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We study the relaxation of the center-of-mass, or dipole oscillations in the system of interacting
fermions confined spatially. With the confinement frequency ω⊥ fixed the particles were considered
to freely move along one (quasi-1D) or two (quasi-2D) spatial dimensions. We have focused on the
regime of rare collisions, such that the inelastic collision rate, 1/τin � ω⊥. The dipole oscillations
relaxation rate, 1/τ⊥ is obtained at three different levels: by direct perturbation theory, solving
the integral Bethe-Salpeter equation and applying the memory function formalism. As long as
anharmonicity is weak, 1/τ⊥ � 1/τin the three methods are shown to give identical results. In
quasi-2D case 1/τ⊥ 6= 0 at zero temperature. In quasi-1D system 1/τ⊥ ∝ T 3 if the Fermi energy,
EF lies below the critical value, EF < 3ω⊥/4. Otherwise, unless the system is close to integrability,
the rate 1/τ⊥ has the temperature dependence similar to that in quasi-2D. In all cases the relaxation
results from the excitation of particle-hole pairs propagating along unconfined directions resulting
in the relationship 1/τ⊥ ∝ 1/τin, with the inelastic rate 1/τin 6= 0 as the phase-space opens up at
finite energy of excitation, ω⊥. While 1/τ⊥ ∝ τin in the hydrodynamic regime, ω⊥ � 1/τin, in the
regime of rare collisions, ω⊥ � 1/τin, we obtain the opposite trend 1/τ⊥ ∝ 1/τin.

I. INTRODUCTION

Interacting systems confined to one dimension are of-
ten characterized by very slow approach to equilibrium
or even by no relaxation1–4. This stimulates the active
research on the mechanisms of thermalization in such
systems5–10.

Typically, in extended systems the energy relaxation
time is determined by a time between inter-particle col-
lisions. In contrast, in some confined systems the re-
laxation does not take place during the observation time.
The collective oscillations of the center of mass, or Dipole
Oscillations (DO) of cold gases of fermions in harmonic
trapping potential show very slow decay11,12. In the
“quantum Newton’s cradle” experiment13 the breathing
mode excited in the effectively 1D Bose liquid does not
thermalize even though the inter-particle interactions are
not weak. In the very recent experiment14 the thermal-
ization of momentum distribution has been studied in the
array of dipolar quantum Newton’s cradles. The two-
time scale decay processes contains fast decay followed
by slower near-exponential thermalization. In the work14

the second, thermalization regime has been linked to the
integrability-breaking interactions mediated by the long
range magnetic dipole-dipole interactions. The reported
thermalization rates scale with the square of integrability
breaking interaction amplitude.

Recently, the numerical solutions of the generalized
hydrodynamic equations15,16 has been obtained for har-
monic and weakly anharmonic trap potentials17. In the
harmonic case the reported change of the phase space dis-
tribution function is small. It is not the case for weak an-
harmonicity for which the relaxation to the almost time-
independent state has been observed. The anharmonic-
ity therefore noticeably affects the dynamics. In fact, in
purely harmonic trap the DO do not relax18–20 accord-
ing to the generalization of the Kohn theorem (KTh)21.

This property holds for interacting electrons22,23, as well
as systems of cold atoms11,12,24. The KTh restrictions
are also lifted in mixtures of isotopes as different species
have different oscillation frequency along the confinement
direction. This scenario has been considered theoretically
in Refs.25,26, and realized as mixture of Bose and Fermi
superfluids in experiment27.

We study the model designed to clarify the role of
the anharmonicity, integrability breaking, and of dimen-
sionality in thermalization. Specifically, we consider in-
teracting fermions in the two settings referred to as
quasi-2D (quasi-two-dimensional) and quasi-1D (quasi-
one-dimensional). In the first, quasi-2D setting the parti-
cles are confined only in one, ẑ direction and free to move
in the other two. The degree of the lateral confinement is
characterized by the finite frequency of oscillations ω⊥ in
the confining potential. In the second, quasi-1D setting,
the particles move freely in only one direction, confined
along ẑ direction as before. The confinement in the third
direction is assumed to be strong enough so that the mo-
tion along this direction can be disregarded. Here we do
not address the crossover between nearly integrable and
thermalizing behavior, and rather focus on the long time
near-exponential in time relaxation as reported in14.

The relaxation rate of the DO, 1/τ⊥ is defined by the
location of the poles of the (retarded) dipole-dipole corre-
lation function in the complex ω-plane. In the presence
of interactions and anharmonicity, the pole at ω = ω⊥
moves off the real axis to ω = ω⊥ − i/τ⊥. In the non-
integrable systems particles collide inelastically at the
rate 1/τin. Therefore, even in the harmonic case the cor-
relation functions have singularities at Imω . −1/τin.
Hence, the above approach is meaningful only if 1/τ⊥ �
1/τin. This condition guarantees that after the short in-
elastic time τin, the DO emerge as a well defined damped
collective excitation.

The hydrodynamic regime sets in when the inelastic
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rate, 1/τin & ω⊥. The DO relaxation28 and other col-
lective modes in higher dimensions1 is controlled by the
viscosity and thermal conductivity coefficients that are
finite in the non-integrable systems29–31.

Here we focus on the opposite regime of weak scat-
tering, 1/τin � ω⊥. Then the constrains imposed by
energy-momentum conservations, integrability and by
the KTh can be understood by applying the Fermi golden
rule. As we show in Sec. III the kinematic constrains in
quasi-1D are the same as in 1D only below some crit-
ical occupation. The integrability is broken by virtual
inter-band transitions in quasi-1D systems32. Above the
critical filling this effect is stronger as the real inter-
band transitions become available. In the hydrodynamic
regime the inter-band scattering drastically modifies the
bulk viscosity31.

The paper is organized as follows. In Sec. II we for-
mulate the model, and introduce the dimensional an-
harmonicity parameter. The golden rule is employed in
Sec. III in order to estimate the relaxation rate of the
DO, 1/τ⊥ based on the perturbation theory and a simple
ansatz of the dipole correlation function. In this section
we explore the distinct role of the inter-band excitations
in quasi-1D and quasi-2D cases. The reader not inter-
ested in the detailed justification of the results may skip
to the discussion Sec. VI. In Sec. IV we go beyond the
perturbation theory by summing up all the contributions
to the dipole correlation function that are most divergent
in powers of τ−1

⊥ /(ω− ω⊥). This program is achieved by
solving the integral Bethe-Salpeter equation. In Sec. V
we compute the relaxation rate, 1/τ⊥ using a complemen-
tary approach based on memory function formalism33.
The results are discussed in Sec. VI.

II. THE MODEL

We consider the system of interacting fermions of a
mass m with their motion along z-direction being con-
fined and free otherwise. The Hamiltonian of the system
contains four parts,

H = H0 +H0,⊥ +Hε,⊥ +Hint , (1)

where H0 is a kinetic energy of a motion in the xy-
plane, H0 =

∑
j(p

2
j,x + p2

j,y)/2m, with index j enumer-
ating fermions and pj is the momentum operator of j-th
fermion. Here for definiteness we assume confinement in
one spatial dimension such that

H0,⊥ =
∑
j

[
p2
j,z

2m
+
mω2
⊥z

2
j

2

]
, (2)

where rj = (xj , yj , zj) is the location of the jth fermion.
The anharmonicity is controlled by a small parameter,
ε� 1,

Hε,⊥ = εω⊥
∑
j

f(zj/`⊥) , (3)

where f(x) is a dimensionless function of order one for
x ∼ 1. The typical z-value can be taken as the spatial
extent of the system. The parameter ε then is the ratio of
the classical frequency shift for amplitude of oscillations
of the order of the system size to the base frequency, ω⊥.
We write,

H0 +H0,⊥ +Hε,⊥ =

∞∑
n=0

∑
k

En,kψ
†
n,kψn,k , (4)

where the operator ψ†n,k creates the fermion in a an eigen-

state ψn,k(r) of the total kinetic energy. In this work
the effect of anharmonicity on the spectrum plays no
role. For that reason we set En,k = (n + 1/2)ω⊥ + εk,
εk = k2/2m, where k = (kx, ky) is the in-plane momen-
tum and n = 0, 1, . . . labels the states of transverse quan-
tization, φn(z). We emphasize that in the anharmonic
confining potential, ε 6= 0, these wave-functions differ
from the eigenstate of the harmonic oscillator.

n1, k�q n2, k
0+q

n3, k
0n4, k

Un4n3
n1n2

Vq

FIG. 1. The interaction amplitude defined by Eq. (6).

