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Abstract

We investigate the appearance of quantum chaos in a single many-body wave function by an-

alyzing the statistical properties of the eigenvalues of its reduced density matrix ρ̂A of a spatial

subsystem A. We find that (i): the spectrum of the density matrix is described by so-called Wishart

random matrix theory, which (ii): exhibits besides level repulsion, spectral rigidity and universal

spectral correlations between eigenvalues separated by distances ranging from one up to many mean

level spacings, which we investigate. We use these universal spectral characteristics of the reduced

density matrix as a definition of chaos in the wave function. A simple and precise characterization

of such universal correlations in a spectrum is a segment of strictly linear growth at sufficiently

long times, recently called the “ramp”, of the spectral form factor which is the Fourier transform

of the correlation function between a pair of eigenvalues. It turns out that Wishart and standard

random matrix theory have the same universal “ramp”. Specifically, here numerical results for the

spectral form factor of the density matrix of generic non-integrable many-body systems, such as

one-dimensional quantum Ising and Floquet spin models, are found to exhibit an universal “ramp”

identical to that appearing for a “random pure state” (“Page state”, or “Haar state”). The density

matrix of the latter is precisely the Wishart random matrix, the reduced density matrix of a com-

pletely random wave function. In addition, we study the development of chaos in the wave function

by letting an initial direct product state evolve under the unitary time evolution. We find that

the universal spectral correlations as manifested by the “ramp” set in as soon as the entanglement

entropy begins to grow, and first develop for the eigenvalues at the top of the spectrum of the den-

sity matrix ρ̂A, subsequently spreading over the entire spectrum at later times. Finally, we study

a prethermalized regime described by a generalized Gibbs ensemble, which develops in a rapidly

driven Floquet model at intermediate times. We find that the prethermalized regime exhibits no

chaos, as evidenced by the absence of a “ramp” in the spectral form factor of the density matrix,

while the universal spectral correlations start to develop when the prethermalized regime finally

relaxes at late times to the fully thermalized (infinite temperature) chaotic regime.
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I. INTRODUCTION

The characterization of chaos in quantum mechanical systems has a long history, and

chaos plays a key role in the process of thermalization, i.e. relaxation to equilibrium in

generic isolated many-body quantum systems1,2. (See e.g. Ref.s 3, 4, 5, 6 for a review.)

It also plays an important role for the quantum nature of black holes.7–12 An important

milestone in the study of quantum chaos has been the so-called Bohigas, Giannoni and

Schmidt conjecture13, which states that chaos manifests itself in the spectral properties of

the Hamiltonian of a quantum system by exhibiting universal features which are the same

as those of the spectrum of a random Hamiltonian matrix in the same symmetry class.

Such universal features include, besides level repulsion statistics between adjacent spectral

levels, spectral rigidity and more generally the correlation function between two levels which

is universal for levels separated by energy scales that range from the mean level spacing

to energy differences which can be much larger, up to scales at which model-dependent

(“ultraviolet”) features set in. The corresponding universality classes are solely determined

by the action of the anti-unitary time-reversal operator, giving rise to the three possible

symmetry classes of spectral statistics depending on whether time reversal symmetry is

absent (“GUE”, Dyson index β = 2), or is present and squares to the identiy operator

(“GOE”, Dyson index β = 1) or squares to minus the identity operator (“GSE”, Dyson

index β = 4).

Spectral characteristics of a discrete spectrum of levels Ei are conveniently described by

the so-called spectral form factor14, which is the Fourier transform of the correlation function

between two levels, and can be written in the form

g(τ) ≡ 〈
∑
i,j

e−iτ(Ei−Ej)〉, (Spectral Form Factor). (1.1)

Here τ denotes an auxiliary real time (not to be confused with an ‘Euclidean’ or ‘imaginary’

time coordinate, often denoted by the same symbol), and 〈...〉 stands for a certain aver-

age, to be described in detail below, whose sole purpose is to remove non-universal rapid

temporal fluctuations (in τ) from the signal which originate from (non-universal) high fre-

quency components corresponding to large energy differences (Ei − Ej). In random matrix

theory, considering here the simplest case where time-reversal symmetry is absent (“GUE-

type” statistics), a simple and precise characterization of universal spectral correlations is
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a segment of strictly linear growth15 in time τ , recently called12 the “ramp”, of the spectral

form factor g(τ) at sufficiently long times up to the so-called Heisenberg time τH (defined

to be 2π times the inverse of the mean level spacing), where it suddenly becomes com-

pletely flat, reaching its long-time “plateau” value, as sketched16 in Fig. 1. [The Heisenberg

time has also been called “plateau time” τp ≡ τH .] More precisely, the connected spec-

tral form factor gc(τ) obtained17 from (1.1) by subtracting a (non-universal) disconnected

piece |〈
∑

i e
−iτEi〉|2, turns out to exhibit a longer segment of universal, strictly linear growth

(“ramp”) for time scales τ larger than a shortest time scale τ0 below which (in applications,

e.g. to spectra of Hamiltonians describing quantum chaos) possible non-universal features

set in. I.e., the region τ . τ0 corresponds to differences of energies (Ei − Ej) which exceed

the universal regime. - In the (non-connected) spectral form factor g(τ) from (1.1), a portion

of this universal segment of linear growth in gc(τ) turns out to be hidden at small times

larger than τ0 by possible non-universal features of the disconnected part, and g(τ) typically

only exhibits a shorter part of the entire universal linear “ramp”, as depicted in Fig. 1.
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FIG. 1. Typical structure15 of the linear universal “ramp” in the spectral form factor g(τ) as well

as of the connected spectral form factor gc(τ), which exhibits a longer “ramp” ranging from a

microscopic short time scale τ0 below which non-universal effects set in, up to the Heisenberg time

τH (also called plateau time τp).
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It was shown18,19 many years ago that in chaotic quantum systems with a small number

of degrees of freedom whose classical limit is ergodic, the “ramp” for the energy spectrum

of the Hamiltonian can be computed analytically in the semiclassical limit by making use of

Gutzwiller’s Trace Formula20 and known properties of asymptotically long classical periodic

orbits. In these cases, the time-scale τ0 characterizes the onset of potential non-universal

contributions to gc(τ) for τ . τ0 arising from short orbits. On the other hand, the spectral

form factor has very recently formed a topic of extensive discussion in the context of the

Sachdev-Ye-Kitaev (SYK) model21–23, a strongly chaotic quantum system, whose Hamilto-

nian has been shown numerically to exhibit a spectrum possessing the expected “ramp”.

A recent lucid discussion of many aspects of the spectral form factor, with an emphasis on

the Hamiltonian spectrum of the SYK model, can be found in Ref. 12. - In contrast, these

universal spectral correlations are absent in an integrable system, where the spectral form

factor exhibits no “ramp” (and the probability distribution for the spacing between adjacent

levels is Poissonian).

In the present paper, we are going to show that the universal spectral correlations mani-

fested by a strictly linear “ramp” already appear at the level of a single many-body wave-

function of a generic chaotic quantum system, without focusing attention on the spectrum

of the Hamiltonian of the system; we also discuss periodically driven Floquet systems.

For thermalizing (chaotic) systems whose time-evolution is governed by a time-independent

Hamiltonian (i.e. not Floquet systems), our work can be motivated by the connection

between a typical state and the thermal ensemble, a notion inherent in the eigenstate ther-

malization hypothesis1,2 (ETH), which we now briefly summarize as follows: Let |ψ〉 be a

state at finite energy density e = E/V (i.e. 〈ψ|Ĥ|ψ〉 = E = e V , where V is the volume),

which can either be a highly excited exact eigenstate of a chaotic Hamiltonian Ĥ in the

spatial volume V , or just a typical short-range entangled initial state (which is not an

eigenstate of Ĥ) acted on by the corresponding unitary quantum mechanical time-evolution

operator for a sufficiently long time. ETH states that the expectation value of a product

of local operators in the state |ψ〉 equals the thermal expectation value of this product at

a temperature determined by e in the usual sense of microcanonical Statistical Mechanics.

For Floquet systems, these expectations values in the analogous state |ψ〉 are at infinite

temperature.

Here we consider the reduced density matrix in a spatial subregion A (B = Ā is the
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complement of A) of such a typical state,

ρ̂A = TrB |ψ〉〈ψ|. (1.2)

We will show that the spectral form factor for the spectrum of eigenvalues λi of the reduced

density matrix ρ̂A,

g(τ) ≡ 〈
∑
i,j

e−iτ(λi−λj)〉, (1.3)

exhibits a “ramp”. As mentioned above, the presence of a “ramp” in the spectral form factor

demonstrates the presence of universal spectral correlations over a possibly large range of

scales (determined by τ0 and τH) in the spectrum of eigenvalues of the density matrix. Thus,

in this paper we use the presence of these universal spectral correlations in the spectrum

of eigenvalues of the reduced density matrix of a typical quantum state |ψ〉, as manifested

by the presence of a “ramp” in the associated spectral form factor, to define the notion of

quantum chaos in the state (i.e. “in the wavefunction”). In particular, we will show at the

technical level that spectral properties of the reduced density matrix ρ̂A are described by

so-called Wishart random matrix theory24. As it turns out, Wishart random matrix theory

exhibits universal spectral correlations idential to those appearing in standard (here25 GUE)

random matrix theory; in particular they have the same universal linear “ramp” (see Sect.

IV C and Appendix B).

