlO3 and SrTiO3, using scanning superconducting quantum interference device susceptometry,
with spatial resolution as fine as 0.7 µm. We show that these features can be modeled as locally
suppressed superfluid density, with a single parameter that characterizes the strength of each fea-
ture. This method provides a systematic means of finding and quantifying submicron defects in
two-dimensional superconductors.

I. INTRODUCTION

Two-dimensional superconductors, in which the super-
conducting thickness, d, is much smaller than the London
penetration depth, λ,1 are both technologically impor-
tant and central to active fields of research in condensed
matter physics. Thin film cuprates2 make it possible
to explore fundamental properties of the cuprate phase
diagram. Superconducting complex oxide heterostruc-
tures, such as LaAlO3/SrTiO3 (LAO/STO)3,4 and δ-
doped SrTiO3 (STO),5 exhibit tunable two-dimensional
superconductivity. Exquisite control of heterostructure
growth enables engineered systems demonstrating high-
temperature superconductivity.6 Wafer-scale supercon-
ducting electronics rely on well-controlled thin films.7

Both fundamental studies and development of applica-
tions of superconductivity require an understanding of,
if not complete control over, typical defects that may in-
fluence or obscure the intrinsic effects of interest.

In this paper, we image the susceptibility of thin-
film samples using a Superconducting QUantum Interfer-
ence Device (SQUID) susceptometer with two concentric
micron-scale loops. We find approximately circular fea-
tures (“halos”) in susceptibility with a minimum at the
center and an asymmetry that mimics our sensor layout.
We interpret these features as regions of reduced super-
fluid density that are small compared to the size of our
sensors (∼ 1 µm). Sub-resolution defects have the sim-
plest possible geometry for a defect in two dimensions,
as they are effectively point-like for the purposes of our
measurements. Some possible intrinsic sources of such
defects could include the intersection of a line defect, such
as a crystallographic dislocation, with the superconduct-
ing plane; small patches of phase-separated material; or

dopant inhomogeneity. Sub-resolution defects can also
be intentionally added to a system, for example, in ion
irradiation experiments that test the sensitivity of the
superconductivity to changes in scattering or to create
vortex pinning sites in order to improve the critical cur-
rent of superconducting wires.

Two-coil mutual inductance experiments with
millimeter-scale spatial resolution have been an excellent
method for characterizing the area-averaged properties
of thin-film superconductors for many years.8,9 Our
susceptometers10,11 have two micron scale pickup loops
integrated into two-junction scanning Superconducting
Quantum Interference Devices (SQUIDs) in a gradio-
metric configuration. In addition, each pickup loop is
paired with a one-turn, co-planar, concentric field coil.
This provides a similar geometry to the two-coil mutual
inductance experiments mentioned above, but with
better spatial resolution and high sensitivity even at low,
quasi-DC frequencies. Here we demonstrate how these
SQUID susceptometers detect defects in two-dimensional
superconductors that are much smaller than the length
scales of our sensor. We first describe a simple model12

and compare it to results for artificial defects with
variable sizes. We then present experimental results
on two 2-dimensional systems and find that the model
reproduces the effect that we observe in real samples
under reasonable assumptions for sample and imaging
parameters.
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II. EXPERIMENTAL METHODS

A. Data acquisition

We imaged the susceptibility of a Nb film with in-
tentionally introduced holes and in two two-dimensional
superconductors using scanning SQUID microscopes in
a liquid helium cryostat (Nb films) and in a dilution
refrigerator13(δ-doped STO, LAO/STO). The Nb films
were 0.2 µm thick sputtered films containing lithograph-
ically defined through holes. The δ-doped STO and
LAO/STO were grown by pulsed laser deposition; de-
tails of the growth of the δ-doped STO can be found in
Ref. 14 (sample with doped layer 5.5 nm thick, 1 at.%
Nb doping) and of the LAO/STO in Ref. 15. Details
of the imaging conditions (temperatures, field coil cur-
rent, and excitation frequency) are noted in the figure
captions. The SQUID sensors used in this study were
Nb-Al2O3-Nb trilayer susceptometers.10,11 We define the
susceptibility, φ = Φ/IΦ0, as the mutual inductance of
the SQUID field coil/pickup loop pair in the presence of
the sample. This mutual inductance is given by the ra-
tio of the flux, Φ, through the SQUID pickup loop to
the current through the field coil, I, normalized by the
superconducting flux quantum Φ0 = h/2e. φ has two
components: φ1 is the flux response in phase with the
field coil current, acquired by recording the flux signal
with zero phase shift relative to the field coil current us-
ing a lock-in amplifier; φ2 is the out-of-phase response,
with the lock-in set to a 90 degree phase shift relative
to the field coil current. A negative value for φ1 corre-
sponds to a diamagnetic susceptibility, while a positive
value corresponds to a paramagnetic susceptibility.