The two-body interaction Hamiltonian,

Hint(rj , rj′) = U (|zj − zj′ | /`⊥)V (xj−xj′ , yj−yj′) (5)

is assumed to be separable as none of our conclusions
depends on the exact form of Hint(rj , rj′) in any essen-
tial way. In second quantization notations, Eq. (4) the
interaction, Eq. (5) takes the form (see Fig. 1),

Hint =
1

2

∑
n1,n2,n3,n4

∑
k,k′,q

Un4n3
n1n2

× Vqψ†n1,k−qψ
†
n2,k′+qψn3,k′ψn4,k , (6)

where the dimensionless matrix elements of the trans-
verse motion interaction

Un4n3
n1n2

=

∫
dz1

∫
dz2φ

∗
n1

(z1)φ∗n2
(z2)U(|z1 − z2|/`⊥)

× φn3
(z2)φn4

(z1) (7)

and the matrix element for an in-plane interaction

Vq =

∫
dxdye−i(qxx+qyy)V (x, y) (8)

has a dimensionality of the inverse density of states.
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Note the following properties of the transverse matrix
elements, Eq. (7)

Un4n3
n1n2

= Un3n4
n2n1

, Un4n3
n1n2

= Un1n3
n4n2

= Un4n2
n1n3

. (9)

The first property in Eq. (9) follows from the symmetry
of the interaction under the exchange of the coordinates
z1 and z2. The spin indices are omitted everywhere as
the spin degree of freedom is inessential to the present
work. The second property follows from the time rever-
sal symmetry as the wave-functions and the interaction
potential are real. The properties Eq. (9) allow us to
switch rows and columns in the band arguments of the
matrix elements of interaction. We use this property ex-
tensively throughout the paper.

III. PERTURBATION THEORY RESULTS FOR
A SINGLE OCCUPIED BAND

In this section we perform the perturbative evaluation
of the decay rate of the DO. Strictly speaking the per-
turbation theory is ill defined at ω ≈ ω⊥ because the ex-
citation energy ω⊥ is infinitely degenerate. Nevertheless,
it provides us with the useful insight into mechanisms of
DO relaxation and gives a well defined prediction for the
actual rates if interpreted in a physically sensible way.
We start with the case of singly occupied band.

Let us introduce the correlation function of the observ-
ables A and B,

KA,B(ω) = −i
∫ ∞

0

dteiωt〈[A†(t), B(0)]〉 , (10)

where [A,B] = AB − BA, and the time dependence is

specified by the Heisenberg equations of motion, Ȧ =
i[H,A(t)] where Ȧ = ∂A/∂t. We work in units ~ = kB =
1 throughout the text. The natural choice of collective
variables representing the transitions between the adja-
cent bands is

An =
∑
k

ψ†n,kψn−1,k , (11)

where the index n = 1, 2, . . .. In a non-interacting system

K
(0)
An,An′

(ω) = δn,n′
Nn−1 −Nn
ω − ω⊥ + i0+

, (12)

where Nn is the total occupation of the n-th band and 0+

is positive infinitesimal. The Eq. (12) shows that only the
occupied bands are of importance. We, therefore focus
on KA1,A1

. In generic situation, the DO are induced by
the dipole operator,

F1 =

∞∑
n=1

√
nAn . (13)

We stress again that the operators An include the effect
of the anharmonicity on the transverse wave-functions.

The original dipole operator, ∝ z would contain terms

of the type, ∝ ε
∑

k ψ
†
n+n′,kψn,k where n = 0, 1, . . .,

n′ = 3, 5, . . . describing the satellite transitions at fre-
quencies n′ω⊥. These transitions have been observed
in light transmission through the anharmonic quantum
wells,23. Here we focus on the main resonance, at ω ≈ ω⊥
and use a definition, Eq. (11). The latter is more conve-
nient even though it misses the satellite transitions.

Let us compute the correlation function KA1,A1 up to

the second order in the interaction, KA1,A1
≈ K

(0)
A1,A1

+

K
(1)
A1,A1

+ K
(2)
A1,A1

. The first order correction, K
(1)
A1,A1

∝
vint/(ω − ω⊥)2 accounts for the renormalization of ω⊥
see Ref.34 and we proceed to the analysis of the second
order corrections.
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E
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FIG. 2. (color online) The three scattering processes with the
amplitudes A1, A2 and A3 given by Eq. (15) are shown as
panels a), b) and c) respectively. On the left the lowest and
the next bands separated by ω⊥ in energy, E are shown as
thick(black) and thin(blue) parabolic lines. The Fermi level
at E = EF crosses only the lowest energy band. All panels
show the same set of particles with momenta k′+ q and k− q
and holes with momenta k and k′ in the final state (black).
The virtual state includes, a) a particle at the momentum k
(red), b) a particle at momentum k′ (red) and c) a hole at
the momentum k − q (red). On the right the amplitudes of
the scattering process is represented diagrammatically. The
dashed(blue) and thick(black) lines denote propagators of the
excitations in the upper and lower bands respectively.



4

A. Second order perturbation theory

By utilizing the golden rule, we write

ImK
(2)
A1,A1

(ω) = −π
(

1− e−ω/T
) ∑

k,k′,q

∣∣∣∣∣
3∑
i=1

Ai

∣∣∣∣∣
2

×(1− f0,k′+q)f0,k′(1− f1,k−q)f0,k

×δ (ω − ξ0,k′+q + ξ0,k′ − ξ1,k−q + ξ0,k) , (14)

where ξn,k = En,k−µ is the total kinetic energy measured

relative to the chemical potential µ, and fn,k = (eξn,k/T−
1)−1 is the Fermi-Dirac function. Furthermore, ignoring
the exchange processes for brevity, the three amplitudes,
Ai, i = 1, 2, 3 of the scattering processes shown in Fig. 2
read

A1 =
VqU1

ω − ω⊥
, A2 =

VqU1̄

ω − ω⊥
, A3 = − VqU0

ω − ω⊥
, (15)

where we have introduced shortened notations, U00
00 =

U0, U01
01 = U1 and U10

01 = U1̄. Equations (14) and (15)
express in a compact form the result of the summation
of eight diagrams shown in Fig. 3. To include the contri-
bution of the exchange processes one has to replace Vq
in Eq. (15) by Vq − Vq−k+k′ . The separate amplitudes
of the direct and exchange processes enters the total am-
plitude with opposite signs in accordance with the Pauli
principle. Here we limit the consideration to the spinless
fermions. In the case of fermions with spin, the two am-
plitude differ in their spin structure. To simplify the pre-
sentation we will omit the exchange contribution without
loss of generality.

To obtain an insight into Eq. (14) it is useful to write
it in alternative form more closely related to the life time
of a single particle excitations. The inelastic scattering
rate of a particle in the band m = 1 with momentum k,
1/τ1k contains two contributions, 1/τ1k = 1/τ1ak+1/τ1bk,
represented by the self energy insertions in Fig. 3a,b
respectively. The quantities 1/τ̄1ak = U−2

1 /τ1ak and
1/τ̄1bk = U−2

1̄
/τ1bk do not depend on the confining poten-

tial and are described solely in terms of the motion in the
unconfined direction(s). Similarly, for the hole relaxation
rate 1/τ0k, see Fig. 3c we define the rate 1/τ̄0k = U−2

0 /τ0k
which is independent of the form of the confining poten-
tial. These rates are given in terms of the golden rule as
well,

1

τ̄1ak
=

2π

1− f1k

∑
k′,q

V 2
q (1− f1,k−q)(1− f0,k′+q)f0,k′

× δ(ξ1,k − ξ0,k′+q + ξ0,k′ − ξ1,k−q), (16a)

1

τ̄1bk
=

2π

1− f1k

∑
k′,q

V 2
q (1− f0,k−q)(1− f1,k′+q)f0,k′

× δ(ξ1,k − ξ1,k′+q + ξ0,k′ − ξ0,k−q), (16b)

``

(a) (b) (c) (d)

(e) (f) (g)

FIG. 3. (color online) The diagrammatic representation of the
second order correction to the correlation function, KA1,A1 ,
resulting from the scattering processes indicated in Fig. 2.
The solid thick (black) lines represents the propagator of par-
ticles in the first unoccupied band. The dashed (blue) lines
represents the propagator of holes in the lowest band. The
expression Eq. (14) represents the total contribution from the
processes with the four quasi-particles in the final state. The
propagators of these quasiparticles are crossed by the thin
(black) line. Panels: (a) and (b) represent two kinds of the
self energy of the particles, (c) represents the self energy of
the holes, (d),(e),(f) and (g) represent all vertex corrections
diagrams to the second order in interaction.

1

τ̄0k
=

2π

f0k

∑
k′,q

V 2
q f0,k+q(1− f0,k′+q)f0,k′

× δ(ξ0,k − ξ0,k+q + ξ0,k′+q − ξ0,k′). (16c)

Equations (16) are further elaborated in App. C 1. With
each of the definitions Eq. (16) one can rewrite Eq. (14)
in one of the three equivalent ways,

ImK
(2)
A1,A1

=
(U0 − U1 − U1̄)2

(ω − ω⊥)2

∑
k

f1,k − f0,k

2τ̄1ak
(17a)

=
(U0 − U1 − U1̄)2

(ω − ω⊥)2

∑
k

f1,k − f0,k

2τ̄1bk
(17b)

=
(U0 − U1 − U1̄)2

(ω − ω⊥)2

∑
k

f1,k − f0,k

2τ̄0k
, (17c)

where the identity (1− e−ω⊥/T )f0k(1− f1k) = f0k − f1k

has been used.