For systems whose time-evolution is governed by a time-independent Hamiltonian, we

can look at this also from a slightly different angle: Instead of investigating the spectral

statistics of the reduced density matrix, one may also be inclined to consider the spectral

statistics of the associated entanglement Hamiltonian ĤE defined by

ρ̂A = N−1
E exp{−βeffĤE}. (1.4)

The spectral form factor for the entanglement Hamiltonian is obtained from (1.3) by letting

λi → − lnλi. As discussed in Appendix A, the two spectral form factors, of ρ̂A and of ĤE,

exhibit identical universal features in their respective level statistics. In particular, in a

chaotic system they both exhibit a linear “ramp”. Now, one may think of the entanglement

Hamiltonian and of (1.4) in the light of a strong version of ETH proposed in Ref. 26, which

states that the reduced density matrix of the single state |ψ〉 takes on a thermal form,

ρ̂A = N−1
A exp{−βĤA}, where ĤA is the physical (chaotic) Hamiltonian of the system,
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projected onto the region of subsystem A. Note that this strong version of ETH26 is a

quite non-trivial statement because even though ρ̂A is constructed from a single state [see

(1.2)], this statement implies that ρ̂A contains the knowledge of the entire Hamiltonian of

the system, or rather at least of its projection onto A. - Then, if one assumes the validity of

the above-mentioned strong version of ETH, one would naturally expect that the universal

correlations in the spectrum of the entanglement Hamiltonian ĤE are directly inherited

from those of the physical Hamiltonian ĤA (which, according to the Bohigas, Giannoni and

Schmidt conjecture, is expected to exhibit universal spectral correlations). Thus, since we

observe (as mentioned) that ρ̂A and ĤE exhibit the same universal features in their spectral

form factors, it would be natural to expect the appearance the universal spectral correlations

(and the “ramp”) in the entanglement Hamiltonian of a single state |ψ〉. Put another way,

for thermalizing (chaotic) systems whose time-evolution is governed by a time-independent

Hamiltonian, our results can thus also be viewed as a confirmation of the strong version of

ETH proposed in Ref. 26.

In order to investigate explicitly the presence of the mentioned universal correlations in

the spectrum of the reduced density matrix (1.2) in many-body quantum chaos, we numer-

ically compute the spectral form factor of the density matrix of a typical single many-body

wave function |ψ〉 [as defined in the paragraph above (1.2)], in two generic non-integrable

one-dimensional systems: a Floquet spin model, and a quantum Ising model in both trans-

verse and logitudinal field. As will be shown below in the bulk of the paper, we clearly ob-

serve for both systems a linear “ramp” in the spectral form factors of their density matrices,

confirming the corresponding universal spectral correlations in their spectra of eigenvalues.

Furthermore, in order to provide a generic, model-independent description of the universal

features of quantum chaos in a wave function, we consider a so-called “random pure state”,

or “Page state” (“Haar state”)27,

|Ψ({αi})〉 =
∑
i

αi |Ci〉, (1.5)

in which the coefficients αi of the state in a fixed basis {|Ci〉}i are random complex numbers

subject solely to the normalization constraint, with a probability distribution invariant under

unitary basis changes. The set of coefficients {αi}i can thus be considered a row (or column)

vector of a unitary random matrix (distributed according to the Haar measure). When we

now form the reduced density matrix ρ̂A of the “random pure state” (1.5) in a spatial region
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A, we obtain a random matrix which turns out to belong to the well-studied “Wishart

random matrix ensemble” (see Sect. IV A below for a more detailed discussion). The

probability distribution for the eigenvalues of the Wishart random matrix and hence of the

density matrix ρ̂A of the “random pure state” are known analytically (as reviewed in Sect.

IV B), and the spectral form factor for ρ̂A can be shown analytically (see Subsection IV C and

Appendix B) to exhibit a linear “ramp” in the limit of large density matrices, reflecting the

presence of universal spectral correlations in their spectra. As already mentioned, the linear

“ramp” in gc(τ) for the eigenvalues of the Wishart random matrix turns out to be identical

to that of standard random matrix theory in the same symmetry class (see Sect. IV C and

Appendix B). The spectral form factor for the “random pure state” is discussed in detail in

Sect. II B below. In Sect. II C we compare the numerically obtained spectral form factors

of the Floquet and the quantum Ising systems with that of the “random pure state” (for

the same system sizes) and find full agreement of the universal features. This means that

Wishart random matrix theory describes the spectral correlations of the reduced density

matrix of a single many-body wave function in typical chaotic systems of Hamiltonian and

Floquet type in their universal regime, just as ordinary random matrix theory is thought to

describe the level statistics of a chaotic Hamiltonian (according to the Bohigas, Giannoni

and Schmidt conjecture13.) The Floquet and quantum Ising systems considered in this paper

lack time-reversal symmetry and so the “GUE” Wishart random matrix ensemble will be

appropriate.

Subsequently, we explore the important question of development of quantum chaos under

quantum mechanical unitary time evolution. Recently, it has been proposed that the “out-of-

time-ordered” correlation function (OTOC) can probe the development of chaotic dynamics

and scrambling of quantum information.7–11,28 At early times, the OTOC can exhibit an

exponentially growing regime, the growth rate of which represents a quantum analog of the

(classical) Lyapunov exponent. In this paper, we will study instead as an indicator of the

development of quantum chaos the emergence of universal spectral correlations and of the

corresponding “ramp” in the spectral form factor, in the spectrum of the reduced density

matrix ρ̂A(t) as a function of time t in a quantum quench problem. ETH states that an

(sufficiently general short-range entangled) initial state which is not an eigenstate, relaxes

under the quantum mechanical time evolution, after a sufficiently long time, to a state which

appears to be (in the sense of ETH, as reviewed above) in thermal equilibrium (at infinite
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temperature for Floquet systems).1,2 Therefore, if we start with an initial direct product

state, one expects that while the spectrum of the reduced density matrix ρ̂A(t) will initially

exhibit no spectral correlations, under the unitary time evolution a “ramp” will emerge after

a sufficiently long time t in its spectral form factor. We consider both (one-dimensional)

Floquet and quantum Ising models and find that a “ramp” starts to develop as soon as the

entanglement entropy begins to grow. More precisely, it is interesting to note that universal

spectral correlations are first seen to appear for the eigenvalues at the top of the spectrum

of the reduced density matrix ρ̂A(t), and subsequently spread out over the entire spectrum

at later times.

We emphasize that there is no direct connection between the appearance of a volume law

in the entanglement entropy and quantum chaos. In integrable systems, initial direct product

states (as above) are typically expected to thermalize to a generalized Gibbs ensemble (GGE)

after sufficiently long unitary time evolution29–32. Although the reduced density matrix

ρ̂A for these GGE states possesses an entanglement entropy exhibiting a volume law, the

eigenvalues of this density matrix are not expected to exhibit the discussed universal spectral

correlations, in contrast to the reduced density matrix of chaotic (thermalizing) systems

discussed above. To illustrate this point explicitly, we have constructed a rapidly driven

Floquet system whose time evolution, starting out from a direct product state, exhibits a

long, stable so-called prethermalized regime33–36 at intermediate times. This prethermalized

regime, accompanied by a long plateau in the time-dependence of the entanglement entropy

exhibiting a volume law, will be seen to be clearly devoid of chaos as evidenced from the

absence of the characterisic universal spectral correlations in the spectrum of the density

matrix ρ̂A(t), which is manifested by the absence of a “ramp” in the corresponding spectral

form factor. A linear “ramp” in the spectral form factor is seen to develop only when the

prethermalized regime eventually relaxes at very late times to the fully thermalized chaotic

regime, in which the conservation laws (approximately) present in the prethermalized regime

cease to exist.

We end the introduction by mentioning some related work. Level repulsion statistics

between adjacent levels of the density matrix of thermalizing systems with a main focus

on disordered systems has been discussed in the context of work investigating Many-Body-

Localization (MBL) in Ref. 37 and 38. Our work, in contrast, discusses spectral rigidity

and, in particular, the universal spectral correlations and the “ramp” in the spectral form
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factor, focusing on non-random chaotic systems, and it elucidates the origins of these spectral

correlations in the “random pure state” (Page state) and in Wishart random matrix theory,

both for Hamiltonian and Floquet systems. Furthermore, we identify the development of

chaos as the process of buildup of these spectral correlations in the density matrix under the

unitary time-evolution. We also discuss a prethermal regime, lacking chaos, and its late-time

relaxation to a chaotic state.

The rest of the paper is organized as follows. In Sect. II, we first discuss the spectral

form factor in the “random pure state” (Page state) and its linear “ramp”. Then, we discuss

the spectral form factors of typical wavefunctions of non-integrable Floquet and quantum

Ising models for the same system sizes, and show that they both exhibit the same universal

linear “ramp” as the “random pure state”. In Sect. III, we discuss the development of

chaos in these Floquet and Ising model wavefunctions by computing the time evolution of

the spectral form factor. Moreover, we explore the development of chaos in a Floquet model

which exhibits a long prethermal regime at intermediate times. In Sect. IV, we compute the

spectral form factor in “random pure state” (Page state) analytically by using some basic

knowledge of the Wishart ensemble and compare the result with the numerical calculations

in Sect. II. We summarize and conclude in Sect. V.

II. SPECTRAL FORM FACTOR

A. General Discussion

We decompose the Hilbert space of the total system of dimension N (of which the “typi-

cal” state |ψ〉 is an element) into a tensor product of the Hilbert spaces of the two subsystems,

system A with Hilbert space dimension NA, and system B with Hilbert space dimension NB

(i.e. N = NANB). The spectral form factor g(τ) for the NA eigenvalues λi of the reduced

density matrix ρ̂A defined in (1.3) above, can be conveniently expressed39 in terms of the

Fourier transform of the eigenvalue density

Z(τ) ≡ Tr exp(−iτ ρ̂A) =

NA∑
i=1

exp(−iτλi) (2.1)

as follows

g(τ) = 〈
NA∑
i,j=1

e−iτ(λi−λj)〉 = 〈Z(τ)Z∗(τ)〉. (2.2)

11



As seen from (2.2), at τ = 0 the spectral form factor clearly takes on the value g(τ = 0) =

(NA)2, while in the limit τ → ∞ only contributions with λi = λj survive, which yields the

smaller value limτ→∞ g(τ) = NA. As we will see below, the function g(τ) initially decreases

starting from τ = 0 until it reaches a minimum (“dip”), then exhibits a segment of linear rise

(“ramp”), until the curve suddenly becomes constant (at the Heisenberg time τH) reaching

its late-time “plateau” value [see e.g. Fig. 1]. As we will review below, the initial decrease at

early times is non-universal, whereas the linear “ramp” is completely universal, depending

only on the symmetry class. We note that the presence of these three distinct regimes, the

decrease until the “dip”, the linear rise along the “ramp”, and the flat plateau, was stressed

in the context of the spectral form factor of the Hamiltonian of the SYK model in the recent

Ref. 12 already mentioned above.

We will also consider the connected spectral form factor

gc(τ) = 〈Z(τ)Z∗(τ)〉 − 〈Z(τ)〉 〈Z∗(τ)〉, (2.3)

which exhibits (as already mentioned) a longer and more pronounced “ramp” [compare e.g.