B. Image processing

For the images of holes in thin films of niobium in Fig.
3, we subtracted the susceptibility at a corner of each
image, to more directly compare the data with Ref. 12,
which calculates to first order in a perturbation expan-
sion. For the images plotted in Figs. 6(a), 7(a), and 8(a,
b), we measured the susceptibility as a function of height
z0 (see Fig. 1), recording both quadratures with an
SR830 lock-in amplifier, before taking each susceptibility
image. We also recorded both quadratures of the suscep-
tibility signal during imaging. To set the zero in these
images, we subtracted the average of the 20 points fur-
thest from the sample in susceptibility vs. height for each
quadrature independently. For the in-phase susceptibil-
ity images of LAO/STO plotted in Fig. 6(b), Fig. 9(a),
and Fig. 10(a), we subtracted a susceptibility offset fol-
lowing the same procedure as described above for the
δ-doped STO data; for the out-of-phase data, for the
temperature series, we subtracted the mean of the image
taken at the highest temperature, Fig. 9(b)(vii), and for
the field coil series, the mean of the image taken at the
lowest field coil current, Fig. 10(b)(i).
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FIG. 1. Assumed geometry. A superconducting film of thick-
ness d and infinite extent in the x and y directions is centered
on the plane z = 0. The susceptometer field coil and pickup
loop are modeled as co-planar, infinitely thin circular loops of
radius a and b respectively, oriented parallel to the thin film
in the plane z = z0. A point defect is at x = x0, y = 0, z = 0.

III. THEORETICAL MODELING

A. In-phase susceptibility

We used the approach outlined in Ref. 12 to calculate
the in-phase susceptibility signal due to the reduction or
enhancement of the Pearl length associated with defects
as imaged by a scanning SQUID susceptometer micro-
scope. For the sake of completeness we summarize here
the results of this approach for a point defect in a thin
film.

Our assumed geometry is illustrated in Figure 1. Sev-
eral assumptions go into the calculation.

First, we assume that the superconducting film is in the
Pearl limit,1 with the unperturbed London penetration
depth, λ0, larger than the superconducting film thick-
ness, d. In this limit, the characteristic magnetic length
scale is the Pearl length, Λ0 = 2λ20/d. We further assume
that the dimensions of the region of modified penetration
depth are small compared to all other length scales of the
problem, namely Λ0, the radius of SQUID field coil, a,
and the radius of SQUID pickup loop, b. In modeling the
SQUID itself, we use the approximation that the field
coil and pickup loop are each infinitely thin, perfectly
circular, and continuous loops, are exactly co-planar and
concentric with each other, and are exactly parallel to
the superconducting plane.

The first assumption is not met for our experiments
with holes in Nb, since their thickness (0.2µm) is several
penetration depths (λ0 ≈ 0.08µm) thick. These exper-
iments do however support our interpretation of haloes
as being due to local reductions in the superfluid density
that are on a length scale shorter than the dimensions
of our susceptometer pickup loops. The first assumption
is, however, comfortably met for the δ-doped STO sam-
ple (Λ0 ≈ 2 mm) and the LAO/STO sample (Λ0 ≈ 25
mm) as indicated by fits to our data. Separate analyses
of vortices16 indicate Pearl lengths of many hundreds of
µm or longer in the δ-doped STO sample.

We do not know the underlying physical origin(s) of
the defects that produce halos in the susceptibility of ei-
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ther the δ-doped STO or the LAO/STO, so we do not
know precisely how well the second assumption is satis-
fied. However, if the defects were similar in size to the
pickup loop of the SQUID, we would expect to begin
to see substructure or other deviations from the model
in the measured susceptibility profile. We do not see
such deviations for the naturally occurring defects stud-
ied here. Likewise, for the intentionally introduced de-
fects in Nb films (Fig. 3), the image of the smallest hole
appears similar to the naturally occurring halos. How-
ever, as the holes become larger, the minimum in sus-
ceptibility at the center of the defect image gradually
disappears. We will cover the applicability of the final
assumptions in Sec. IV, in our discussion of the results.