In order to relate K
(2)
A1,A1

to the actual decay rate of

the DO, 1/τ⊥ in this section we adopt a simple guess

KA1,A1(ω) ≈ N0 −N1

ω − ω⊥ + i/τ
(2)
⊥

. (18)

which as we show in Sec. IV holds under conditions of
weak anharmonicity, ε � 1. By matching the result,
Eq. (17) with the expansion of Eq. (18) in 1/τ⊥ we obtain
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to the second order,

1

τ
(2)
⊥

=
(U0 − U1 − U1̄)2

N0 −N1

∑
k

f0,k − f1,k

2τ̄0,a,b,k
. (19)

Alternative form of this equation relates 1/τ⊥ to the av-
erage quasiparticle relaxation rate,

1

τ
(2)
⊥

= (U0 − U1 − U1̄)2

∑
k(f0,k − f1,k)(2τ̄0,a,b,k)−1∑

k(f0,k − f1,k)
.

(20)

Equation (20) up to a prefactor (U0 − U1 − U1̄)2 and
replacement f1,k → f2,k is identical to the expression for
the decay rate of quadruple excitations in a quasi-two-
dimensional system of fermionic polar molecules created
by the lattice modulation pulse35. We stress that the
prefactor, (U0 − U1 − U1̄)2 in Eq. (20) is an important
consequence of the KTh.

Below we point out two immediate consequences of
Eq. (19). First, KTh is satisfied in view of the identity,
U0−U1−U1̄ = 0 valid for harmonic confinement for any
interaction. For anharmonic potential U0 − U1 − U1̄ 6= 0

and in general, 1/τ⊥ 6= 0. So that 1/τ
(2)
⊥ can be non-

zero only in an anharmonic trap. Secondly, according to
Eq. (16c) the relaxation rate of the hole, 1/τ̄0k is deter-
mined by the intra-band processes, and hence identical
to the inelastic rate of the hole in the pure 1D or 2D case.
In the 2D systems this rate is non-zero and as a result

1/τ
(2)
⊥ 6= 0. In contrast, in 1D systems with quadratic dis-

persions the inelastic rate vanishes, in fact to all orders in
interactions, see Ref.36. Therefore, according to Eq. (19)
in quasi-1D to the second order in interaction the DO
have vanishing relaxation rate even in anharmonic trap
at least at T = 0.

By representing Eq. (14) as a convolution of the polar-
ization operators,

Πnm(q, ω) =
∑
k

fm,k − fn,k+q

ω + i0− ξn,k+q + ξm,k
, (21)

we obtain an alternative form of the result, Eq. (19),

1

τ
(2)
⊥

=
(U1 + U1̄ − U0)2

N0 −N1

×
∫ ω⊥

0

dΩ

π

∑
q

V 2
q ImΠ10(q, ω⊥ − Ω)ImΠ00(q,Ω) .

(22)

Equation (22) has a transparent meaning. The finite
relaxation rate of DO is obtained when the two particle-
hole excitations can be found: one inter- and the other
intra-band such that their total momentum is zero and
their total energy is ω⊥. Each of the two kinds of particle-
hole excitations forms a continuum shown in Figs. 4 and
5 in quasi-1D and quasi-2D systems respectively. In these
graphs each excitation is shown on a momentum-energy
plane forming the shaded regions on these graphs. Below
we address the quasi-1D and quasi-2D cases separately
based on the above interpretation.

(a) (b)

(c) (d)
k

k q

q

!

!

!?

E

E

2kF

2kF

EF

!?

EF

!?

kF

kF

q2D

FIG. 4. (color online) (a) The two parabolas show energy as a
function of an in-plane momentum of the two lowest bands of
transverse quantization. The energy splitting between bands
is ω⊥. Only the lowest band is occupied. All the states up
to the Fermi momentum, kF and up to Fermi energy, EF are
populated at zero temperature. The continuum of intra-band
particle-hole excitations is formed by promoting the particle
above EF . The upper edge of the continuum is the line ω =
q2/2m + kF q, the lower edge is ω = max{0, q2/2m − kF q}.
(b) The intra-band particle-hole continuum in quasi-2D. The
shaded area in the (q, ω)-plane includes all the possible pairs
of momentum and energy (q, ω) of intra-band excitations such
as the one shown in (a). (c) The same as (a) with inter-band
particle-hole excitation shown instead of the intra-band one.
(d) The continuum of inter-band particle-hole excitations is
represented by the shaded area in the (q, ω)-plane.

(a) (b)

q

!

2kF q

!

2kF

!?
q1D

FIG. 5. (color online) (a) The particle-hole continuum of
intra-band excitations in quasi-1D (b) The particle-hole con-
tinuum of inter-band excitations in quasi-1D

B. 1/τ
(2)
⊥ in quasi-2D systems

We start with verifying the statement 1/τ
(2)
⊥ 6= 0

based on Eq. (22). Fig. 4b(d) represents the familiar
intra(inter)-band continuum in 2D. The intra-band ex-
citations with momentum q < 2kF and energy ω =



6

q

!

2kF 4kF

!?

(a)

q

!

2kF 4kF
(b)

FIG. 6. (color online) (a) The intra-band continuum of ex-
citations in quasi-1D. The shaded area bounded from below
by ω0→0(q) represents all possible pairs of momentum and
energy, q and ω of all intra-band excitations. (b) The contin-
uum of excitations in quasi-1D with exactly one inter-band
particle-hole excitation and arbitrary number of intra-band
pairs. The shaded area represents bounded from below by
ω0→1(q), Eq. (24) includes all points (q, ω) of kinematically
allowed excitations of this kind.

vF q−q2/2m are represented by the dashed line in Fig. 4b.
The inter-band excitations with momentum −q and en-
ergy ω = ω⊥ − vF q + q2/2m are shown as the low-
est boundary of the inter-band continuum in Fig. 4d.
Clearly, when the total momentum of two such pairs
is zero, the total energy is ω⊥. Since there are intra-
band excitations both below and above the dashed line
on Fig. 4b, the frequency ω⊥ falls within the continuum
of two particle-hole excitations. This implies the finite
life-time of DO already in the second order of perturba-
tion theory.

For completeness we have computed this rate starting
from Eq. (22),

1

τ⊥
= C̄ε2(V m)2EF , (23)

where C̄ is non-universal constant, which for a quartic
anharmonicity and for short-range interaction evaluates
to C̄ ≈ 0.94 (3/4)

2
/(2π)3, (see App. A for details). The

result, Eq. (23) corresponds to the Fermi liquid relax-
ation rate if the energy window available for the decay is
identified as EF . It is however smaller by a factor of ε2

because of the matrix elements suppression imposed by
the KTh.

2kF

q

!

q

!

q

!

`

`

EF <E⇤
F

EF =E⇤
F

EF >E⇤
F

EF

(a)

(b)

(c)

FIG. 7. The thick solid (red) line shows the lower edge of the
intra-band continuum, ω0→0(q). The thin solid (grey) line
indicates the lower edge ω0→1

{2} (q) (ω0→1
{4} (q)) of the continuum

of two (four) inter-band pairs excitations, see Eq. (26). Panel
(a): EF = ω⊥/2 and 1/τ⊥ = 0; panel (b): EF = E∗F = 3ω⊥/4
and 1/τ⊥ = 0; panel (c): EF = 7ω⊥/8 and 1/τ⊥ 6= 0. At
critical filling EF = E∗F = 3ω⊥/4 the edges ω0→0(q) and
ω0→1
{2} (q) touch, panel (b).

C. Relaxation of DO in quasi-1D systems at T = 0

We now discuss the relaxation of the DO in quasi-1D.

The T = 0 result, 1/τ
(2)
⊥ = 0 can be understood in two

ways. First, based on the representation (19) we have
traced it back to the vanishing of the hole inelastic re-
laxation rate in pure 1D36. Alternative interpretation we
adopt in this section is based on the representation (22).
The latter is formulated in terms of the intra- and inter-
band continua shown in Fig. 5a and Fig. 5b, respectively.
The excitations available at the second order in interac-
tion contain one intra-band pair with momentum q and
one intra-band pair with the opposite momentum, −q.
For |q| > 2kF the inter-band pairs have energy exceed-
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ing ω⊥. Therefore the total energy of the two pairs is
above ω⊥. For |q| < 2kF the lowest possible energy of
the inter-band pairs is ω = ω⊥ − vF q + q2/2m while the
lowest energy of the intra-band pair is ω = vF q− q2/2m.
As a result, in contrast to the quasi-2D case, ω⊥ is a
lower edge of the continuum of the two particle-hole ex-

citations, and 1/τ
(2)
⊥ = 0.

It is natural to ask whether 1/τ⊥ = 0 to all orders in
interaction. Below we argue that it is the case provided
that EF < E∗F = 3ω⊥/4, and in general the rate 1/τ⊥ is
finite otherwise.

As the confinement potential is assumed to be symmet-
ric the parity is conserved. The perturbation A1, Eq. (11)
connects neighbouring states of transverse quantization
of opposite parity and therefore is parity odd. As a result,
the sum of the band indices of all the excitations in the
final state has to be likewise odd. Furthermore, the exci-
tations to the second or higher unoccupied bands are not
of interest as they carry energy which exceeds ω⊥. We
therefore limit the consideration to the excitation to the
first unoccupied band. The allowed final states include
any odd number of particles in the first band. Below we
separately consider the final states with one and three
particles in the first band.