Fig. 1]. Its analytic form for the “random pure state” and the Wishart random matrix

ensemble is displayed in (4.24) of Sect. IV in the limit of a large density matrix. In

the context of the spectrum of a random (GUE, GOE or GSE) Hamiltonian matrix, the

connected spectral form factor gc(τ) has been extensively discussed in the literature over

many years.40

As already mentioned in the Introduction (Sect. I), the purpose of the average 〈...〉 in

(2.2) and (2.3) is to remove non-universal rapid temporal fluctuations41 from the spectral

form factor g(τ). In our work reported below, there will be a natural ensemble available over

which to perform the average as an ensemble average: For the “random pure state” (Page

state) discussed in Sect. II B below, this will be an average over the statistical ensemble

of “random pure states”, while for the Floquet and quantum Ising models in Sect. II C

this will be an ensemble of initial direct product states. Another way to remove the high-

frequency fluctuations from the spectral form factor g(τ) is to coarse grain the latter in time

τ by convolution with a temporal “smearing function” which eliminates high frequencies

components from the signal. (For example, see Refs. 12 and 42.) Since the ensemble averages

were more convenient for us, we did not use the coarse graining approach in the present work

to remove the high frequency fluctuations.
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B. Random pure state

Since, as already mentioned in the Introduction, this will turn out to provide a model-

independent description of the universal properties of quantum chaos in a wave function,

we first study the spectral form factor of the “random pure state” (Page state), discussed

in (1.5) and the paragraph below that equation. The reduced density matrix for a “random

pure state” is also a random matrix and it turns out to belong to the so-called (unitary)

Wishart ensemble with Dyson index β = 2, in which the spectral density satisfies the so-

called Marchenko-Pastur distribution.24 (See Sect. IV for a review.)

Using this property, Page showed27 that the ensemble-averaged (von Neumann) entan-

glement entropy [EE] of the reduced density matrix for subsystem A of the “random pure

state” is equal to

〈SA〉 = logNA −
NA

2NB

. (2.4)

(Recall that NA and NB are Hilbert space dimensions for subsystem A and its complement

B, respectively, and we have assumed NA ≤ NB without loss of generality.)

Since the Hilbert space dimension NA grows exponentionally with the volume of subsys-

tem A, the entanglement entropy of the random product state exhibits according to (2.4) a

volume law (as expected). For example, for the Ising-type systems considered in the present

paper which have a local (onsite) Hilbert space dimension of two, we have NA = 2LA where

LA is the number of lattice sites of subsystem A. We thus seen from (2.4) that the en-

tanglement entropy of the “random pure state” exhibits a volume law of maximal possible

value (given the dimension of the onsite Hilbert space), up to a small subleading term which

depends on the ratio of the Hilbert space dimensions of subsystems A and B, which we

denote by α ≡ NA/NB. The latter subleading term in (2.4) takes on its maximal value 1/2

at α = 1, and approaches zero as NA � NB.

It it known analytically (as reviewed in Sect. IV below) that the eigenvalues of the

Wishart random matrix exhibit the same universal spectral correlations as those of the

Hamiltonian of the GUE random matrix ensemble, which manifest themselves, as already

mentioned, in the connected spectral form factor gc(τ). We have computed numerically the

(non-connected) spectral form factor g(τ) =〈Z(τ)Z∗(τ)〉 for the eigenvalues of the Wishart

random matrix, describing the reduced density matrix of the “random pure state”. The
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results are plotted in Fig. 2(a) which shows that when α = NA/NB < 1, there is an inter-

mediate linear “ramp” where g(τ) = 〈Z(τ)Z∗(τ)〉 grows linearly with time τ . The presence

of the “ramp” demonstrates the presence of the mentioned universal spectral correlations,

as discussed analytically in Sect. IV below (compare also Fig. 1).

Continuing with α = NA/NB < 1, we also observe in Fig. 2(a) an early time regime

where g(τ) = 〈Z(τ)Z∗(τ)〉 drops down quickly to a minimum value. It turns out that at

early times, 〈Z(τ)Z∗(τ)〉 factorizes into 〈Z(τ)〉〈Z∗(τ)〉 and is therefore determined by the

Fourier transform of the average of the eigenvalue density, 〈Z(τ)〉, defined in (2.1). One can

determine from Fig. 2(a), where g(τ) = 〈Z(τ)Z∗(τ)〉 is plotted versus τ for NA = 212 (and

N = 226, i.e. when α = 1/4), that it scales as 1/τ 3 in this early time regime. Moreover, we

observe in the plots shown in the same figure for smaller values of α, that there are large

oscillations in this early time regime43, but with an envelope function that is still close to

1/τ 3, when compared to the α = 1/4 case.

This power law decay behavior of the spectral form factor at early times originates from

the eigenvalue distribution function 〈Z(τ)〉 of the Wishart matrix which will be analytically

computed in Sect. IV B. For a generic chaotic system with Hamiltonian Ĥ, the details of the

eigenvalue distribution function of the density matrix ρ̂A for a typical wavefunction will in

general be different from that of the Wishart matrix, and will not be universal. In particular,

in the early time regime where the spectral form factor g(τ) = 〈Z(τ)Z∗(τ)〉 factorizes into

〈Z(τ)〉〈Z∗(τ)〉, it will be model-dependent, in contrast to the regime of intermediate τ where

it exhibits a universal “ramp”, whose presence depends solely on the universal spectral

correlations in the spectrum of eigenvalues.

As already discussed, at late times τ larger than the Heisenberg time τH , the spectral

form factor g(τ) = 〈Z(τ)Z(τ)∗〉 will saturate to a constant value NA, which is coming from

the terms with λi = λj [see (2.2)]. Since, as has also been mentioned, the saturation value

is much smaller than the initial value N2
A attained at τ = 0 [see again (2.2)], we plot g(τ) =

〈Z(τ)Z∗(τ)〉 on a log-log scale so that the behavior of 〈ZZ∗〉 at the different time scales τ

can be seen clearly. The three time-regimes mentioned in Sect. (II A) are separated by two

typical time scales: The time where the “dip” occurs (“dip time”) τd, and the time where

the plateau begins (“plateau time”, or “Heisenberg time”) τp = τH . We find that the dip

time τd scales as
√
NAN , while τp is found to scale as NA

√
N . (Recall N = NANB.) [Both

statements are obtained analytically in Sect. IV, and have also been checked numerically.]
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This is analogous to the three regimes observed in Ref. 12 for the spectral form factor for a

M ×M random matrix in the GUE ensemble (as compared to the Wishard random matrix

ensemble discussed here), where τd ∼
√
M and τp ∼M .

We finally discuss a subtlety occuring when α = NA/NB = 1. In contrast to the case

where α < 1 discussed above, we see from Fig. 2(a) [top curve, NA = 213, where the

total Hilbert space dimension is N = 226] that for α = 1 the intermediate “ramp” in g(τ)

disappears. The difference between α = 1 and α < 1 is caused by the different behavior of

〈Z(τ)〉: At early times, where g(τ) = 〈Z(τ)Z∗(τ)〉 ∼ 〈Z(τ)〉〈Z∗(τ)〉 factorizes, for α = 1

the spectral form factor scales as 1/τ and then directly transits to the plateau. However,

the absence of the “ramp” does not mean that universal spectral correlations are absent in

the spectrum of eigenvalues when α = 1. Rather, the different behavior of 〈ZZ∗〉 just turns

out to hide the “ramp” due to the slow decay of the disconnected part 〈Z(τ)〉〈Z∗(τ)〉. The

effect of the slowly decaying 〈Z(τ)〉 can be removed if we consider instead the connected

spectral form factor gc(τ) = 〈ZZ∗〉 − 〈Z〉〈Z∗〉, which is plotted in Fig. 2(b). In the latter

figure we observe a long “ramp” even for α = 1. Actually, for the other curves with α < 1

in the same figure, the linear “ramp” in gc(τ) starts at an earlier time (denoted earlier by

τ0 - see Fig. 1) than the “ramp” in g(τ), where part of the longer linear “ramp” in gc(τ) is

in fact covered up by 〈Z〉〈Z∗〉 as depicted in Fig. 2(a). Since small values of τ correspond

to large eigenvalue differences on the scale of the mean level spacing, the early-time part

τ0 ≤ τ � τH of the “ramp” in gc(τ) describes the spectral correlations of eigenvalues

separated by an energy scale of many times the mean level spacing. Eventually, as τ is close

to τ0, the universal behavior of gc(τ) reflected in the linear “ramp” will be limited by model-

dependent (“ultraviolet”) effects at large separations of eigenvalues, leading to deviations

from the linear “ramp” at yet smaller values of τ . τ0.

The length of the “ramp” in g(τ) increases with the number of eigenvalues that ex-

hibit universal spectral correlations.12 We clearly see from Fig. 2(b) that both the length of

“ramp”, and the position of τp, are linearly proportional (on a log scale) to logNA.

We finally want to mention that the reduced density matrix ρ̂A studied in this section be-

longs to the Wishart random matrix ensemble lacking time-reversal symmetry, described by

Dyson index β = 2 (i.e. the “GUE-type” version of the Wishart random matrix ensemble).

We can also consider a density matrix ρ̂A described by a Wishart ensemble with Dyson index

β = 1, 4 (the “GOE” and the “GSE” version of the Wishart random matrix ensemble), in
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which the details of the universal spectral correlations are slightly different. In the spectral

form factor, these modified spectral correlations between the eigenvalues are reflected in a

similar but slightly more complicated universal “ramp”.24 While a straightforward extension,

we will not discuss details of these cases explicitly in this paper.
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FIG. 2. (a) Spectral form factor g(τ) = 〈ZZ∗〉 for the “random pure state” (Page state) with

fixed value of N = 2L and different values of NA = 2LA , where L is the total number of lattice

sites, and LA denotes the number of lattice sites in subsystem A. The curve is obtained by taking

the disorder average over 1000 states. (b) Connected spectral form factor gc(τ) = 〈ZZ∗〉−〈Z〉〈Z∗〉

for the “ random pure state” with fixed values of N and different values of NA. Again, the curve

is obtained by taking the disorder average over 1000 states.