In the absence of vortices London’s equation for the
fields inside a superconductor is written (in S.I. units) as

~h+ ~∇× (λ2~j) = 0, (1)

where ~h is the magnetic field, λ is the (in our case in-

homogeneous) London penetration depth, and ~j is the

superfluid density. Writing ~h = ~hs + ~hr, where ~hs is the

field from the field coil, and ~hr is the response field from
the superconductor, and integrating over the film thick-
ness, results in the following for the z component of the
field:

hsz + hrz +
Λ

2

(
∂gy
∂x
− ∂gx

∂y

)
+

1

2

(
gy
∂Λ

∂x
− gx

∂Λ

∂y

)
= 0,

(2)
where Λ = 2λ2/d is the Pearl length, and gx and gy are
the 2-d supercurrent densities in the x and y directions

respectively. Integrating Maxwell’s equation ~∇ × ~h = ~j
over the film thickness, and neglecting terms proportional
to ∂hz/∂y and ∂hz/∂x, results in

gx = −2hry(0+)

gy = 2hrx(0+), (3)

where the response fields are evaluated at the top surface
of the thin film. Then Eq. 2 becomes, also at the top
surface but suppressing the 0+ notation:

hsz +hrz + Λ

(
∂hrx
∂x

+
∂hry
∂y

)
+

(
hrx
∂Λ

∂x
+ hry

∂Λ

∂y

)
= 0 (4)

We model the defect as a point deviation in the Pearl
length:

Λ(~r) = Λ0 − γ3δ(~r − ~r0), (5)

where γ, with the dimensions of a length, represents the
strength of the defect. We can write the field as the gra-

dient of a scalar potential: ~h = ~∇ϕ. Expanding the
source and response scalar potentials in the region of
space 0 < z < z0 in Fourier series

ϕs(~r, z) =
1

2π2

∫ ∞
0

ϕs(~k)ei
~k·~r+kzd2k

ϕr(~r, z) =
1

2π2

∫ ∞
0

ϕr(~k)ei
~k·~r−kzd2k (6)

results in

ϕr(~k) =
ϕs(~k)

1 + Λ0k
+ δϕr(~k) (7)

with

δϕ(~k) =
γ3e−ikxx0

(2π)2k(1 + kΛ0)

∫
ϕs(~q)

~k · ~qeiqxx0

1 + qΛ0
d2q (8)

The first term in Eq. 7 is the standard result for the
susceptibility of a homogeneous thin superconductor;12

the second term is the change in the response due to
inhomogeneity. The source potential for a circular loop
of radius a carrying current I is given by17

ϕs(~k) =
πIa

k
e−kz0J1(ka), (9)

where J1 is the Bessel function of the first kind of order
1.

Substituting Eq. 9 into Eq. 8 results in

hrz(
~k) = −k δϕ(~k)

= − γ
3Iae−ikxx0

4π(1 + kΛ0)

∫ ~k · ~qJ1(qa)eiqxx0−qz0

q(1 + qΛ0)
d2q(10)

for the z-component of the response field. Fourier trans-
forming Eq. 10, integrating over the pickup loop area S,

and using the relations
∫
S
ei
~k·~rd2r = 2πbJ1(kb)/k and∫ 2π

0
cos(θ)e±iz cos(θ)dθ = ±2πiJ1(z) results for the in-

phase response flux through the pickup loop

φr1 =
Φ

IΦ0
= −µ0γ

3ab

2Φ0
Dx(a)Dx(b) (11)

where Φ is the flux through the pickup loop, Φ0 = h/2e
is the superconducting flux quantum, and

Dx(r) =

∫ ∞
0

qJ1(qr)J1(qx0)e−qz0

(1 + qΛ0)
dq (12)

Figure 2a plots the predictions of Eq. 11 for the in-
phase response flux as a function of lateral spacing x0
for a number of values of Λ0/a, for fixed z0/a=0.25 and
b/a=0.46. Note that the response flux goes to zero as x0
goes to zero. This is because when the field coil is cen-
tered directly above the defect, there are no circulating
Meissner shielding currents at the defect. The response
curve peaks at x0 ≈ a: the halos are about the same
size as the field coil used to image them. Further, the
response flux becomes weaker as the homogeneous Pearl
length Λ0 becomes larger. Figure 2b plots the peak value
of φr1 as a function of Λ0/a for a number of values of b/a.

B. Out-of-phase susceptibility

We will now turn to the interpretation of the out-of-
phase susceptibility signal that we see in LAO/STO, but
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(a)	 (b)	

FIG. 2. In-phase susceptibility of defects in thin film
superconductors. (a) Plot of normalized in-phase de-
fect response susceptibility −2Φ0a

2φr,1/γ
3µ0 vs lateral spac-

ing x0/a, for various reduced Pearl lengths Λ0/a, for spac-
ing z0/a = 0.25 between the sample surface and the field
coil/pickup loop (see Fig. 1), and b/a=0.46. (b) Peak value
of the normalized in-phase defect response susceptibility φr

1 as
a function of Λ0/a, for various values of b/a, with z/a=0.25.
For large values of the Pearl length φr

1 is approximately pro-
portional to 1/Λ2

0; for small Λ0’s φr
1 is nearly proportional

to 1/a2. In all cases the defect response susceptibility scales
with the cube of the defect strength parameter γ.

not in δ-doped STO, at the same location as the in-phase
signal.