1. Contribution of final states with a single particle in the
first unoccupied band to 1/τ⊥

It is illuminating to envision these final states as com-
posites of the two types of excitations. The first type
includes all the possible intra-band particle-hole excita-
tions. These excitations form a continuum which is iden-
tical to the particle-hole continuum in the pure 1D case,
see Fig. 6a. It is unbounded from above and bounded
from below by ω0→0(q) = max∞n=−∞[vF (q−2kFn)+(q−
2kFn)2/2m],36,37. The second category includes a single
inter-band particle-hole pair in addition to an arbitrary
number of intra-band ones. These excitations likewise
form a continuum unbounded from above and shown in
Fig. 6b. It’s lower boundary is

ω0→1(q) = ω⊥ − ω0→0(q) . (24)

An excitation with one particle in the unoccupied band
has energy ω > minq[ω

0→0(q) + ω0→1(q)] = ω⊥. There-
fore, ω⊥ forms a boundary of a continuum considered,
and DO remain protected against the decay. The same
conclusion would be reached if one considered just a
single inter-band particle-hole pair without any intra-
band excitations with the lower boundary, ω0→1

{1} (q) =

ω⊥ − vF q + q2/2m. Here the subscript in curly brackets
denote the total number of particle-hole excitations.

2. Contribution of final states with more than one particle
in the first unoccupied band to 1/τ⊥

As the Fermi energy, EF approaches the inter-band
separation, ω⊥ the energy cost of an inter-band excitation
ω⊥ − EF decreases. This makes it necessary to consider
the excitations with more than one particle in the unoc-
cupied band as a possible decay channel. The excitations
with even number of particles in the first band are for-
bidden by parity conservation. We, therefore explore the
possibility of the relaxation into excitations which con-
tain 3, 5 or more particles in the first unoccupied band.

Consider the lower boundary of these continua,
ω0→1
{3} (q), ω0→1

{5} (q) or in general ω0→1
{2l+1}(q). The rate 1/τ⊥

remains zero provided ω⊥ ≤ ω0→1
{2l+1}(q= 0) for all l, and

1/τ⊥ 6= 0 otherwise.
It is again expedient to view such excitations as com-

posite of two,

ω0→1
{2l+1}(q=0) = min

q

[
ω0→1
{1} (−q) + ω0→1

{2l} (q)
]
. (25)

By combining Eqs. (24) and (25) we conclude that 1/τ⊥
is finite if and only if there exists a wave-number q∗

such that ω0→1
{2l} (q∗) < ω0→0(q∗). Since for n > 0,

ω0→1
{2(l+n)}(q) ≥ ω0→1

{2l} (q), 1/τ⊥ 6= 0 provided there exist

momenta q∗ satisfying ω0→1
{2} (q∗) < ω0→0(q∗). In other

words when the two continua overlap, Fig. 7b.
The boundaries ω0→1

{2} (q) and ω0→1
{4} (q) are presented in

Fig. 7 for different filling of the lowest band. Explicitly,
(see App. B)

ω0→1
{2l} (q) = 2l(ω⊥ − EF ) + min

u=0,±1,...,±l
(q − 2ukF )2

4lm
.

(26)

The important observation is that for low enough fillings,
EF < E∗F = 3ω⊥/4, Fig. 7a, ω0→1

{2} (q) > ω0→0(q) for all

q, and 1/τ⊥ = 0. The two continua touch at EF = E∗F ,
Fig. 7b. At EF > E∗F the inequality ω0→1

{2} (q) < ω0→0(q)

is satisfied for a finite range of momenta, and 1/τ⊥ 6= 0
as a result.

So far we have obtained the following results. Accord-
ing to KTh if the confining potential is strictly harmonic,
1/τ⊥ = 0 regardless of other details. We have observed
that it results from the cancellation of the matrix ele-
ments of arbitrary translationally invariant interaction
between states of the harmonic oscillator. Once the con-
finement is anharmonic the DO in general have a finite
lifetime. In quasi-2D it decays even at T = 0 regard-
less of the band occupations, and is weakly temperature
dependent. In quasi-1D at T = 0 the decay is possible
only if the occupation of the lowest band is large enough
to open the phase space for the inter-band processes. In
this case the relaxation of the DO in quasi-1D and quasi-
2D is qualitatively similar. Below the critical filling only
intra-band processes are available. These processes are



8

inefficient in relaxing the DO. At finite T the relaxation
rate due to the intra-band processes is finite.

Let us remark that in quasi-1D case 1/τ⊥ = 0 if the
transverse matrix elements are equal to the same con-
stant and fermion interact via the singular interaction,
Vq ∝ q2. The latter is the case of Cheon-Shigehara
model38, dual to the Lieb-Liniger model. As a result
in such a model the relaxation does not occur39,40.

D. Relaxation of DO in quasi-1D systems at T 6= 0

Let us now briefly consider the relaxation of the DO in
quasi-1D system at finite yet low temperatures, T � EF .
The scaling of 1/τ⊥ with temperature readily follows
from the representation, Eq. (19) based on the results
of Refs.41,42 on the energy-relaxation rate of the hot
particles in quantum wires. The finite hole energy-
relaxation rate, 1/τ̄0k is obtained at fourth order per-
turbation theory interaction. Ignoring any dependence
of the scattering amplitudes A of these processes on en-
ergy we have the estimates, 1/τ̄0,k ∝ |A|2mT [ξ0,k/vF ]2

for ξ0,k �
√
EFT and 1/τ̄0,k ∝ |A|2m2EFT

3/ξ2
0,k for

|ξ0,k| �
√
EFT ,4,41,42. These results follow from the scal-

ing of the phase space available for relaxation of holes.
In our situation all the holes contribute to 1/τ⊥ addi-
tively. Clearly, the deeper the hole the larger relaxation
rate it has. For typical hole at energy |ξ0,k| . EF the
phase space scales as T 3. Indeed, there are five momenta
parametrizing the final states: three for holes and two
for particles. With two integrations removed by the con-
servation laws the remaining three integrations produce
the T 3 scaling. This arguments in fact requires that the
hole gives up energy less than ξ0,k, i.e. in small portions.

As
√
EFT � EF , only small part of all holes have the

relaxation rate scaling linearly with T , and we obtain the
estimate,

1

τ⊥(T )
∝ ε2|A|2m2 T

3

EF
, (27)

where we have reintroduced the prefactor ε2 in compli-
ance with the KTh.

IV. RELAXATION RATE FROM THE
BETHE-SALPETER EQUATION

In this section we compute the life-time of the DO in
the case of a single occupied band by solving the integral
Bethe-Salpeter equation. In this approach we analyze the
integral vertex functions closely linked to the correlation
functions of An that satisfies the integral Bethe-Salpeter
equation to find the location of the poles of the vertex
function in the complex frequency plain. The integral
equation of the kind we discuss here has been introduced
in the works43,44 studying the universal long-wavelength
properties of Fermi liquid. The integral equation on ver-
tices and density correlation function has been obtained

��

(a)

(b)

FIG. 8. (color on line) The solid thick (black) lines repre-
sents the propagator of particles in the first unoccupied band.
The dashed (blue) lines represents the propagator of holes in
the lowest band. (a) The graphical representation of Bethe-
Salpeter equation, (31) satisfied by the vertex function, Γk(ω)
introduced in Eq. (29). (b) the scattering amplitude contains
four contributions that are in one to one correspondence to
the vertex correction shown in Fig. 3d,e,f,g respectively.

and solved for the marginal Fermi liquid45. This ap-
proach has been implemented in computing the T 2 re-
sistivity correction in Fermi liquid in the presence of pe-
riodic lattice potential in Ref.46. The processes violat-
ing the KTh are treated as a perturbation in a vector
space of the vertex functions in a manner similar to the
analysis of the the diffusion constant in the anisotropic
conductors47. Similar approach has been applied earlier
to the study of the transverse spin oscillations across a
quasi-1d channel,48. Our present calculations include the
ideas used in Ref.49 for the calculation of the transverse
spin relaxation time, T2 due to the spin non-conserving
magnetic dipole interaction in Fermi liquid.