C. Floquet and Quantum Ising models

For a generic chaotic system with a time-independent Hamiltonian Ĥ, we expect that

for the states |ψ〉 with energy expectation value E (= 〈ψ|Ĥ|ψ〉 = eV , where e is the

energy density) in the middle of the spectrum of Ĥ, the resulting density matrix ρ̂A of

the subsystem is well thermalized and its entanglement entropy exhibits a volume law. As

already mentioned in the introduction, one might expect based on notions from ETH that

the spectrum of this reduced density matrix exhibits universal spectral correlations. In this

section, we will show more specifically for both, one-dimensional Floquet and quantum Ising

models, that the spectra of the reduced density matrices of the above-mentioned states |ψ〉
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have the same universal properties as those of the “random pure states” (Page states), and

that the universal features of their reduced density matrix are in fact those of the Wishart

random matrix, which is the reduced density matrix of the “random pure state”, the density

matrix of a completely random wave function.

For practical reasons, instead of diagonalizing the Hamiltonian (or the Floquet operator)

to investigate the spectral statistics the reduced density matix obtained for the subsystem

for a typical eigenstate44, we will choose a set of initial product states |Ψ0〉 (which thus are

not entangled) and let them evolve under the unitary evolution governed by the Floquet

operator or Ising Hamiltonian, i.e.,

|Ψ0(t)〉 = U(t)|Ψ0〉. (2.5)

This is actually a quantum quench problem. For a generic non-integrable system, the initial

wave function |Ψ0〉 will eventually, at long times t, thermalize under its own dynamics and the

reduced density matrix ρ̂A(t) = TrB|Ψ0(t)〉〈Ψ0(t)| will approach the reduced density matrix

of a generic eigenstate of the Hamiltonian.1,2 Universal spectral correlations will develop in

the spectrum of the reduced density matrix starting from such unentangled initial states, so

that the final state obtained after sufficiently long time evolution will be fully thermalized.

The advantage of this method is that we can work with relatively large systems (the time

evolution operator simply has to be applied for a long time). Specifically, we will consider

below one-dimensional Floquet and Ising models with L = 20 lattice sites.

1. Floquet model

We first consider a Floquet model. It is known that Floquet systems can thermalize very

rapidly due to the absence of any conservation laws.6,45–48 The properties of such periodically

driven systems are determined by the unitary time evolution operator over one period, i.e.,

the Floquet operator. Following Ref. 45, we consider the following Floquet operator

ÛF = exp[−it0Ĥz] exp
[
−it0Ĥx

]
, (2.6)
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where

Ĥx =
L∑
j=1

gσ̂xj

Ĥz =
L−1∑
j=1

σ̂zj σ̂
z
j+1 +

L∑
j=1

hσ̂zj , (2.7)

and σ̂xj and σ̂zj are standard Pauli matrices acting on lattice site j. This model is a one-

dimensional periodically driven system with period T = 2t0. In the numerical calcula-

tions discussed below we choose open boundary conditions and typical system parameters

(g, h, t0) = (0.9045, 0.8090, 0.8).

We choose a set of initial states which are random product states (hence unentangled,

having vanishing EE) with the direction of the spin at each lattice site chosen independently

from a uniform distribution on the Bloch sphere.

Since we are considering a Floquet model, the evolution time t is an integer multiple of T ,

i.e., t = nT with n ∈ Z+. For the parameters we are considering here, it only takes a small

number of time-steps to achieve thermalization. The details of the thermalization process

itself and of the development of chaos will be discussed in Sect. III below. Here we discuss

the properties of the fully thermalized state that the system takes on after sufficiently long

time-evolution. Note that since for a Floquet system energy is not conserved, one expects

that the subsystem (LA ≤ L/2) will always thermalize to a state at infinite temperature

close to the “random pure state” discussed above.48

In Fig. 3 we present numerical results for the spectral form factor g(τ) = 〈Z(τ)Z∗(τ)〉 and

for the connected spectral form factor gc(τ) = [〈Z(τ)Z∗(τ)〉 − 〈Z(τ)〉〈Z∗(τ)〉] at time-step

n = 30, when the system is fully thermalized. We see from Fig. 3 that both, for LA = 9

and for LA = 10 [here L = 20], both quantities g(τ) and gc(τ) are indistinguishable from

those for the “random pure state”. The “ramp” in g(τ) = 〈Z(τ)Z∗(τ)〉 is absent when

LA = 10 = L/2, but becomes visible once we subtract the disconnected part 〈Z(τ)〉〈Z∗(τ)〉

to obtain the connected spectral form factor gc(τ) (as discussed above in the context of the

“random pure state”).

We also note that there is another way to generate an ensemble that can be used to

perform the average: We can pick a fixed initial state |Ψ0〉, but consider an ensemble of

states whose members consist of the time-series of states originating from the time-evolution

of this fixed state by different amounts of time tm ≡ T0 + m δt, where T0 is a large time
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ensuring that the initial state has “thermalized”, δt is some time-step (= T in the Floquet

case), and m = 1, 2, ...,M , i.e.

|Ψ0(tm)〉 = Û(tm)|Ψ0〉, (m = 1, ...,M). (2.8)

In this situation the time-average over the set of states (2.8) at times tm then generates the

ensemble-average of the spectral form factor. The resulting averaged spectral form factor

is displayed in Fig. 4, and seen to exhibit the same universal linear “ramp” as that arising

from averaging over the ensemble of initial states |Ψ0〉 displayed in Fig.3.
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FIG. 3. (a) g(τ) = 〈ZZ∗〉 for Page state, Floquet and quantum Ising models. (b) gc(τ) =

〈ZZ∗〉 − 〈Z〉〈Z∗〉 for Page state, Floquet and quantum Ising models. - For both (a) and (b), we

average over an ensemble containing over 1000 states.

2. Quantum Ising model

In this section we study the transverse field quantum Ising Hamiltonian with a longitu-

dinal field. The Hamiltonian is

Ĥ =
∑
i

σ̂zi σ̂
z
i+1 + hx

∑
i

σ̂xi + hz
∑
i

σ̂zi . (2.9)

The system parameters are (hx, hz) = (1.05, 0.5).49 This model is far from integrable due

to the large longitudinal field. The reduced density matrix of the initial direct product

state will eventually thermalize under the time-evolution generated by the time-independent
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FIG. 4. Spectral form factor averaged over a time-series of 1000 states |Ψ0(tm)〉 generated from a

single initial product state (see (2.8)) at times tm = T0 +m δt, where T0 = 40 is chosen sufficiently

large to ensure the initial state has already thermalized.

Hamiltonian (2.9), the total energy always being conserved. We choose the initial states to

be random product states with Hamiltonian expectation values E within a small energy

interval E ∈ [−0.1, 0.1] (close to the middle of the spectrum of Ĥ), and study the spectral

correlations and the emergence of a “ramp” in the spectrum of eigenvalues of the reduced

density matrix at a sufficiently long time t = 100, when the system is fully thermalized. The

results are presented in Fig. 3. We see that the spectral form factor g(τ) = 〈Z(τ)Z∗(τ)〉

is indistinguishable from that computed for the “random pure state”, as well as from that

computed for the Floquet model, for times τ ranging from close to two orders of magnitude

below the Heisenberg time scale all the way up to the plateau and it exhibits a linear “ramp”

in that range of times τ . On the other hand, there is some difference in the connected spectral

form factor gc(τ) = [〈Z(τ)Z∗(τ)〉− 〈Z(τ)〉〈Z∗(τ)〉] displayed in Fig. 3(b): The length of the

“ramp” for the Ising model is shorter than that for “random pure state”, and that for the

Floquet model, and shows an overshoot at early τ . This suggests that for the Ising model,

whose time-evolution is constrained by the energy conservation law, the subsystem is “less

chaotic” in the sense that model-dependent features appear in the connected spectral form

factor already at (small) times, here τ ≈ τ0 = 104 ≈ 10−2τH , see Fig. 3(b), reflecting

deviations from universal spectral correlations for eigenvalues λi at correspondingly large
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separations. We will discuss this issue in more detail in the next section.

III. THE DEVELOPMENT OF CHAOS AND THERMALIZATION IN FLOQUET

AND ISING MODEL

In this section, we study the development of quantum chaos in the many-body wave

function. Starting (as before) with an initial product state |Ψ0〉, the time-evolved reduced

density matrix ρ̂A(t) of the subsystem,

ρ̂A(t) = TrB

[
Û(t)|Ψ0〉〈Ψ0|Û †(t)

]
, (3.1)

will eventually thermalize under the unitary time evolution operator Û(t) of a generic non-

integrable system, and its spectrum will in the process develop universal spectral correlations,

manifested by a linear “ramp” in the corresponding spectral form factor. In this section we

ask: At what times t, under the quantum mechanical time evolution, does the “ramp”

emerge, and how does it evolve in time t until it reaches its final fully thermalized regime

at long times? That is, we will be studying the development of chaos in the density matrix.

To answer these questions, we will study the spectral form factor at different times t before

ρ̂A(t) has fully thermalized.

A. Floquet System

We first study the Floquet system defined in (2.6) and (2.7).6,45–48 As shown in the inset

of Fig. 5(b), when the subsystem size is LA = 9 (total system size L = 20), the EE grows

linearly with time t = nT for time-steps n ≤ 10, and then quickly saturates exponentially in

the time-step n to the Page value. As is clearly seen from the inset of Fig. 5(b), at time-step

n = 30 the deviation of the EE from its Page value is negligible.

When we consider the spectral form factor g(τ) = 〈Z(τ)Z∗(τ)〉 for the same density

matrix ρ̂A(t = nT ), the “ramp” starts to emerge at time-step n = 11: In Fig. 5(a), we can

clearly observe that as the time-step n increases beyond n = 11, the dip in g(τ) becomes

much deeper, and at the same time the “ramp” is getting longer. At time-step n = 15,

the length of the “ramp” in g(τ) = 〈Z(τ)Z∗(τ)〉 is already very close to that observed

at time-step n = 30. In Fig. 5(b) we plot the connected spectral form factor gc(τ) =
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〈Z(τ)Z∗(τ)〉 − 〈Z(τ)〉〈Z∗(τ)〉, which is seen to exhibit a “ramp” whose length continues to

increase beyond time-step n = 15 until the fully thermalized regime at time-step n = 30 is

reached. These plots also show an overshoot at the low-τ end of the “ramp” in gc(τ), which

is however suppressed as the time-step n increases further, and at n = 30 the overshoot has

basically disappeared (and gc(τ) is the same as that for the “random pure state” - compare

Fig. 3 (b)), indicating that at this time-step chaos has fully developed in the subsystem.

All these time scales depend on the length LA of the subsystem and become smaller as the

subsystem size LA is decreased.