It is important to first rule out spurious effects that
could mimic physically interesting ones. The simplest
way to get an unphysical out-of-phase signal is to have an
unaccounted-for RLC time constant coming from some-
where in the experimental setup. In such a scenario, a
signal that starts out purely in-phase acquires a phase
shift

θRLC = tan−1
(
ωL− 1

ωC

R

)
, (13)

where R, L, and C are the parasitic resistance, induc-
tance, and capacitance of the experimental setup, and ω
is the frequency of the signal. Crucially, the phase shift
depends on frequency but not on the amplitude of the
signal.

All of the images presented below for LAO/STO were
taken at the same frequency, 1863.3 Hz. If the phase were
due to RLC effects, we would expect it to be constant
within a given scan and from scan to scan. As such,
while these effects may give a small, uniform phase offset,
they cannot account for the strong dependence of the
phase on position and field coil amplitude. We therefore
interpret the out-of-phase signal in the LAO/STO data as
coming from physical, dissipative processes in the sample,
as described below.

Mutual inductance measurements of the kind we con-
sider here effectively measure a complex susceptibility,
χ = χ1+iχ2, where the real part describes the superfluid
response while the imaginary part is related to dissipa-

tion and power loss.18 In measurements of the mutual
inductance of superconductors, the imaginary part has
been shown to peak near Tc,

19 and has also been used to
obtain information on such physics as inter- and intra-
granular critical fields in granular superconductors,20,21

vortex states and dynamics,22 and the spatial distribu-
tion of superconductivity, e.g. whether it is filamentary
or not.23

As has been demonstrated previously,19,24,25 the com-
plex mutual inductance can be numerically related to the
complex conductivity, G, which is further the inverse of
the complex impedance Z = 1/G = R+iωL, where R is a
generalized resistance and L is a generalized inductance.
In the zero field limit, where vortex contributions to the
impedance can be taken to be real, the inductive part of
the complex impedance is given by the kinetic inductance
of the superfluid,25 from which the Pearl length and, by
extension, the superfluid density and London penetration
depth, can be extracted.

While the geometric factors involved in extract-
ing these superconducting parameters from scanning
SQUID susceptometry measurements have been consid-
ered previously,26 extracting the complete complex con-
ductivity in our geometry has not. By obtaining the com-
plex conductivity, we could, in principle, extract from the
out-of-phase halo signal a local reduction of the critical
current density near the observed defects with numerical
modeling.27

IV. RESULTS

A. Intentionally produced defects

As a test of the theory described in Section III A12 we
imaged the susceptibility of lithographically fabricated
holes in a 0.2 µm thick Nb film. This theory can only
be expected to apply qualitatively to these experiments,
since it is developed in the Pearl limit λ > d, while
the sample had λ (≈ 0.07µm) < d (0.2 µm). For these
experiments, we used a susceptometer with the highest
spatial resolution available, with 0.2 µm inside diameter
pickup loops,11 as diagrammed in Fig. 3(a). In this lay-
out, the base electrode, which constitutes the field coil
and the lower shield for the pickup loop, is in blue; the
first wiring level, which constitutes the pickup loop, is in
black; and the second wiring layer, which constitutes the
upper shield for the pickup loop, is in red. The panels
in Fig. 3(b-d) are susceptibility measurements for square
holes of different sizes, as labeled. The similarity of these
measurements to the naturally occurring halos described
below supports our interpretation of such features as be-
ing due to defects in the superconducting films.

The symbols in Fig. 4(a) represent a cross-section as
indicated by the dashed line through the data of Fig.
3(b). The solid line in Fig. 4(a) is a a fit to Eq. 11, with
the fitting parameter γ = −0.5 µm chosen to fit the data
on the right hand side of the cross-section. The effective
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FIG. 3. Experimental susceptibilities of lithographi-
cally defined holes through a 0.2 µm niobium film.
(a) Pickup loop (black)/field coil (blue) layout for the sus-
ceptometer used. The red layer is a superconducting shield
for the pickup loop. (b)-(d) Susceptibility images for square
holes with sizes as labeled. Field coil current 1 mA at 2.024
kHz, T = 5 K. The SQUID substrate and sample were touch-
ing during the scan, such that z0, the spacing between the
sample surface and the pickup loop layer, was about 0.5 µm.
The dashed line in (b) shows the location of the cross-section
through the data displayed in Fig. 4.
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FIG. 4. Theoretically predicted susceptibilities. (a)
The symbols are a cross-section as indicated in Fig. 3(b).
The solid line is from the model12 described above (Eq. 11),
with b= 0.79 µm (white circle) and a=0.22 µm (yellow circle)
in Fig. 4(b). The fitting parameter γ = -0.5 µm. (b)-(d)
Calculated susceptibilities for square holes in a niobium film
with the sizes as labeled, obtained by convolving the point
spread function from (b) with the hole shapes.