It is convenient to employ the finite-temperature, Mat-
subara formalism for the present discussion. The Mat-
subara Green functions defined in the standard way,

KA,B(ωn) = −
∫ β

0

dτeiωnτ 〈A†(τ)B(0)〉 , (28)

ωn = 2πTn, with integer n that gives the retarded corre-
lation function, Eq. (10) upon the analytic continuation,
iωn → ω + i0. As we consider the case of a single occu-
pied band, the correlation function we specifically study
is KA1,A1

(iωn). The amputated Matsubara vertex func-
tion, Γk(εm, ωn) is defined by the relation,

KA1,A1
(iωn) = T

∑
εm,k

G1,k(εm + ωn)G0,k(εm)Γk(εm, ωn) ,

(29)

where the single-particle Green function read,

G0(1),k(εm) = −
∫ β

0

dτ ′eiεmτ
′〈ψ0(1),k(τ ′)ψ†0(1),k〉 . (30)

The Bethe-Salpeter equation is presented graphically
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in Fig. 8 and can be written in the form,

T
∑
ε

G1,k(ε+ ω)G0,k(ε)Γk,ε(ω) =

T 2
∑
ε,ε′

∑
k′

G1,k(ε+ ω)G0,k(ε)

×
[
U0U1T1kk′(ε− ε′) + U0U1̄T2kk′(ε− ε′)

+ U1U1̄T3kk′(ε
′ + ε+ ω) + U1U1̄T4kk′(ε

′ + ε+ ω)
]

× G1,k′(ε
′ + ω)G0,k′(ε

′)Γk′,ε′(ω), (31)

where the four scattering amplitudes,

T1kk′(Ω) = T
∑
p,ε̄

|Vk−k′ |2G0,p−k+k′(ε̄− Ω)G0,p(ε̄),

T2kk′(Ω) = T
∑
p,ε̄

|Vk−p|2G0,p−k+k′(ε̄− Ω)G0,p(ε̄),

T3kk′(Ω) = T
∑
p,ε̄

|Vk−p|2G0,p(ε̄)G1,−p+k+k′(−ε̄+ Ω),

T4kk′(Ω) = T
∑
p,ε̄

|Vk−p|2G1,p(ε̄)G0,−p+k+k′(−ε̄+ Ω) .

(32)

The central object is the vertex function Γk(ω) con-
structed from the Matsubara vertex in the following way.
The vertex, Γk,εn(ωn) appearing in Eq. (31) is first ana-
lytically continued in the frequency plane, iεn → ε − i0,
iεn + iωn → ε + ω + i0 which signifies the pair of
Green functions adjacent to the vertex as so called RA
(retarded-advanced) pair playing the central role in the
theory of Fermi liquid. The next step is the reduction
to the on-mass-shell vertex function achieved by setting
ε = ξ0,k. The second possible choice, ε+ω = ξ1,k is equiv-
alent to the first one. Indeed, since we consider ω ≈ ω⊥,
ξ1,k = ξ0,k +ω⊥, and the analytically continued vertex is
assumed to be smooth on the scale, |ω−ω⊥| ≈ 1/τ⊥ the
two on-mass-shell conditions introduced above are equiv-
alent. Obtained in this way the RA, on-mass-shell vertex
is a function of momentum k and the frequency ω, which
we denote Γk(ω).

The self-energies are also expressible through the func-
tions, Eq. (32). The holes at the n = 0 band has a single
type of self-energy, that can be written in the two alter-
native forms,

Σ0,k(ε) = U2
0T

∑
k′,εn′

T1kk′(εn − εn′)G0,k′(εn′)

= U2
0T

∑
k′,εn′

T2kk′(εn − εn′)G0,k′(εn′) . (33)

The self energy of the particles in the n = 1 band contains
the two distinct contributions,

Σ1,k(ε) = Σ
(a)
1,k(ε) + Σ

(b)
1,k(ε) , (34)

where

Σ
(a)
1,k(εn + ωn) = U2

1T
∑
k′,εn′

T1kk′(εn − εn′)G1,k′(εn′ + ωn)

= U2
1T

∑
k′,εn′

T4kk′(εn + εn′ + ωn)G0,k′(εn′) , (35)

and

Σ
(b)
1,k(ε+ ω) = U2

1̄T
∑
k′,εn′

T2kk′(εn − εn′)G1,k′(εn′ + ωn)

= U2
1̄T

∑
k′,εn′

T3kk′(εn + εn′ + ωn)G0,k′(εn′) . (36)

The quasi-particle life time,

1

τn,k
= −2ImΣRn,k(ξn,k) (37)

is a meaningful concept as long as the self-energy on the
right hand side of Eq. (37) is smooth function of the en-
ergy variable, ε at the mass shell, ε = ξn,k on a scale de-
fined by Eq. (37). This condition is satisfied as the scale
associated with the self-energy frequency dependence is
typically of the order of ω⊥. Corresponding to the sep-
aration of the particle self-energy, Eq. (34) we introduce
the two contributions to the hole life time,

1

τ1,k
=

1

τ1a,k
+

1

τ1b,k
,

1

τ1a,b,k
= −2Im[Σ

(a,b)
1,k ]R(ξ1,k) . (38)

The frequency summation in the Eq. (33) followed by
the analytic continuation to the real frequency yields (see
App. C 2),

1

τ0,k
=U2

0

∑
k′

[
tanh

ξk′

2T
− coth

ξk′ − ξk
2T

]
× ImTR1(2)kk′(ξk − ξk′) . (39a)

Similarly we have for each of the two inelastic relaxation
rates introduced in Eq. (38) two equivalent expressions,

1

τ1a,k
=U2

1

∑
k′

[
tanh

ξk′ + ω⊥
2T

− coth
ξk′ − ξk

2T

]
× ImTR1kk′(ξk − ξk′)

=U2
1

∑
k′

[
tanh

ξk′

2T
− coth

ξk + ξk′ + ω⊥
2T

]
× ImTR4kk′(ξk + ξk′ + ω⊥) , (39b)

and

1

τ1b,k
=U2

1̄

∑
k′

[
tanh

ξk′ + ω⊥
2T

− coth
ξk′ − ξk

2T

]
× ImTR2kk′(ξk − ξk′)

=U2
1̄

∑
k′

[
tanh

ξk′

2T
− coth

ξk + ξk′ + ω⊥
2T

]
× ImTR3kk′(ξk + ξk′ + ω⊥) . (39c)
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The Bethe-Salpeter equation satisfied by Γk(ω) is ob-
tained from Eq. (31) by performing the summation over
the frequencies ε and ε′ within the interval, −ω < ε, ε′ < 0
by the standard method of analytical continuation50.
The other frequencies make a contribution that is smaller
than the one we retain in the parameter, (ω⊥τin)−1 � 1.
We write the Bethe-Salpeter equation in the matrix form,∑

k′

Dkk′(ω)Γk′ =
∑
k′

[
U0U1T̄1kk′(ω) + U0U1̄T̄2kk′(ω)

+ U1U1̄T̄3kk′(ω) + U1U1̄T̄4kk′(ω)
]
Γk′ . (40)

The functions Dkk′(ω) and T̄lkk′(ω) in Eq. (40) are ob-
tained form the left and right side of Eq. (31) respectively.
Our strategy will be to consider Eq. (40) at a given fre-
quency, ω as a homogeneous linear, matrix equation on
the vector Γ with components labeled by the subscript
k. In this way the functions Dkk′(ω) and T̄lkk′(ω) are
to be understood as matrices acting on a vector Γ. The
explicit evaluation of these matrices is relegated to the
App. E. The matrix D is diagonal,

Dkk′(ω) =
δk,k′

2

tanh ξk+ω
2T − tanh ξk

2T

ω − ω⊥ + i/2τ1,k + i/2τ0,k
. (41)

For the matrices T̄1kk′(ω) and T̄2kk′(ω) we have,

T̄1(2)kk′(ω) =
i

4

tanh ξk+ω
2T − tanh ξk

2T

ω − ω⊥ + i/2τ1,k + i/2τ0,k

× ImTR1(2)kk′(ξk − ξk′)

× tanh ξk′+ω
2T + tanh ξk′

2T − 2 coth ξk′−ξk
2T

ω − ω⊥ + i/2τ1,k′ + i/2τ0,k′
. (42a)

Similarly, for the matrices T̄3kk′(ω) and T̄4kk′(ω),

T̄3(4)kk′(ω) = − i
4

tanh ξk+ω
2T − tanh ξk

2T

ω − ω⊥ + i/2τ1,k + i/2τ0,k

×ImTR3(4)kk′(ξk + ξk′ + ω)

× tanh ξk′+ω
2T + tanh ξk′

2T − 2 coth ξk′+ξk+ω
2T

ω − ω⊥ + i/2τ1,k′ + i/2τ0,k′
. (42b)

It is crucial for the forthcoming discussion that the ma-
trices, T̄nkk′ in Eqs. (42a) and (42b) are symmetric,
T̄nkk′ = T̄nk′k. Even though this property is not trans-
parent from the above equations, it follows from the def-
initions of these matrices and can be easily checked nu-
merically. Before we address the DO attenuation we have
to establish the consistency of the developed formalism
with the KTh to the first place. This task is implemented
in the following Sec. IV A.

A. KTh from the Bethe-Salpeter equation

In order to verify the consistency of the Bethe-Salpeter
equation, (40) one has to show that the latter possesses

a non-trivial solution for ω = ω⊥ provided the confining
potential is harmonic. As we demonstrate below such a
solution reads,

Γ⊥k =
i

2τ1,k
+

i

2τ0,k
. (43)

The solution, Eq. (43) has a transparent meaning. As we
discussed previously the DO are a coherent superposition
of the inter-band particle-hole excitation consistent with
the Fermi statistics. To reach this excitation the external
driving has to be stronger for those particle-hole pairs
that decay faster. The form, Eq. (43) expresses is the
direct expression of this observation.