We note that we have obtained the above results upon computing the spectral form factor

by using in (1.3) or (2.2) all the eigenvalues of the reduced density matrix ρ̂A(t = nT ).

Actually, in order to gain additional insight, it is useful to limit the eigenvalues used to

compute the spectral form factor in (1.3) or (2.2) to a subset lying in a window around a

fixed eigenvalue, and to compute the spectral form factor by only using the eigenvalues of

the density matrix in this window. This procedure can then detect “local universal spectral

correlations” characterizing the correlations amongst the eigenvalues in this window. In

Fig. 6(a), we present results for the spectral form factor g(τ) = 〈Z(τ)Z∗(τ)〉 for a window

of 10 consecutive eigenvalues at the top of spectrum50 in ρ̂A. We notice the appearance of

a linear “ramp” as early as at time-step n = 5. As we move the window of eigenvalues

away from the top to the bottom of the spectrum of the density matrix51, we find that the

linear “ramp” develops only at later time-steps - here at n = 11 (Fig. 6(c)). This result

demonstrates that in the Floquet model, as time t evolves, the universal spectral correlations

first emerge at the top of spectrum of ρ̂A(t = nT ) and subsequently spread over the entire

spectrum at later times t. This behavior, i.e. the fact that not the entire spectrum of the

density matrix develops the spectral correlations uniformly in time t, is also responsible for

the shallowness of the dip that appears, when the time-step n is between 11 and 15, in

the plot in Fig. 5(a) of the spectral form factor g(τ) = 〈Z(τ)Z∗(τ)〉 which uses the entire

spectrum as input.

Finally, we would like to discuss the connection between the linear growth of the EE and

the development of universal spectral correlations. When we look at the magnitudes of the

eigenvalues of ρA(t) at early times, we find that there are only a few of them which are

appreciably different from zero; and it is them that exhibit the spectral correlations and are

also responsible for the observed value of the EE. Actually, they also give rise to the volume

22



law in the EE for smaller subsystem sizes. As time evolves, more and more eigenvalues

become appreciably different from zero. They develop spectral correlations and lead to the

linear growth of the EE. This is in contrast with an integrable system, where the linear

growth of the EE is due to the ballistic propagation of quasiparticles31 and there are no

spectral correlations between the eigenvalues and hence there is no “ramp” in the spectral

form factor.52 In Sec. III C we will show an example of such a phenomenon within a Floquet

system.

=102 104 106 108

g(
=)

101

102

103

104

105

106

n=10
n=11
n=12
n=15
n=20
n=30

Floquet, L=20, LA=9

(a)

=102 104 106 108

g c(=
)

10-6

10-4

10-2

100

102

104

n=10
n=11
n=15
n=20
n=30

n0 10 20 30

hS
A
i

0

2

4

6

8

Floquet, L=20, LA=9

(b)

FIG. 5. (a) g(τ) = 〈ZZ∗〉 versus τ for the Floquet model defined in (2.7) at different time-steps

n, averaged over 1000 samples. (b) gc(τ) = 〈ZZ∗〉 − 〈Z〉〈Z∗〉 for the same model at different

time-steps n. The inset shows the averaged entanglement entropy (EE) as a function of time-step

n.

B. Ising Model

In this section we investigate the development of chaos in a quantum Ising model, where

the thermalization process is slower due to the presence of the energy conservation law.

High energy states: For an ensemble of initial random direct product states |Ψ0〉 with

Hamiltonian expectation value in the small energy interval E ∈ [−0.1, 0.1] (i.e. E =

〈Ψ0|Ĥ|Ψ0〉 in the middle of the spectrum of the Ising Hamiltonian Ĥ in (2.9)), the EE

grows linearly with time until t ≈ 7 and then saturates exponentially to the final volume

law at longer times around t = 100 [see inset in Fig. 7(b)]. Since this initial state has energy
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FIG. 6. (a) g(τ) = 〈ZZ∗〉 versus τ for a subset (window) of 10 eigenvalues at the top of the

spectrum of ρ̂A for the Floquet model defined in (2.7) at different time-steps, averaged over 1000

samples. (b) g(τ) = 〈ZZ∗〉 for a subset of 10 eigenvalues in the middle of the spectrum of the same

model. (c) g(τ) = 〈ZZ∗〉 for a subset of 10 eigenvalues at the lower edge of the spectrum of the

same model.

E close to zero (middle of the spectrum of Ĥ), the effective temperature is high and the

saturation value of the EE is only slightly smaller than the Page value. In particular, when

LA = 9 (total system size L = 20), the difference between the two values of the EE is seen

to be around 0.0045, which is less than 0.1% of the EE of the Page state.

In Fig. 7, we present results for the spectral form factors g(τ) = 〈Z(τ)Z∗(τ)〉 and gc(τ) =

〈Z(τ)Z∗(τ)〉 − 〈Z(τ)〉〈Z∗(τ)〉 at different times t. In Fig. 7(a), the “ramp” in g(τ) starts to

emerge at around t = 9. As t increases further, the dip becomes deeper and shifts to earlier

times. At t = 15, a linear “ramp” has fully developed and remains almost unchanged until

the system is fully thermalized at t = 100. In Fig. 7(b) we plot the connected spectral form

factor gc(τ), which is seen to exhibit a “ramp” that continues to grow further in length, even

beyond time t = 15. However, in contrast to the Floquet model, the overshoot appearing

at the low-τ end of the “ramp” cannot be fully suppressed and is always present even after

a very long time evolution ( - compare also Fig. 3(b)). This indicates that the energy

conservation law makes the Ising model “less chaotic” than the Floquet model, in the sense

that universal spectral correlations do not extend to pairs of eigenvalues λi as far separated

as in the Floquet model. We have also computed the spectral form factor using only a subset

of eigenvalues of ρ̂A(t) in a window around an eigenvalue at the top, in the middle and at

the bottom of its spectrum and we find similar behavior as in the Floquet model: Universal
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FIG. 7. (a) g(τ) = 〈Z(τ)Z∗(τ)〉 versus τ of the spectrum of ρ̂A for states at “high energy”

expectation values E ∈ [−0.1,+0.1] of the quantum Hamiltonian defined in (2.9), which has support

in the interval [−26,+33]. Different curves correspond to different times t, and averages were taken

over 1000 samples. (b) gc(τ) = 〈Z(τ)Z∗(τ)〉− 〈Z(τ)〉〈Z∗(τ)〉 for the same model at different times

t, under otherwise identical conditions. The inset shows the averaged entanglement entropy (EE)

as a function of time t.

spectral correlations first emerge at the top of the spectrum and then spread over the rest

of spectrum.

Lower energy states: Since for the Ising model energy is conserved, we can also study the

spectral correlations of ρ̂A(t) which arise upon time evolution starting from an initial state

with a lower energy E (= Hamiltonian expectation value = 〈ψ0|Ĥ|ψ0〉) corresponding to

properties of the quantum Ising Hamiltonian (2.9) at relatively low temperatures. (Though,

E is separated from the ground state by many levels. The spectrum of Ĥ has support in

an interval which is approximately [−26,+33].) In particular, we consider an initial direct

product state close to the Neel state with an energy in the narrow interval E ∈ [−14.1,−13.9]

rather than the random product state in the middle of the spectrum of Ĥ, which has high

excitation energy E, considered above. Furthermore, we introduce some randomness into

this ensemble of initial states so that we can perform a disorder (ensemble) average over

them. Under the unitary time evolution evolution, the EE is found to initially grow linearly

with time t, and to saturate as expected to a smaller volume law after long time evolution as

compared to the case of a random initial state with energy E in the middle of the spectrum
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FIG. 8. (a) g(τ) = 〈ZZ∗〉 versus τ for a subset (window) of 10 eigenvalues close to the upper

edge of the spectrum of ρ̂A of the quantum Ising model for states at “low energy” expectation

values E ∈ [−14.1,−13.9] of the Hamiltonian defined in (2.9), which has support in the interval

[−26,+33]. Different curves correspond to different times t, and averages were taken over 1000

samples. (b) g(τ) = 〈ZZ∗〉 for a subset of 10 eigenvalues in the middle of the spectrum of the same

model, and otherwise identical conditions. (c) g(τ) = 〈ZZ∗〉 for a subset of 10 eigenvalues close to

the lower edge of the spectrum of the same model, and otherwise identical conditions.

of Ĥ. For LA = 9 (total system size L = 20), we start to observe a dip in the spectral form

factor g(τ) = 〈Z(τ)Z∗(τ)〉 at times around t = 9. As before, we also compute the spectral

form factor g(τ) = 〈ZZ∗〉 by only using a subset of eigenvalues of ρ̂A(t) locally in a window

around a fixed eigenvalue of the density matrix. For a window of 10 consecutive eigenvalues

close to the top of the spectrum of the density matrix ρ̂A we find, similar to the Floquet

model, a “ramp” already at an early time t = 4 which becomes linear at t = 6 (Fig. 8(a)).

On the other hand, as we move the window of 10 consecutive eigenvalues close to the bottom

of the spectrum of the density matrix (Fig. 8(c)), the spectral correlations emerge only at

later times t as compared to the case where the window is at the top of the spectrum. This

is analgous to what was observed in the Floquet case.

Finally, we turn off the longitudinal field hz in the quantum Ising Hamiltonian (2.9), so

that the model becomes integrable. An initial random direct product state equilibrates after

the quantum quench to a thermal state described by the generalized Gibbs ensemble (GGE)

with an extensive number of conserved quantities.29–31 As shown in Fig. 9, we do not observe

any “ramp” in the spectral form factor g(τ) = 〈Z(τ)Z∗(τ)〉, indicating the absence of chaos

reflected in the absence of universal spectral correlations in the reduced density matrix ρ̂A.
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FIG. 9. g(τ) (solid curves) and gc(τ) (dashed curves) versus τ for the quantum Ising model

defined in Eq.(2.9) for the integrable case where the longitudinal field vanishes, hz = 0, averaged

over 1000 samples of initial random direct product states with energy expectation values in the

interval E ∈ [−0.1,+0.1], i.e. E is close to zero.