field coil radius b =
√

(r2in + r2out)/2 = 0.79 µm, where
rin is the inner radius and rout is the outer radius of the
field coil. The effective pickup loop radius a = 0.22 µm
was chosen to match the measured mutual inductance
between the field coil and the pickup loop.11 Figure 4(b)
shows the predicted susceptibility for a point defect with
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FIG. 5. Calculated susceptibilities using an experi-
mental point spread function. (a) Point spread function
inferred from experimental susceptibility of a 0.5 µm×0.5 µm
hole in niobium. (b)-(d) Calculated susceptibilities for rect-
angular holes with sizes as labeled.

these parameters.
Modeling of the SQUID susceptibility signal from de-

fects of finite size is difficult. One possible approach is
to sum up the contribution from multiple small defects
separated in space from one another. The panels in Fig.
4(c-f) are calculated susceptibility images using

φ(x, y) =

∫ ∞
−∞

dx′
∫ ∞
−∞

dy′S(x′, y′)P (x− x′, y − y′) :

(14)
the predicted SQUID susceptibilities for the larger holes
are the convolution of the point spread function P (x −
x′, y − y′) taken from Eq. 11 with S(x, y), the shape
function for the hole. For example the shape function for
a square hole of side s would be S(x, y) = 1 for |x| <
s/2, |y| < s/2, 0 otherwise.

Comparison of Figs. 3 and 4 shows progressively
poorer agreement as the holes get larger, for several rea-
sons. First, the theory assumes circular symmetry, which
is clearly not the case for the susceptometer diagrammed
in Fig. 3(a). Second, the implicit assumption of a lin-
ear, local response in Eq. 14 ignores the non-local nature
of the response of a superconductor to applied magnetic
fields.

One way to address the issue of the symmetry of the
sensor is to deconvolute the point spread function from
experimental data28 using

P̄ (kx, ky) = φ̄(kx, ky) ∗H(k, kmax)/S̄(kx, ky) (15)

where P̄ (kx, ky), φ̄(kx, ky), and S̄(kx, ky) are the Fourier
transforms of the point spread function P (x, y), the mea-
sured susceptibility φ(x, y), and the hole shape S(x, y),
respectively. The Hanning function, H(k, kmax) = (1 +

cos(k/kmax))/2 for k =
√
k2x + k2y < kmax and 0 other-

wise, was used to limit high frequency noise in k-space,
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FIG. 6. We observe “halos,” approximately circu-
lar features of reduced susceptibility, in several two-
dimensional superconductors. In-phase susceptibility im-
ages of a) δ-doped SrTiO3 with 5.5 nm thick, 1 at.% Nb dop-
ing layer (studied in detail in Ref. 14) and a set temperature
of 150 mK; and b) LaAlO3/SrTiO3 (Sample G of Ref. 30,
Chapter 3), where the temperature as measured at the sam-
ple thermometer was 54 mK before and 84 mK after the scan.

with kmax = 12 µm−1. The predictions of this approach
have the asymmetry expected from the susceptometer
layout, but “fill in” more rapidly with hole size than ex-
periment. We note that this second approach, while it
improves the accuracy of the susceptometer shape, does
not address the non-local nature of the response of a su-
perconductor to applied magnetic fields.

A more complete modeling of defects with finite size
would involve a numerical solution of London’s and
Maxwell’s equations using a realistic geometry for the
susceptometer and sample.11,29

B. Naturally occurring defects

We observe halos of reduced diamagnetic susceptibility
in both two-dimensional superconducting systems con-
sidered here, as shown in Fig. 6(a, b). We have also ob-
served similar features in a bulk superconductor.31 The
diameter of the halos in the two-dimensional samples is
similar to the ∼ 20 µm diameter of the field coil in the
SQUID susceptometer used. Our experience is that in
LAO/STO samples there were areas with many haloes,
but it was also possible to find areas with few or no
haloes, whereas in the δ-doped STO, it was rare to find
halos at all and even more rare to find more than one in
a single scan area. Further, it was possible to produce
haloes in LAO/STO samples by repeatedly touching the
sample with the susceptometer substrate.