To show that Eq. (43) solves Eq. (40) at ω = ω⊥ we
first note that according to Eq. (41),∑
k′

Dkk′(ω⊥)Γ⊥k′ =
1

2

[
tanh

ξk + ω⊥
2T

− tanh
ξk
2T

]
. (44)

Next we consider the first term on the right hand side of
Eq. (40) for the choice Eq. (43),

U0U1

∑
k′

T̄1kk′(ω⊥)Γ⊥k = U0U1

∑
k′

i

4

tanh ξk+ω⊥
2T − tanh ξk

2T

i/2τ1,k + i/2τ0,k

× ImTR1kk′(ξk − ξk′)

×
[
tanh

ξk′ + ω⊥
2T

+ tanh
ξk′

2T
− 2 coth

ξk′ − ξk
2T

]
.

(45)

We then make use of the relations, Eqs. (39a) and (39b)
to bring the last equation to the form,

U0U1

∑
k′

T̄1kk′(ω⊥)Γ⊥k =
1

2

[
tanh

ξk + ω⊥
2T

− tanh
ξk
2T

]

×U
−1
0 U1/τ0,k + U0U

−1
1 /τ1a,k

1/τ1,k + 1/τ0,k
. (46a)

The other terms in Eq. (40) are obtained in a very similar
way,

U0U1̄

∑
k′

T̄2kk′(ω⊥)Γ⊥k =
1

2

[
tanh

ξk + ω⊥
2T

− tanh
ξk
2T

]

×U
−1
0 U1̄/τ0,k + U0U

−1
1̄
/τ1b,k

1/τ1,k + 1/τ0,k
, (46b)

U1U1̄

∑
k′

T̄3kk′(ω⊥)Γ⊥k = −1

2

[
tanh

ξk + ω⊥
2T

− tanh
ξk
2T

]

× U1U
−1
1̄
/τ1b,k

1/τ1,k + 1/τ0,k
, (46c)

U1U1̄

∑
k′

T̄4kk′(ω⊥)Γ⊥k = −1

2

[
tanh

ξk + ω⊥
2T

− tanh
ξk
2T

]

× U1̄U
−1
1 /τ1a,k

1/τ1,k + 1/τ0,k
. (46d)
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The Eqs. (46c) and (46d) compared to Eqs. (46a) and
(46b) have opposite sign and contain only one term.
The reason for the presence of only one contribution in
Eqs. (46c) and (46d) is that the remaining part vanishes
because it describes the excitations of holes in the unoc-
cupied band, n = 1.

Adding up Eqs. (46) reproduces Eq. (44) thanks to the
relationship between the matrix elements U0−U1−U1̄ =
0 listed in Eq. (108) which holds for strictly parabolic
confining potential. This shows how the KTh is obtained
in the framework of the Bethe-Salpeter equation formal-
ism. In the next Sec. IV B we compute the relaxation
rate for the non-parabolic confining potential.

B. Life time, τ⊥ in a weakly anharmonic
confinement potential from Bethe-Salpeter equation

At finite anharmonicity, ε 6= 0 the matrix element do
not satisfy the relationships, Eq. (108). In result, Eq. (43)
ceases to be a solution of Bethe-Salpeter Eq. (40). In-
stead, a different solution exists for complex frequency,

ω∗ = ω⊥ − i/τ⊥ (47)

on the physical sheet in accord with the causality. Hence
knowledge of frequency ω∗ provides us with the relax-
ation rate we are after. Our strategy is to rewrite the
Bethe-Salpeter equation, Eq. (40) in the form of the
eigenvalue problem,[

D̂(ω)− Ŵ (ω, ε)
]
|Γ〉 = λ(ω, ε)|Γ〉 , (48)

where the operators on the left hand side act in the space
of functions of the quasi-particle momentum, 〈k|Γ〉 = Γk.

The matrix elements of the diagonal operator, D̂, are
given explicitly by the Eq. (41), and those of the operator

Ŵ , by the right hand side of Eq. (40).
The equivalent of the KTh is[

D̂(ω⊥)− Ŵ (ω⊥, 0)
]
|Γ⊥〉 = λ(ω⊥, 0)|Γ⊥〉, (49)

namely at ω = ω⊥ and ε = 0, |Γ⊥〉 is the eigenvector
with the eigenvalue λ(ω⊥, 0) = 0. Our goal is to find
the complex frequency, ω∗ such that there exists a vector
|Γ∗〉 satisfying[

D̂(ω∗)− Ŵ (ω∗, ε)
]
|Γ∗〉 = λ(ω∗, ε)|Γ∗〉 (50)

under the condition λ(ω∗, ε) = 0. The latter translates
to the requirement,

〈Γ⊥
∣∣∣[D̂(ω∗)− Ŵ (ω∗, ε)

]∣∣∣Γ⊥〉
= 〈Γ⊥

∣∣∣[D̂(ω⊥)− Ŵ (ω⊥, 0)
]∣∣∣Γ⊥〉 (51)

obtained in the standard perturbation theory by treating
the difference between the operators in Eqs. (49) and

(50) as small perturbation. In view of Eq. (49) with
λ(ω⊥, 0) = 0, Eq. (51) reduces to

〈Γ⊥
∣∣∣[D̂(ω∗)− Ŵ (ω∗, ε)

]∣∣∣Γ⊥〉 = 0. (52)

Making the series expansion of Eq. (52) for ω ≈ ω⊥ we
obtain the condition,

〈Γ⊥
∣∣∣[D̂(ω⊥)− Ŵ (ω⊥, ε)

]∣∣∣Γ⊥〉
= −(ω∗ − ω⊥)〈Γ⊥

∣∣∣∣∣
[
dD̂

dω
− dŴ

dω

]∣∣∣∣∣Γ⊥〉, (53)

where the derivatives can be evaluated at ω = ω⊥ and
ε = 0.

We start with the left hand side of Eq. (53). From (41)
and (43),

〈Γ⊥|D̂(ω⊥)|Γ⊥〉 = − i
2

∑
k

[
tanh

ξk + ω⊥
2T

− tanh
ξk
2T

]

×
(
U2

0

2τ̄0,k
+

U2
1

2τ̄1a,k
+

U2
1̄

2τ̄1b,k

)
, (54)

where the rates 1/τ̄0,a,b,k have been introduces previously
in Sec. III A. From Eqs. (46)

〈Γ⊥
∣∣∣Ŵ (ω⊥, ε)

∣∣∣Γ⊥〉 = − i
2

∑
k

[
tanh

ξk + ω⊥
2T

− tanh
ξk
2T

]
×
(
U0U1 + U0U1̄

2τ̄0,k
+
U0U1 − U1U1̄

2τ̄1a,k
+
U0U1̄ − U1U1̄

2τ̄1b,k

)
(55)

To make a connection to the perturbation theory analysis
given in Sec. III we make use of Eq. (19) Eqs. (54) and
(55) we obtain for the left hand side of Eq. (53)

〈Γ⊥
∣∣∣[D̂(ω⊥)− Ŵ (ω⊥, ε)

]∣∣∣Γ⊥〉 = −iN0 −N1

τ
(2)
⊥

. (56)

Turning to the right hand side of Eq. (53) we notice
that the strong frequency dependence originates from the
energy denominators, (ω−ω⊥+i/2τ0,k+i/2τ1,k)−1. As a
result, the derivatives with respect to ω operate on these
denominators. With this remark we readily obtain

〈Γ⊥|dD̂
dω
|Γ⊥〉 =

1

2

∑
k

[
tanh

ξk + ω⊥
2T

− tanh
ξk
2T

]
= N0 −N1 . (57)

In computing the contribution of the dŴ/dω we notice
that because of the symmetry Wkk′ = Wk′k one may take
the derivative of a one of the two energy denominators
and multiplying the result by a factor of two. The con-
venient choice is to differentiate the leftmost of the two
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denominators in Eqs. (42a) and (42b). This gives

〈Γ⊥|dŴ
dω
|Γ⊥〉 = −

∑
k

tanh ξk+ω⊥
2T − tanh ξk

2T

1/τ0,k + 1/τ1,k

×
(
U0U1 + U0U1̄

2τ̄0,k
+
U0U1 − U1U1̄

2τ̄1a,k
+
U0U1̄ − U1U1̄

2τ̄1b,k

)
.

(58)

Since the expression Eq. (58) may be evaluated at ε = 0,
in view of the relation U0 − U1 − U1̄ = 0 we use the
relations U0U1 + U0U1̄ = U2

0 , U0U1 − U1U1̄ = U2
1 and

U0U1̄ − U1U1̄ = U2
1̄ to bring it to the simple form,

〈Γ⊥|dŴ
dω
|Γ⊥〉 =

∑
k

[
tanh

ξk + ω⊥
2T

− tanh
ξk
2T

]
= 2(N0 −N1). (59)

Note that contribution Eq. (59) is twice larger than
Eq. (57). The cancellation of the matrix elements does

not hold for the matrix elements derivatives, because Ŵ
contain two singular energy denominators while D̂ has
only one. Subtracting Eq. (59) from Eq. (57) gives

〈Γ⊥
∣∣∣∣∣
[
dD̂

dω
− dŴ

dω

]∣∣∣∣∣Γ⊥〉 = −(N0 −N1) . (60)

Substituting Eqs. (56) and (60) in Eq. (53) we obtain,

1

τ
(2)
⊥

= i(ω∗ − ω⊥), (61)

which in view of the definition, Eq. (47) gives a simple
result,

1

τ⊥
=

1

τ
(2)
⊥

, (62)

namely the relaxation rate obtained by solving the Bethe-
Salpeter equation agrees with the naive guess, Eq. (19)
based on the perturbation theory in Sec. III. We stress
that the condition 1/τ⊥ � 1/τin needed for the result
Eq. (62) to hold is not obvious from the perturbation
theory. The result, Eq. (62) is also confirmed within the
memory function formalism in Sec. V below.