C. Floquet system with prethermal regime

As discussed before, for a generic Floquet system the reduced density matrix of a general

short-range entangled initial state will reach a steady state at infinite temperature after a

sufficiently long time evolution, since energy is not conserved.6,45,47,53 How thermal equilib-

rium and chaos emerge in the wavefunction is model-dependent. Recently, it has been shown

that a rapidly driven system may exhibit an intermediate prethermal regime of long dura-

tion in which the system reaches a thermal equilibrium state governed by an approximate

time-independent Hamiltonian with the effective temperature set by the initial energy.33–36,54

This regime can have an exponentially long lifetime (in units of inverse frequency, and other

parameters of the system). We note that a prethermalized regime in a system with a time-

independent (as opposed to Floquet) Hamiltonian has also been considered recently in the

context of non-integrable perturbations of integrable many-body systems55, but we do not

discuss these situations here.

In this section, we are going to explore a Floquet model that exhibits such prethermal-

ization to a thermal state which is close to that of a nearly-integrable system. The Floquet
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operator that we use to achieve such a prethermalized regime takes the following form,

ÛF = exp[−it0Ĥ1] exp
[
−it0Ĥ2

]
, (3.2)

where

Ĥ1 = −
L−1∑
j=1

σ̂zj σ̂
z
j+1 − hx

L∑
j=1

σ̂xj

Ĥ2 = −hy
L∑
j=1

σ̂yj . (3.3)

This model is a one-dimensional periodically driven system with period T = 2t0. In

the numerical calculations, we choose open boundary conditions and system parameters

(hx, hy) = (1, 1). The period T = 0.2 is chosen to be very small in order to realize a long

prethermal regime.

Since the period T is very small, it takes a large number of time-steps for the Floquet

system to relax to its ultimate, fully thermalized (chaotic) state. The previous method

used above for rapidly thermalizing Floquet systems that simply amounted to applying the

time-evolution operator many times to an initial state, which did not require diagonalizing

the Floquet operator, is no longer useful here due to the large number of required time-

steps. Here we will instead consider a smaller system size with L = 14 so that we can

diagonalize the Floquet operator explicitly and study the long time dynamics by applying

that operator for any length of time to the initial state. We start with a random direct

product state and evolve it under the Floquet operator. The result for the time evolution

of the EE is shown in Fig. 10, where we clearly observe a long intermediate plateau which

corresponds to the prethermalized regime. We further have computed the spectral form

factor g(τ) = 〈Z(τ)Z∗(τ)〉 in this (prethermalized) regime and we do not observe any dip

or “ramp”, demonstrating that the eigenvalues of the reduced density matrix ρ̂A(t = nT )

do not exhibit any universal spectral correlations in this regime. The lack of the spectral

correlations shows that chaos is absent in this regime, and we expect that it is described

by a Generalized Gibbs Ensemble (GGE). On the other hand, chaos starts to appear at yet

longer times where the EE increases further and eventually relaxes to the Page value; at

those longer times, a small “ramp” is seen to develop in the spectral form factor depicted in

Fig. 11 (b). A more pronounced linear “ramp” can be observed (see Fig. 11) once the state

reaches full thermalization at still larger time-steps n.

28



n100 102 104 106

h S
A
i

0

0.5

1

1.5

2

2.5

3

3.5

4

n0 20 40

h S
A
i

0

1

2

3

Floquet, L=14, LA=6, t0=0.1

FIG. 10. Time dependence of the entanglement entropy of the Floquet system described by (3.3)

on a semi-log scale. The period of T = 2t0 = 0.2. The result is averaged over an ensemble of

400 wavefunctions. The inset shows the entanglement entropy at early times on the linear scale,

exhibiting linear growth as expected.

Therefore, in the present Floquet model, we can separate the long time evolution into

four stages (see Fig.s 10 and 11): (1) a regime of linear growth of the EE, which also appears

in all of the previous models (see inset of Fig. 10), (2) the prethermal regime described by

GGE and absence of chaos, which is reflected by a plateau in the time-evolution of the EE,

(3) the regime of development of chaos where universal spectral correlations start to develop

at the top of the spectrum of the density matrix ρ̂A, and (4) the fully thermalized regime,

where the initial state has time-evolved into a state whose reduced density matrix exhibits

a spectrum indistinguishable from that of the density matrix of a featureless “random pure

state”.

IV. ANALYTICAL CALCULATIONS FOR THE “RANDOM PURE STATE”

A. Random pure state and Wishart-Laguerre ensemble

In this subsection we briefly review the connection between the reduced density matrix

of the “random pure state” (Page state) and the Wishart random matrix ensemble. First,

we decompose the total Hilbert space into a tensor product of the Hilbert spaces of the two
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FIG. 11. Spectral form factor g(τ) = 〈ZZ∗〉 for the Floquet model in (3.3) at different stages

in the time-evolution (time-step n). Each curve represents the average over an ensemble of 400

wavefunctions.

subsystems A and B with dimensions NA and NB, respectively (assuming NA ≤ NB without

loss of generality), and write the “random pure state” defined in (1.5) in a direct (tensor)

product basis

|Ψ〉 =

NA∑
i=1

NB∑
J=1

XiJ |Ψi
A〉 ⊗ |ΨJ

B〉 (4.1)

where the coefficients XiJ are complex Gaussian random variables, and form a rectangular

NA × NB random matrix X subject to the normalization constraint Tr(XX†) = 1. After

tracing out subsystem B, we obtain from this wavefunction the reduced density matrix

ρ̂A = XX† for subsystem A, which is a NA ×NA square matrix.

In order to make contact with the Wishart-Laguerre random matrix ensemble, we con-

sider a (unconstrained) NA × NB complex random matrix Y = {YiJ} whose statistically

independent complex matrix elements are drawn from a Gaussian probability distribution

P ({YiJ}) = N−1 exp{−β
2
NBTr(Y Y †)}. (4.2)

The NA×NA matrix W ≡ Y Y † is then a random matrix belonging to what is known as the

β = 2 (“GUE-type”) Wishart random matrix ensemble. Consequently, the density matrix

for the “random pure state”, discussed above, can be expressed in terms of the Wishart

random matrix as follows

ρ̂A ≡
Y Y †

Tr(Y Y †)
. (4.3)

30



We finally note that the denominator on the right hand side of (4.3) has expectation value

〈Tr(Y Y †)〉 =

NA∑
i=1

NB∑
J=1

〈|YiJ |2〉 =
(NANB)

NB

= NA. (4.4)

Thus, in the limit where both NA and NB tend to infinity while the ratio α ≡ NA/NB

remains fixed, the relative fluctuations f of the random variable Tr(Y Y †) = NA(1 + f)

about its mean NA vanish, and we can replace

Tr(Y Y †)→ NA. (4.5)

Owing to (4.3) the eigenvalues λi of the reduced density matrix ρ̂A are thus related in the

limit of large NA and NB to the eigenvalues µi of the Wishart matrix W via

λi =
µi
NA

. (4.6)

Clearly, the above-described relationship immediately extends to the other two univer-

sality classes of GOE (β = 1) and GSE (β = 4) “random pure state”s and Wishart random

matrix ensembles.

B. Eigenvalue statistics of the Wishart-Laguerre ensemble

Here we first briefly review some important results for the Wishart-Laguerre random

matrix ensemble.24 For more details, see Appendix B.

In general, for a Wishart matrix W = Y Y † with Y being a NA × NB matrix with real

(β = 1), complex (β = 2) or quaternion (β = 4) Gaussian entries drawn from the joint

distribution as in (4.2), the joint probability probability distribution for the NA eigenvalues

µi of W is known to be24

P [{µi}] = Ñ−1 exp[−βE({µi})], (4.7)

where

E[{µi}] =
1

2

N∑
i

[
V (µi)−

1

2
log |µi − µj|

]
, µi > 0,

and V (µ) = (µ − κ log µ) with κ = (1 + NB − NA) − 2/β; Ñ−1 is a normalization factor.

The weight E[{µi}] can be thought of as the energy of a one-component Coulomb gas of

charges with logarithmic interaction in an external potential V (µ).
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In the limit NA, NB →∞, the average of the spectral density

ν̂(µ) ≡
NA∑
i=1

δ(µ− µi), satisfying

∫
dµ ν̂(µ) = NA, (4.8)

of the matrix W = Y Y † can be calculated via the saddle point approximation and is found

to be equal to the so-called Marchenko-Pastur (MP) distribution24,

n̄(µ) ≡ 〈ν̂(µ)〉
NA

=
1

2παµ

√
(µ− α−)(α+ − µ),

∫ α+

α−

dµ n̄(µ) = 1, (4.9)

where α− ≤ µ ≤ α+ with α± = (1±
√
α)2, α = NA/NB and N = NANB. This distribution

is independent of the Dyson index β. Note that µ has support in the finite interval α− ≤

µ ≤ α+ of NA-independent length (α+ − α−) = 4
√
α. Since all NA eigenvalues lie in this

interval, the average level spacing is

(∆µ) =
4
√
α

NA

, (average level spacing of eigenvalues µi). (4.10)

Consider now the spectral density of the reduced density matrix ρ̂A (eigenvalues λi =

µi/NA, and λ = µ/NA),

ν̂(λ) ≡
NA∑
i=1

δ(λ− λi) = NA ν̂(µ), satisfying

∫
dλ ν̂(λ) = NA. (4.11)

In view of (4.3) and (4.5), valid in the limit NA, NB →∞ which we are currently considering,

it follows from (4.9) that the averaged spectral density of the density matrix ρ̂A satisfies

n̄(λ) ≡ 〈ν̂(λ)〉
NA

= NA n̄(µ) =
NA

2παλ

√
(λ− α−

NA

)(
α+

NA

− λ), (where λ = µ/NA). (4.12)

It follows from (4.12) that n̄(λ) is defined on the interval λ ∈ [α−/NA, α+/NA], satisfying∫
α+/NA

α−/NA
dλ n̄(λ) = 1 by construction. Since the NA eigenvalues λi of the reduced density

matrix lie in the interval α−/NA ≤ λi ≤ α+/NA (which becomes small when NA becomes

large), their average level spacing is

(∆λ) =
4
√
α

(NA)2
, (average level spacing of eigenvalues λi). (4.13)

Starting from the average spectral density n̄(λ) in (4.12), we can write the Fourier trans-

form (2.1) of the expectation value of the eigenvalue density of the reduced density matrix

ρ̂A as

〈Z(τ)〉 =

∫
dλ 〈ν̂(λ)〉 e−iλτ = NA

∫
dλ n̄(λ) e−iλτ . (4.14)
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When α = NA/NB < 1, the density n̄(λ) vanishes at both edges, scaling as
√
|λ− αa/NA|

as λ→ αa where a = ± [see (4.9) above]. These two edges λ = α± dominate the expectation

value 〈Z(τ)〉 and contribute

|〈Zα±(τ)〉| = 1

(1±
√
α)2

N
5
2
A

2
√
π
α−

3
4

1

τ 3/2
. (4.15)

Assuming α = NA/NB � 1, we have

|〈Z(τ)〉|2 =
N2
AN

3/2

πτ 3
. (4.16)

As mentioned, the spectral form factor factorizes at early times τ , where it thus reads

〈Z(τ)Z∗(τ)〉 ≈ |〈Z(τ)〉|2 ∼ 1/τ 3. This is in agreement fs with the numerical results shown

in Fig. 2 and Fig. 3.