Fig. 7(a) is an enlargement of the halo feature located
in the center-right of Fig. 6(a). Averaged linecuts per-
pendicular to the axis of bilateral symmetry of the halo
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FIG. 7. The profile of a halo along a high-symmetry
direction is reproduced by our model for SQUID sus-
ceptometry of a point-like defect. a) In-phase suscepti-
bility image taken, with field coil current 0.25 mArms at 1472
Hz, on 5.5 nm, 1 at.% Nb δ-doped STO (cropped version
of Fig. 6(a)). Superimposed on the image are the positions
of three line cuts, and the layout of the pickup loop (black)
and field coil (blue) region of the susceptometer used for this
image.10 b) Average of line-cuts (dots) and fit to (Eq. 11)
plus linear background (dashed line). c) Simulated image cal-
culated with same parameters as in (b) and a second-order
background determined by fitting a surface to the data far
from the circular feature in (a). The field coil and pickup
loop (blue and black overlays, respectively) are represented
by concentric, co-planar circles of 8.4 µm and 2.7 µm radii,
respectively.

show a double-peaked feature, Fig. 7(b), on top of an
approximately linear background. The dashed curve in
this figure is obtained by fitting the data to Eq. 11 plus a
linear background of unknown origin, plus an offset flux
φ0 given by the expression for the SQUID susceptibility
of a thin film diamagnet26

φ0 = −aφs(1− 2z̄/
√

1 + 4z̄2)/Λ0 (16)

where Λ0 is the Pearl length away from the defect,
z̄ = z0/a, and φs is the mutual inductance between the
field coil and the pickup loop in the absence of a sam-
ple. This fit gave values for Λ0=1.98±0.19 mm, and γ
= -33.7±0.5µm, using fixed values of a = 8.4 µm, b =
2.7 µm,26 and z0 = 2.9±0.3 µm, calculated using the scan
offset height set in the measurement, the known sensor
geometry, and an estimate for the SQUID-sample surface
angle. The errors in the fit values for Λ0 are dominated
by the uncertainty in z0, whereas the errors in γ are dom-
inated by statistical errors. Since for a homogeneous thin
film and in the absence of fluctuations the Pearl length
Λ0 = 2λ20/d, where λ0 is the London penetration depth
and d is the film thickness, and the 2D superfluid density
Ns is given by Ns = md/µ0q

2λ20, where m is the mass and
q is the charge of the superconducting charge carriers, it
follows that 1/Λ0(T ) is a measure of the 2D superfluid
density Ns(T ). A Pearl length of 1 mm corresponds to
a 2D superfluid density of Ns = 3 × 1012 1/cm2. The
extraordinarily long Pearl lengths and γ values reported
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FIG. 8. Temperature dependence of defect image in δ-doped STO. Images of in-phase susceptibility a) without and
b) with background subtraction and c) out-of-phase susceptibility without background subtraction in the region of the δ-doped
STO sample plotted in Fig. 7, as a function of temperature. Temperatures noted on the figure were measured at the mixing
chamber at the beginning of each scan. Images and associated measurements of susceptibility as a function of height were
taken at a field coil current of 0.25 mArms, 1472 Hz. d) Line-cuts through the in-phase (φ1) images as indicated by the dashed
lines in a). e) Line-cuts through the out-of-phase (φ2) images as indicated by the dashed lines in c). The zeros of each curve
(dashed lines) are offset by -0.02Φ0/A as the temperature is lowered. f) and g) best fit values for the Pearl length Λ0 and the
defect strength parameter γ from fits to the in-phase susceptibility φ1 as described in the text.

in this paper are a result of the very low 2D superfluid
densities in LAO/STO and δ-doped STO.

Fig. 7(c) shows a simulated image of a halo calculated
using the same parameters as in (c) plus this same back-
ground.

Figure 8 shows the evolution with temperature of the
in-phase susceptibility φ1 without (Fig. 8a) and with
(Fig. 8b) background subtraction, and the out-of-phase
susceptibility φ2 (Fig. 8c) of the halo of Fig. 7(a) at a
low field coil current (0.25 mArms). Fig. 8d,e displays
horizontal cross-sections through the images as indicated
by the dashed lines in Figures 8a and 8c respectively.
As the temperature is lowered, the superfluid density be-
comes larger, the Pearl length becomes shorter, and the
background susceptibility becomes more diamagnetic, as
expected from Eq. 16. Fits to this data using the same
procedure as for Fig. 7, displayed as dashed lines in Fig.
8d, result in values for 1/Λ0(T ) and 1/γ(T ) that decrease
monotonically from low T to Tc. Fig. 8c and Fig. 8e re-
veals no measurable out-of-phase halo signature even as
the temperature approaches Tc near 320 mK. In contrast,
measuring a different sample (LAO/STO) as a function
of temperature at 1 mArms, Fig. 9, reveals features in the
out-of-phase susceptibility [Fig. 9(b)] at locations corre-

sponding to halos in the in-phase channel [Fig. 9(a)], even
at T/Tc ∼ 0.3 [Fig. 9(b)(i)].