Let us emphasize that the above discussion as is does
not apply to quasi-1D case. The logarithmic singular-
ities crucial in 1D are absent in the present analysis.
Yet, based on the representation Eq. (22) we conjec-
ture that the inter-band correlation function in 1D ac-
quire the power law frequency dependence, KA1,A1 ∝∫ 2kF

0
dq(ω − ω⊥ + i/2τ̄0,−kF +q)

−1−µ−(q). Here the expo-

nent µ−(q) introduced in37 controls the power law fre-
quency dependence of the (intra-band) density correla-
tion function at the lower edge of the particle-hole con-
tinuum, and 1/τ̄0,k is the hole life time, Eq. (27).

V. MEMORY FUNCTION APPROACH
APPLIED TO THE CALCULATION OF 1/τ⊥.

The memory function is a method alternative to the
solution of the integral Bethe-Salpeter equation. This
formalism outlined in Sec. V A is exact. To make a fur-
ther progress one has to relate it to the more familiar
correlation functions. This is done to the leading order
in Sec. V A were we discuss the approximations and their
region of validity.

Although these approximations are physically trans-
parent, the whole approach is harder to justify as com-
pared to the Bethe-Salpeter equation. The great advan-
tage of the present formalism is that its physically intu-
itive. Here we are not trying to emulate all its virtues.
Rather we limit the discussion to the life time of the
DO. In a sense, it replaces the integral Bethe-Salpeter
equation by the algebraic one. The latter is similar to
the Dyson equation for a single particle excitations, and
gives the life time of a particle in terms of the self-energy
evaluated on a mass shell. The memory function is an
analog of the self energy for the collective excitations.

A. Summary of the memory function formalism

The basic quantity central to the MF formalism is the
Kubo correlation function,

Cij(t) = 〈Ai(t)|Aj〉 (63)

which is a matrix on the space of slow variables Ai labeled
by index i. In our problem this set is given by Eq. (11).
The scalar product in Eq. (63) is by definition

〈A|B〉 =

∫ β

0

dλ
[
〈A†B(iλ)〉 − 〈A†〉〈B(iλ)〉

]
, (64)

where 〈. . .〉 stands for the thermodynamic average.
Strictly speaking, Eq. (64) defines a scalar product for
normal ordered operators, i.e. with their average sub-
tracted, (see Ref.51 and App. F). This, however, is incon-
sequential because all the final results are formulated in
terms of commutators. The time evolution in this space
is specified by the Liouvillian super-operator defined by
its action on an observable X,

L̂[X] = [H,X] . (65)

Equation (65) is formally solved by

X(t) = exp(−iL̂t)X(t = 0) . (66)

Consider the Laplace transformation,

Ĉ(z) =

∫ ∞
0

dteiztĈ(t) , (67)

where Ĉ(t) is the matrix in the space of slow variables
with matrix elements defined by Eq. (63). With the def-
inition Eq. (66), Eq. (67) formally evaluates to

Cij(z) = 〈Ai|
i

z − L |Aj〉 (68)
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Though formally exact the expression (68) is not always
practically useful. The Kubo function is related to the
retarded correlation functions introduced in Eq. (10).

Cij(z) =
1

iz

[
KAi,Aj

(z = i0+)−KAi,Aj
(z)
]
, (69)

where Imz > 0, 0+ is a positive infinitesimal.
We make use the relationship (69) on the real axis

z = ω + i0+. The detailed proof of Eq. (69) is given in
App. F.

The memory function formalism builds on separation
of scales. Once the set of slow variables are identified the
Dyson-equation-like representation of the Kubo matrix
exists,

Ĉ(z) = i[z − Ω̂ + iΣ̂(z)]−1χ̂s , (70)

where z is meant to multiply a unit matrix and the ma-
trices are defined below. The matrix χ̂s is defined by the
equal time scalar product and as shown in App. F is the
negative of the static, ω = 0 response function,

[χ̂s]ij = 〈Ai|Aj〉 = −KAi,Aj (ω = 0) . (71)

The matrices Ω̂ and Σ̂ referred to as frequency renor-
malization and memory matrices respectively. They rep-
resent the frequency and relaxation of collective modes.
These quantities are of the central interest. We have,

Ω̂ = ω̂χ̂−1
s , ωij = i〈Ȧi|Aj〉 . (72)

Similarly to the two equivalent expressions in Eq. (71)
for χ̂, the ω̂ is equivalently represented as the retarded
correlation function,

ω̂ij = iKȦi,Aj
(ω = 0) (73)

of the forces Ȧ with the variables A themselves evaluated
in the static limit.

To introduce the memory function the projection onto
the space of slow variables is defined as

P̂ =
∑
i

|Ai〉〈Ai|
〈Ai|Ai〉

. (74)

Then the operator projecting out the slow dynamics is
Q̂ = 1−P̂ . The relaxation of the slow modes due to their
coupling to the thermal bath of fast degrees of freedom
is contained in the memory matrix,

Σ̂(z) = σ̂(z)χ̂−1
s , (75)

where

〈Ai|σ̂(z)|Aj〉 =

∫ ∞
0

dteizt〈Ȧi|Q̂e−iQ̂L̂Q̂tQ̂|Ȧj〉

= 〈Ȧi|Q̂
i

z − Q̂L̂Q̂
Q̂|Ȧj〉 . (76)

B. The DO relaxation rate to the second order in
interaction

The above equations are formally exact. However, to
turn them into the useful tool usually further approxi-
mations are required based on the specifics of the regime
studied. We focus on the regime of weak scattering, and
weak anharmonicity regime, 1/τ⊥ < 1/τin � ω⊥. Con-

sider the generalized forces Ȧi = i[H,Ai] entering the
memory matrix, Eq. (75). The effects of anharmonicity
is included in the definition of the collective variables,
Eq. (11). In the absence of interaction this definition
eliminates it from the problem because [H,Ai] ∝ Ai.

Once the interactions are present the anharmonicity
cannot be eliminated as it affects the matrix elements
of interaction, Eq. (7). Although Ai are time rever-

sal even, the matrix ω̂ is non-zero since A†i 6= Ai. We
discuss the matrix ω̂ because of the immense degener-
acy of the space of all the slow variables of the form,∑

k g(k)ψ†n+1,kψnk chosen to ensure the mutual orthog-
onality of slow variables. The space of all such variables
is infinite-dimensional as even for a given n there are in-
finitely many choices of g(k). For instance, the choice
g(k) = δ(k−k0) defines a single particle-hole excitation.

The interaction of generic type lifts this degeneracy
leaving the DO unaffected. In Sec. V D 2 we illustrate this
point by computing the splitting of the center of mass and
breathing oscillations in the system with two occupied
bands. In Sec. V D 3 the same results are obtained by
performing the direct RPA-like calculation.

To the first order in interaction, the DO are unaffected
by interaction in the harmonic potential and is repre-
sented by the special linear superposition of the slow
variables. We denote them as Fn, n = 1, 2, . . .. The
dipole operator, Eq. (13) is one such variable. In prac-
tice, the summation in Eq. (13) can be limited to the
occupied bands because the unoccupied bands support
no particle-hole excitations at frequency ≈ ω⊥. The
dipole operator F1, Eq. (13) is the only slow variable
satisfying, 〈F1(t)〉 ∝ e−iω⊥t. All the other linear com-
binations of Fn that are orthogonal to F1 are affected
by interactions and split off by an amount of the order
ω⊥vint. Provided that this splitting is big enough we
can reduce the space of slow variables to a single vari-
able, namely the dipole operator, Eq. (13). The cal-
culation shows that the life time 1/τ⊥ ∝ ε2(1/τin) and
1/τin ∝ ω⊥v2

int. We have therefore the following hier-
archy of scales, 1/τ⊥ � 1/τin � ω⊥vint � ω⊥ that
follows from a single assumption of weak interaction,
vint � 1. Since the scale of variation of the operator
Σ̂ is 1/τin � 1/τ⊥ the definition (70) yields a pole at
z = ω⊥ + i/τ⊥. In other words, the relaxation rate of
DO, |F1〉, Eq. (13) is given by

1

τ⊥
= Re〈F1|Σ̂(ω = ω⊥)|F1〉 . (77)

The relationship (77) holds provided the rate 1/τ⊥ as de-
fined by (77) is much smaller than the typical frequency
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range of variation of ReΣ̂(ω). In our problem the lat-
ter is determined by the single-particle relaxation rate
due to the interactions, 1/τin. As the KTh is violated
only weakly the rate 1/τ⊥ indeed turns out to be para-
metrically smaller than the relaxation rate of individual
quasi-particles.