On the other hand, when α = NA/NB = 1, the lower edge for MP distribution (4.9)

is pushed to α− = 0 and the spectral density has a 1/λ1/2-divergence at this edge. This

divergence will lead to a different behavior of 〈Z(τ)〉, namely

〈Z(τ)〉 =
N2
A

2π

∫ 4/NA

0

dλ

√
4/NA − λ

λ
e−iλτ = NA

[
J0(

2τ

NA

) + iJ1(
2τ

NA

)

]
e
− 2iτ
NA , (4.17)

where Jα(z) is the Bessel function of the first kind, which behaves in the limit z � 1 as

|Jα(z)| ∼ 1/
√

2πz. This leads to

|〈Z(τ)〉|2 ∼ N3
A

πτ
, (4.18)

which decays much slower than in the case α < 1 displayed in (4.16). This is also in

agreement with the numerical results in Fig. 2 and Fig. 3.

C. Spectral form factor for the reduced density matrix from Wishart Random

Matrix Theory

For any random matrix ensemble with the joint probability density described by (4.7), the

level-level correlation function (“pair correlation function”) is universal and only depends56,57

on the symmetry type, although the spectral density depends on the explicit form of the

potential V (µi) defined in (4.7). Specifically, the connected correlation function of the

spectral density ν̂(λ), defined in (4.11), takes for Dyson index β = 2 (“GUE-type” class)
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in the large NA limit the following universal form which can be expressed in terms of the

celebrated so-called sine-kernel56–58,

〈ν̂(λ)ν̂(λ′)〉 − 〈ν̂(λ)〉 〈ν̂(λ′)〉 = 〈ν̂(E)〉 δ(ω)− 〈ν̂(λ)〉 〈ν̂(λ′)〉 sin2[π〈ν̂(E)〉ω]

[π〈ν̂(E)〉ω]2
, (4.19)

where

ω = λ− λ′, E = (λ+ λ′)/2. (4.20)

(For more details see Appendix B 3.) We also recall 〈ν̂(λ)〉 = NA n̄(λ) from (4.12). Here,

in order to obtain a universal expression, the argument of the sine function was rescaled by

the non-universal factor 〈ν̂(E)〉 that determines the local mean level spacing.59

The spectral form factor

g(τ) = 〈Z(τ)Z∗(τ)〉 = [〈Z(τ)Z∗(τ)〉 − 〈Z(τ)〉〈Z∗(τ)〉] + 〈Z(τ)〉〈Z∗(τ)〉

= gc(τ) + 〈Z(τ)〉〈Z∗(τ)〉 (4.21)

is related to the level-level correction function 〈ν̂(λ)ν̂(λ′)〉 through Fourier transformation,

gc(τ) =

∫
dλdλ′ [〈ν̂(λ)ν̂(λ′)〉 − 〈ν̂(λ)〉〈ν̂(λ′)〉] e−i(λ−λ′)τ , (4.22)

and we focus here on the connected function gc(τ) as the disconnected part has already been

discussed in Sect. IV B. Taking the Fourier transform of the sine kernel in (4.19) which is

determined by the following elementary integral (a is any real parameter)

∫ ∞
−∞

e−iωτ
sin2[πaω]

π2ω2
dω =

a−
|τ |
2π
, |τ | < 2πa

0, |τ | ≥ 2πa
, (4.23)

we obtain (for more details see Appendix B 3)

gc(τ) =


2
π

1√
N
|τ |, |τ | < τH

NA, |τ | > τH

, where τH = (2π/(∆λ)) =
π

2
NA

√
N, (4.24)

where we recall that N = NANB. The regime of linear growth with τ is universal and

reflects the universal spectral correlations present in the spectrum, which are represented by

the sine-kernel on the right hand side of (4.19). Note also that the prefactor of the linear

growth term in (4.24) is independent of subsystem size NA. This is the origin of the fact

that the linear “ramps” appearing for different subsystem sizes NA all lie on top of each
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other - see e.g. Fig 2. The spectral form factors of the entanglement Hamiltonian, discussed

in Appendix A and depicted in Fig. 12 do not show this feature, but are instead shifted

with respect to each other by a NA-dependent constant (on a log-log plot), reflecting a

NA-dependent coefficient of the term linear in τ .

In view of (4.16),(4.18),(4.21),(4.24), the disconnected part in g(τ) hides the early-time

τ part of the universal linear “ramp” (4.24) appearing in gc(τ). This effect gives rise to the

“dip” (minimum) in g(τ), and allows one to estimate the “dip-time” τd as follows: Equating

|〈Z(τ)〉|2 and the “ramp” in (4.24) gives the dip time in 〈Z(τ)Z∗(τ)〉. Based on this logic,

we expect the dip time τd to be around (NAN)1/2 when α < 1, which is consistent with the

numerical results. On the other hand, when α = 1, this logic yields τd ∼ N2
A. However this

is a time scale of the order of the plateau time τp = τH , and therefore we cannot observe the

“ramp” in g(τ) = 〈Z(τ)Z∗(τ)〉 when α = 1, consistent with our numerical findings reported

above.

V. DISCUSSION AND CONCLUSION

In conclusion, we have explored the presence of universal spectral correlations in the

spectrum of the reduced density matrix ρ̂A of a many-body wavefunction and used the

presence of these correlations to define quantum chaos at the level of a single many-body

wavefunction. To detect these spectral correlations, we constructed the spectral form factor

g(τ) for ρ̂A and identified the presence of a “ramp” as a hallmark of the spectral correlations.

We explicitly considered three wavefunctions: the “random pure state”, a typical state of

a Floquet spin model, and of a quantum Ising model in both transverse and longitudinal

fields, both in one spatial dimenstion. In all three cases, we numerically found the presence

of the universal linear “ramp” in the spectral form factor. For the “random pure state”, we

also analytically computed the spectral form factor by using Wishart random matrix theory

and found agreement with our numerical results.

Moreover, we discussed how universal spectral correlations develop in a quantum quench

problem from an initial product state lacking chaos. We found that the spectral correlations

first emerge at the top of spectrum of the reduced density matrix ρ̂A, and then spread over

the entire spectrum at later times. We verified this statement numerically in both, the

Floquet and quantum Ising models. Finally we studied a rapidly driven Floquet system
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which posseses a long prethermalized regime exhibiting an “EE plateau”, on which the

system can be well approximated by a GGE. For times when the system is on that EE

plateau, we don’t observe any “ramp” in the spectral form factor, which is consistent with

the absence of chaos in the GGE. We found that universal spectral correlations (and a

“ramp”) in the density matrix develop only when the wavefunction starts to relax to the

fully thermalized regime at late times.
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Appendix A: Spectral Form Factor of the Entanglement Hamiltonian

Numerical results for the spectral form factor of the entanglement Hamiltonian ĤE of the

“random pure state” are displayed in Fig. 12, and are to be compared with the spectral form

factor of the reduced density matrix ρ̂A of the same system, depicted in Fig. 2. We see that

both spectral form factors exhibit a linear “ramp” (unit slope on a the log-log plot), which

is the hallmark of universal spectral correlations. The form factors of the entanglement

Hamiltonian are shifted by a NA-dependent constant on the log-log plot, which reflects a

NA-dependent prefactor of the linear τ -dependence.

Recall that entanglement Hamiltonian and density matrix are related as in (1.4), and

that, as mentioned in the sentence below (1.4), the spectral form factor of the former is

obtained from that of the latter by letting λi → − lnλi, where λi denotes the eigenvalues of

the reduced density matix.
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FIG. 12. Spectral form factor of the entanglement Hamiltonian

Appendix B: Some Details on Wishart Random Matrix Theory

1. Unscaled Gaussian Probability Weight

In general, for a Wishart matrix W = Y Y † with Y being an arbitrary NA ×NB matrix

with real (β = 1), complex (β = 2) or quaternion (β = 4) Gaussian entries drawn from the

probability distribution

P({YiJ}) = N−1 exp{−β
2

Tr(Y Y †)}, (B1)

the joint probability distribution for the NA eigenvalues ξi of W is known to be24

P [{ξi}] = CNA,NBe
−β

2

∑NA
i=1 ξi

NA∏
i=1

ξ
κβ/2
i

∏
1≤j<k≤NA

|ξj − ξk|β, ξi > 0, (B2)

where κ = (1 +NB −NA)− 2/β and CNA,NB is a normalization factor. This expression can

be written in standard Boltzmann form, P [{ξi}] ∝ exp[−βE({ξi})], where

E[{ξi}] =
1

2

N∑
i

[
V (ξi)−

1

2
log |ξi − ξj|

]
(B3)

can be thought of as the energy of a one-component Coulomb gas of charges with logarithmic

interaction in an external potential

V (ξ) = (ξ − κ log ξ). (B4)

37



In the limit NA, NB →∞ with α = NA/NB = fixed, the spectral density can be computed

via the saddle point approximation leading to the Marchenko-Pastur (MP) distribution

n̄(ξ) ≡ 〈ν̂(ξ)〉
NA

= lim
NA,NB→∞

〈
1

NA

∑
i

δ(ξ − ξi)

〉
=

1

2παξ

√
(
ξ

NB

− α−)(α+ −
ξ

NB

), (B5)

where α± = (1 ±
√
α)2 and NBα− ≤ ξ ≤ NBα+. This distribution is independent of the

Dyson index β, and by construction satisfies
∫ NBα+

NBα−
dξ n̄(ξ) = 1.