In LAO/STO, the susceptibility data on the halos and
in the background region have different temperature de-
pendences. Looking at a point away from any halos, such
as the one indicated in Fig. 9(a)(i) at center right by a
red ‘◦’, we see at the lowest temperature the strongest
diamagnetic signal in the in-phase channel [Fig. 9(a)(i)]
and no signal in the out-of-phase channel [Fig. 9(b)(i)].
As the temperature is steadily increased, the strength
of the diamagnetism is gradually weakened [Fig. 9(a)(ii-
v)] before becoming paramagnetic in the normal state
[Fig. 9(a)(vi-vii)]. In the out-of-phase channel, the signal
in the background region remains small and mostly fea-
tureless as the temperature is increased [Fig. 9(b)(ii-iii)]
until just below Tc, where it peaks [Fig. 9(b)(iv-v)]. In
the normal state, the out-of-phase component returns to
zero [Fig. 9(b)(vi-vii)].

Considering now a point on a halo, such as indicated
by the red ‘+’ in Fig. 9(a)(i), the in-phase signal is al-
ready less diamagnetic than the background even at the
lowest temperature [Fig. 9(a)(i)] and has a net param-
agnetic response at a lower temperature [Fig. 9(a)(v)]
than the surrounding background region, consistent with
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FIG. 9. Temperature dependence of defect images in LAO/STO. Images of a) in-phase and b) out-of-phase susceptibility
taken as a function of temperature on the same 5 u.c. LAO/STO sample as the data shown in Fig. 6(b). The labels at the top
of the images display the temperatures at the mixing chamber at the beginning and end of the scans. During this temperature
series, a backgate voltage of 0 V was applied to the LAO/STO. Images and associated susceptibility versus height measurements
taken at field coil current of 1 mArms, 1863.3 Hz. b) Line-cuts through the in-phase susceptibility images (φ1) as indicated by
the dashed lines in Fig. 9a. d) Line-cuts through the out-of-phase images (φ2) as indicated by the dashed lines in 9b. e) and
f) best fits values for the uniform Pearl length Λ0 and defect strength parameter γ from fits to the in-phase susceptibility as
described in the text.

there being a lower Tc associated with the halos than
for the background region. Likewise, the enhanced out-
of-phase susceptibility of the ‘+’ pixel is already visible
at the lowest temperature [Fig. 9(b)(i)] and persists over
a wider range of temperatures [Fig. 9(b)(ii-iv)] than the
surrounding region (‘◦’ symbol), as seen by faint light-
ening in the halo regions in Fig. 9(b)(v). By the time
the surrounding region is normal, as indicated by a non-
diamagnetic background, the out-of-phase signal associ-
ated with the halos has already also vanished, leaving
Fig. 9(b)(vi-vii) featureless. That is, in addition to a
shift in temperature associated with the lower Tc in halo
regions, we also see the peak in the out-of-phase com-
ponent broadened so much that it persists to our lowest
measured temperatures. These trends are reproduced in
the line-cuts displayed in Fig.’s 9c,d.

The susceptibility of the LAO/STO measured as a
function of field coil current (equivalently, applied field:
this field coil, with effective radius 8.4 µm, applies ap-
proximately 75 µT/mA to the sample) shows similar
trends as in the temperature series [Fig. 10]. At the low-
est field coil current, both channels are nearly featureless
[Fig. 10(a, b)(i)]. Away from the halos, the in-phase com-
ponent gradually approaches but does not reach zero as

the current amplitude is increased [Fig. 10(a)(ii-vi)]. The
out-of-phase component away from the halos steadily in-
creases but does not clearly reach its peak in the mea-
sured range [Fig. 10(b)(ii-vi)]. By contrast, the in-phase
susceptibility on halos crosses zero [Fig. 10(a)(iv)] and
shows a net paramagnetic signal at higher field ampli-
tudes [Fig. 10(a)(v-vi)] as seen in the normal state in the
temperature series [Fig. 9(a)(vii)]. Furthermore, the out-
of-phase component does peak on halos [Fig. 10(b)(iii)],
falling off as the field amplitude is further increased
[Fig. 10(b)(iv-vi)]. The sign of the out-of-phase com-
ponent of the haloes relative to the background reverses
at sufficiently high fields. A full theory of the out-of-
phase component of scanning SQUID microscopy will be
required to explain some of these results.