2. Scaled Gaussian - NA-independent Spectral Density

It is convenient rescale the Wishart random matrix and consequently also its eigenvalues

W ≡ NB W, W = Y Y †, ξi ≡ NB µi (B6)

so that

P ({YiJ}) = Ñ−1 exp{−β
2
NB Tr(Y Y †)}. (B7)

We can think of this as rescaling β → β NB. Now, the joint probability probability dis-

tribution for the NA eigenvalues µi of the Wishart matrix W can be written in standard

Boltzmann form, P [{µi}] ∝ exp[−βNBE({µi})], with E[{µi}] the same function as in (4.7).

In the limit NA, NB → ∞, we obtain from (B5) the spectral distribution [noting that

n̄(ξ) dξ = n̄(µ) dµ]

n̄(µ) = lim
NA,NB→∞

〈ν̂(µ)〉
NA

=
1

2παµ

√(
µ− α−

)(
α+ − µ

)
. (B8)

In this form the distribution becomes independent of NA, NB in the limit when these are

large, and the result depends only on α = NA/NB which we consider holding fixed.

As already discussed in the paragraph surrounding (4.4), we have the expectation value

〈Tr(Y Y †)〉 =

NA∑
i=1

NB∑
J=1

〈|YiJ |2〉 =
(NANB)

NB

= NA. (B9)

Thus, in the limit where both NA and NB tend to infinity while the ratio α ≡ NA/NB

remains fixed, we can replace

Tr(Y Y †)→ NA (B10)
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in the usual sense. We see from (B6, B7) that the eigenvalues λi of the reduced density

matrix ρ̂A are related in the limit of large NA and NB to the eigenvalues µi of the Wishart

matrix W via

λi =
µi
NA

. (B11)

3. Some details about the computation of the Spectral Form Factor for the

(“GUE-type”-) Wishart Random Matrix Ensemble in (4.24)

We can express the spectral form factor (1.3) as follows in terms of the density of states

(4.11)

g(τ) = 〈
∑
i,j

e−iτ(λi−λj)〉 =

= 〈
∑
i,j

[

∫
dλ δ(λ− λi)] [

∫
dλ′ δ(λ′ − λj)] e−iτ(λi−λj)〉 =

=

∫
dλ

∫
dλ′ e−iτ(λ−λ′) 〈

∑
i,j

δ(λ− λi) δ(λ′ − λj)〉 =

=

∫
dλ

∫
dλ′ e−iτ(λ−λ′) 〈ν̂(λ) ν̂(λ′)〉. (B12)

Using (4.11) we obtain from (B12)

g(τ) =

∫
dµ

∫
dµ′ e−i(τ/NA)(µ−µ′) 〈ν̂(µ) ν̂(µ′)〉. (B13)

The (2-point) correlation function of the density of states (4.11) appearing in (B12,B13)

above can be re-written as follows

〈ν̂(µ) ν̂(µ′)〉 = 〈
∑
i,j

δ(µ− µi) δ(µ′ − µj)〉 =

= 〈
∑
i

δ(µ− µi) δ(µ′ − µi)〉 + 〈
∑
i 6=j

δ(µ− µi) δ(µ′ − µj)〉

= δ(µ− µ′)〈
∑
i

δ(µ− µi)〉 + 〈
∑
i 6=j

δ(µ− µi) δ(µ′ − µj)〉 =

= δ(µ− µ′) 〈ν̂(µ)〉 + 〈
∑
i 6=j

δ(µ− µi) δ(µ′ − µj)〉, (B14)

and thus the connected function reads

〈ν̂(µ) ν̂(µ′)〉c = 〈ν̂(µ) ν̂(µ′)〉 − 〈ν̂(µ)〉 〈ν̂(µ′)〉 =

= δ(µ− µ′) 〈ν̂(µ)〉+ 〈ν̂(µ)〉 〈ν̂(µ′)〉
[〈∑i 6=j δ(µ− µi)δ(µ′ − µj)〉

〈ν̂(µ)〉 〈ν̂(µ′)〉
− 1

]
. (B15)
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Note that 〈
∑

i 6=j δ(µ − µi)δ(µ
′ − µj)〉 equals NA(NA − 1) times the probability that one

eigenvalue equals µ and another eigenvalue equals µ′(6= µ), as computed from (4.7).

When µ and µ′ are separated by much less than NA level spacings, so that we can

approximate 〈ν(µ)〉 ≈ 〈ν(µ′)〉 ≈ 〈ν(E)〉, where

E ≡ µ+ µ′

2
, Ω ≡ (µ− µ′), (B16)

the square bracket in (B15) is known analytically (“sine kernel’) to be56–58[
〈ν̂(µ)ν̂(µ′)〉
〈ν̂(µ)〉 〈ν̂(µ′)〉

− 1

]
= (when Ω = (µ− µ′) 6= 0) (B17)

=

[〈∑i 6=j δ(µ− µi)δ(µ′ − µj)〉
〈ν̂(µ)〉 〈ν̂(µ′)〉

− 1

]
= (−1)

sin2[π〈ν̂(E)〉Ω]

[π〈ν̂(E)〉Ω]2
.

Analogous to what was mentioned in the paragraph below (4.20), the argument of the sine-

function is rescaled by the non-universal factor 〈ν̂(E)〉 which equals the inverse of the local

mean level spacing of eigenvalues µi at µ = E .

We now provide some detailed steps for obtaining (4.24). The connected spectral form

factor on the left hand side of this equation now reads explicitly

gc(τ) =

∫
dµ

∫
dµ′ e−i(µ−µ

′)(τ/NA) 〈ν̂(µ) ν̂(µ′)〉c = (B18)

=

∫
dE
∫
dΩ e−iΩ(τ/NA)

[
〈ν̂(E)〉 δ(Ω)− 〈ν̂(E + Ω/2)〉 〈ν̂(E − Ω/2)〉 sin2[π〈ν̂(E)〉Ω]

[π〈ν̂(E)〉Ω]2

]
,

or

gc(τ) =

∫
dE
∫
dΩ e−iΩ(τ/NA)

[
〈ν̂(E)〉 δ(Ω)−R(E ,Ω)

sin2[πNA〈ν̂(E)〉Ω]

[πΩ]2

]
, (B19)

where

R(E ,Ω) ≡ 〈ν̂(E + Ω/2)〉 〈ν̂(E − Ω/2)〉
〈ν̂(E)〉2

. (B20)

Next, we implement a version of an idea that was used in Ref. 12 for the computation of

the spectral form factor of a random GUE Hamiltonian in the context of the SYK model.

In particular, we limit the integral over Ω by introducing a cutoff Ω0,∫
dΩ→

∫ +Ω0/2

−Ω0/2

dΩ, (B21)

chosen to satisfy the requirement that the density of states 〈ν̂(E + Ω/2)〉 does not vary

appreciably when −Ω0/2 < Ω < +Ω0/2. Then the factor R in the integrand in (B19)
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becomes unity, R(E ,Ω)→ 1. [Physically, the cutoff of course implies that variations of gc(τ)

on time scales (τ/NA) / (1/Ω0) can no longer be resolved.] Now we divide the interval

[α−, α+] in which all eigenvalues µi have support, into a set of non-overlapping subintervals

of length Ω0 each. The integral of Ω over each subinterval number I = 1, 2, ...,M at fixed EI
(say at the center of the interval) can now be done in the limit NA →∞ by using (4.23) and

the fact that in that limit 〈ν̂(EI)〉 = NA n̄(EI), where n̄(EI) is a NA-independent constant

[see (4.9)]: ∫ +Ω0/2

−Ω0/2

e−iΩ(τ/NA) sin2[πNA n̄(EI)Ω]

[πΩ]2
dΩ =

=
NAn̄(EI)

π2

∫ +NAn̄(EI)Ω0/2

−NAn̄(EI)Ω0/2

e−iΩ
′τ/N2

An̄(EI) sin2[πΩ′]

[Ω′]2
dΩ′ ∼

∼ NAn̄(EI)
π2

∫ +∞

−∞
e−iΩ

′τ/N2
An̄(EI) sin2[πΩ′]

(ω′)2
dΩ′ =

=
NAn̄(EI)

π2

π
2 − π

2
|τ |

N2
An̄(EI)

, |τ |
N2
An̄(EI)

< 2π

0, |τ |
N2
An̄(EI)

> 2π
=

=

NAn̄(EI)− 1
2π
|τ |
NA
, |τ |

NA
< 2πNAn̄(EI)

0, |τ |
NA

> 2πNAn̄(EI)
.

For subinterval number I, at fixed EI , we thus obtain a “ramp”,

g(I)
c (τ) =


1

2π
|τ |
NA
, 1

2π
|τ |
NA

< NAn̄(EI)

NAn̄(EI), 1
2π
|τ |
NA

> NAn̄(EI)
= min{ 1

2π

|τ |
NA

, NAn̄(EI) }. (B22)

Now, doing the integral over E as a sum over the subintervals,∫ α+

α−

dE →
M∑
I=1

Ω0, (B23)

where α± were defined immediately below (4.9), we obtain from (B22)

gc(τ) =
M∑
i=1

Ω0 g
(I)
c (τ) = min{

∫ α+

α−

dE 1

2π

|τ |
NA

,

∫ α+

α−

dE NA n̄(E) } =

= min{ (
α+ − α−
NA

)
|τ |
2π

, NA } = min{ 2
√
α |τ |
πNA

, NA }, (B24)

where we used (α+−α−)/NA = 4
√
α

NA
= 4√

N
, recalling α = NA/NB, as well as the normalization

of n̄(µ) from (4.9). We now obtain (4.24) from (B24), since 4√
N

|τH |
2π

= NA leads to τH =
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π
2
NA

√
N . The Heisenberg time is defined to be 2π times the inverse of the mean level

spacing (here of the reduced density matrix ρ̂A), and this yields (setting ~ = 1) upon using

(4.13) τH = (2π/(∆λ)) = π
2
(N2

A/
√
α) = π

2
NA

√
N in agreement with the above result. In

conclusion we have obtained the following result for the connected spectral form factor,

gc(τ) = NA


|τ |
τH
, |τ | < τH

1, |τ | > τH

, where τH = (2π/(∆λ)) =
π

2
NA

√
N (B25)

=


2
π

1√
N
|τ |, |τ | < τH

NA, |τ | > τH

, where τH = (2π/(∆λ)) =
π

2
NA

√
N. (B26)

The last equation, displaying explicitly the NA-independence of the prefactor of the linear

growth in τ , is the result shown in (4.24).
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