V. DISCUSSION

A. Comparison to model

While the calculated curves in Fig. 7(c) and Fig. 4(a)
are in good agreement with the data, there are some no-
table differences between our images of halos and the
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FIG. 10. Field coil current dependence of defect images in LAO/STO. Susceptibility images as a function of field
coil current at temperatures of ∼ 0.4 − 0.5 T/Tc on the same 5 u.c. LAO/STO sample as the data shown in Fig. 6(b) and
Fig. 9. a) in-phase and b) out-of-phase susceptibility. During this field coil series, a backgate voltage of -30 V was applied to
the LAO/STO. RMS field coil currents as noted on images; excitation frequency of 1863.3 Hz for all images and associated
measurements of susceptibility versus height. c) Line-cuts through the in-phase susceptibility (φ1) images as indicated by the
dashed lines in a). d) Line-cuts through the out-of-phase susceptibility (φ2) images as indicated by the dashed lines in b).
Successive curves are offset by -0.05Φ0/A as the field coil current is increased. e) and f) Best fit values for the uniform Pearl
length Λ0 and defect strength parameter γ as a function of field coil current I, obtained by fitting the in-phase susceptibility
of (c).

calculated images.
First, in all of the experimental data, we see gaps in

each halo, whereas the calculated signals are circularly
symmetric. The gap is an artifact from the physical lay-
out in our sensors: the shields of the pickup loop (red in
Fig. 7(a) and Fig. 3(a)) and the field coil (black in Fig.
7(a) and Fig. 3(a)) reduce the field applied to the sample
when the sensor is positioned higher in y than the defect
in Fig. 7(a) or lower in y than the defect in Fig. 3(a).

Second, the experimental signal on the δ-doped sample
[Figs. 6(a), 7(a), 8(a)] appears to fade towards the top
of the image. This slope in the signal is present in the
unperturbed signal far from the halo as well, and may
either be a true change in the strength of the suscepti-
bility signal with position or an artifact due to poor scan
plane compensation. The calculated image in Fig. 7 in-
cludes a second-order background slope determined from
the data around the edge of the scan area, away from
the halo, and it shows a similar fading-out of the halo
towards the top of the image.

Finally, the halos in Figs. 6(b), 9, and 10 are somewhat
stretched along the vertical and/or compressed along

the horizontal, compared to the expected circular shape.
This distortion is almost certainly an artifact of imperfect
spatial calibration of the piezoelectric scanners.

Overall, the model confirms our interpretation of the
halos in susceptibility as originating from enhancements
in Λ (reductions in ns) at regions whose maximum spa-
tial extent is smaller than our sensor. In principle, if
the defect is actually point-like, the model allows us to
pinpoint the position of the defect to better than the di-
ameter of the SQUID pickup loop; the defect should be
centered on the local minimum between the two lobes of
a cross-section of a halo.

All other parameters being equal, γ tells us the rela-
tive strength of a sub-resolution defect. If, for example,
a scan area contained several non-overlapping halos, we
could compare γ from halo to halo and perhaps infer
something about the nature of the defects. The model
does not capture any information about the structure of
the defect; the defect is simply a delta function with zero
spatial extent and perfect rotational symmetry. Physical
defects are not delta functions, of course. The effective
“strength” of a defect that we might extract from images
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will depend not only on the actual local change in Λ, but
also on the shape and spatial extent of the defect.

For the data shown in Fig. 7, we obtain a value of
γ = −21 µm. To determine the size of the Pearl length
(Eq. 5) in the defect from γ, one would have to assume an
effective area for the defect. Supposing that the defect
were just smaller than the pickup loop, with a radius
of 1.5 µm, for example, γ = −21 µm would imply a
perturbed Λ of 2.3 mm.

VI. CONCLUSION

We have observed halo-like features in susceptibility
images from intentionally introduced holes in supercon-
ducting Nb films as well as from two two-dimensional
oxide superconductor system. A straightforward model
confirms our interpretation of the halo features as orig-
inating from regions of increased Λ (decreased ns) on
length scales smaller than those of our SQUID suscep-
tometer. This understanding expands our toolkit for
characterizing superconducting thin films.

It would be interesting to compare estimates of vortex
pinning potentials, such as those given by vortex drag-
ging experiments32,33 or by studying the statistics of the

positions of vortices over many field-cooling cycles, to
the defect strength, γ, that we can extract from halos.
We expect stronger suppressions of ns to correspond to
stronger pinning potentials.

While the model that we used to calculate a halo can
tell us where the defects are located, it cannot tell us
about the structure or composition of the defects by
itself. Complementary measurements, such as scanned
Laue microscopy and strain mapping,34–36 would enable
us to access such information.

ACKNOWLEDGMENTS

This work was supported by the Department of En-
ergy, Office of Science, Basic Energy Sciences, Materi-
als Sciences and Engineering Division, under Contract
DE-AC02-76SF00515. H. N. acknowledges support from
a Stanford Graduate Fellowship and a Natural Sciences
and Engineering Council of Canada PGS M and PGS D.
We would like to thank Masayuki Hosoda for assistance
with sample fabrication and Vladimir Kogan for useful
discussions. We acknowledge Elie Track, Micah Stouti-
more and Vladimir Talanov of Northrop Grumman Mis-
sion Systems for fruitful discussions and for providing
samples for this work.

1 J. Pearl, Appl. Phys. Lett. 5, 65 (1964).
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