We now evaluate the relaxation rate, Eq. (77) to the
leading order in interaction. Based on the representation,
Eq. (75) we discuss the static susceptibility, χ̂s and the
matrix σ̂ separately. The static susceptibility is real and
therefore the imaginary contribution to the memory ma-
trix originates from the matrix σ̂. Hence, to the leading
order the susceptibility matrix can be approximated by
its value in the non-interacting system,

χ̂s ≈ χ̂(0)
s . (78)

The corrections to χ̂s, scale as ∝ v2
int and therefore are

anyway small. In Eq. (76) defining σ̂ the projection oper-

ators Q̂ allow us to compute the force, Ȧ⊥ by commuting
A⊥ only with the interaction part of the Hamiltonian. In
result, to the second order in interaction we have

〈F1|σ̂|F1〉≈
∫ ∞

0

dteizt〈[F1, Hint]|e−iL̂
(0)t|[F1, Hint]〉,

(79)

where L̂(0) is the Liouvillian of the non-interacting sys-
tems. The relationship (79) has a form of a non-
interacting Kubo correlation function, Eq. (63). Follow-
ing the relationship Eq. (69) we write

〈F1|σ̂|F1〉 ≈
1

iz

[
K

(0)
[F1,Hint],[F1,Hint]

(z = i0)

−K(0)
[F1,Hint],[F1,Hint]

(z)
]
, (80)

where K(0) denote the correlation function in Eq. (10)
computed in the non-interacting system.

Summarizing the above arguments, the DO relaxation
rate is based on Eqs. (71), (75), (77), (78) and (80) leads
us to the approximate expression based on the memory
function formalizm,

1

τ⊥
=

1

ω⊥

Im
[
K

(0)
[F1,Hint],[F1,Hint]

(ω⊥)
]

K
(0)
F1,F1

(ω = 0)
. (81)

The KTh is built into Eq. (81) since in the harmonic
confinement, the mode F1 as defined by Eq. (13) satis-

fies the Heisenberg equation of motion, Ȧ⊥ = iω⊥F1 to
all orders in interaction, which in particular means that
[F1, Hint] = 0 exactly. Moreover, the DO decouple from
the rest of the excitations at different frequencies.

C. One occupied band

In this section we implement the program outlined in
Sec. V B to compute the life time of DO in the simplest

situation of one occupied band. In this case the only pos-
sible resonant inter-band transitions are from the lowest
to the nearest unoccupied band. Therefore the slow vari-
able, Eq. (13) excited by the sloshing is F1 = A1. We
discuss its frequency and life time in the Secs. V C 1 and
V C 2 respectively. The more detailed discussion of the
mode splitting is given in Sec. V D for the case of two
occupied bands.

1. Frequency of DO

In this section we demonstrate the consistency of the
memory function formalism in the simplest case of single
occupied band. For clarity, here we consider the har-
monic confining potential. In the noninteracting system
all the particle-hole excitations carrying zero-momentum
and energy ω⊥ are degenerate. According to the degen-
erate perturbation theory, the interaction induced energy
splitting is of the order ∝ vint. This splitting allows us to
focus on a one-dimensional space of observables spanned
by a single variable, Eq. (13) as discussed above. Fur-
thermore, as only the lowest band is occupied we can
truncate Eq. (13), F1 = A1. To all orders in interactions,

Ȧ1 = iω⊥A1 and therefore by the definitions Eq. (71)
and Eq. (72),

〈A1|Ω̂|A1〉 =
〈A1|ω̂|A1〉
〈A1|χ̂s|A1〉

= ω⊥ (82)

In a one-dimensional space of observables spanned by
A1, the Kubo relaxation matrix, Eq. (70) reduces to the
scalar function of frequency. The static response for weak
interactions,

χ(0)
s =

N0 −N1

ω⊥
(83)

is found from Eq. (71) by setting ω = 0 in the expres-
sion (12). Substitution of Eqs. (82) and (83) along with
Σ(z) = 0 in Eq. (70) yields

C(z) = i
N0 −N1

ω⊥

1

z − ω⊥
. (84)

The Eq. (84) can also be obtained by substitution of
Eq. (12) into the relation Eq. (69). This demonstrates
the consistency of the present formalism.

2. Lifetime of the DO

We now turn to the evaluation of the life time of the
DO in the case of a single occupied band. As in Sec. III,
we project the full interaction Hamiltonian, (6) onto a
space of the first two lowest bands. The projected Hamil-
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tonian contains three terms,

H ′int,1 =U1

∑
Vqψ

†
1,k−qψ

†
0,k′+qψ0,k′ψ1,k

+ U1̄

∑
Vqψ

†
1,k−qψ

†
0,k′+qψ1,k′ψ0,k

+ U0

∑ Vq
2
ψ†0,k−qψ

†
0,k′+qψ0,k′ψ0,k . (85)

To apply the relation, (81) we compute the commutator
relations of the observable A1 with the projected Hamil-
tonian, (85). These commutation relations are summa-
rized in App. H, (see Eqs. (H1a), (H4a) and (H5a)), and
give

[A1, H
′
int,1] = U0

∑
Vqψ

†
0,k−qψ

†
1,k′+qψ0,k′ψ0,k

+ U1

∑
Vq

(
ψ†1,k−qψ

†
1,k′+qψ0,k′ψ1,k

−ψ†1,k−qψ
†
0,k′+qψ0,k′ψ0,k

)
+ U1̄

∑
Vq

(
ψ†1,k−qψ

†
1,k′+qψ1,k′ψ0,k

−ψ†1,k−qψ
†
0,k′+qψ0,k′ψ0,k

)
(86)

Note that the terms in Eq. (86) proportional to

ψ†1,k−qψ
†
1,k′+qψ0,k′ψ1,k do not contribute to the corre-

lation function in (81) as only the lowest, n = 0 band
is occupied, while the next, n = 1 band is empty, and
cannot accommodate holes. The remaining terms form
the combination, (U0 − U1̄ − U1)M̄ , with the operator

M̄ =
∑

k,k′,q

Vqψ
†
1,k−qψ

†
0,k′+qψ0,k′ψ0,k , (87)

It follows that,

ImK
(0)
[F1,Hint],[F1,Hint]

=(U0 − U1̄ − U1)2

× ImK
(0)

M̄,M̄
(ω = ω⊥) (88)

The correlation function on the right hand side of
Eq. (88) is (see App. G for details),

ImK
(0)

M̄,M̄
(ω) = −π

(
1− e−ω/T

) ∑
k,k′,q

1

2
(Vq − Vq−k+k′)

2

×(1− f0,k′+q)f0,k′(1− f1,k−q)f0,k

×δ (ω − ξ0,k′+q + ξ0,k′ − ξ1,k−q + ξ0,k) . (89)

As before, we omit the contribution of the exchange
processes to the correlation functions by replacing in
Eq. (89), (Vq − Vq−k+k′)

2/2 with V 2
q . By comparison

of Eq. (89) with Eq. (14) we obtain

ImK
(0)
[F1,Hint],[F1,Hint]

= (ω − ω⊥)2ImK
(2)
A1,A1

(ω⊥) (90)

Substituting Eq. (90) along with the expression for the
static susceptibility, Eq. (83) in the basic Eq. (81) we
write the latter in the form,

1

τ⊥
= − (ω − ω⊥)2

N0 −N1
ImK

(2)
A1,A1

(ω⊥) . (91)

Which exactly corresponds to the naive guess, Eq. (18)
and we conclude that the life tine obtained within the
memory function formalism coincides with the results
obtained by the naive perturbation theory in Sec. III,
namely,

1

τ⊥
=

1

τ
(2)
⊥

. (92)

D. Two occupied bands

Before we discuss the effect of interaction let us sum-
marize the results in the non-interacting case and har-
monic confining potential, ε = 0.

1. Non-interacting fermions

Compared to the previously considered case of a single
occupied band there are at least two independent slow
variables in the problem,

A1 =
∑
p

ψ†1,pψ0,p , A2 =
∑
p

ψ†2,pψ1,p . (93)

In the absence of interactions the two-by-two memory
matrix, Σ̂ vanishes and we focus on the frequency renor-
malization matrix Ω̂, Eq. (72).

As in the case of a single occupied band considered in
Sec. V C 1, Ω̂ trivially follows from the Heisenberg equa-
tion of motion, Ȧ1,2 = iω⊥A1,2. In this case the compar-
ison of Eq. (71) and (72) gives the relation, ω̂ = ω⊥χ̂s
which from Eq. (72) gives Ω̂ = ω⊥, as expected. Clearly

for any number Nm of occupied bands the matrix Ω̂ in
the space of variables An, n = 1, 2, . . . , Nm is the product
of ω⊥ and a unit matrix of dimension Nm. In the inter-
acting system the frequency renormalization matrix, Ω̂
in general is non-diagonal. Even in this case the dipole
operator, (13) with the summation extending up to Nm
remains an eigenstate of Ω̂ if the confining potential is
parabolic.

In the subsequent sections we will also need the static
response matrix, Eq. (71). The latter is obtained from
Eqs. (71) and (12),

χ̂(0)
s =

1

ω⊥

(
N0 −N1 0

0 N1

)
. (94)

We have considered the pair of slow variables A1,2

which define two degenerate long-lived coherent slosh-
ing oscillations. Let us stress again that the space of all
such variables is infinite. As discussed in Sec. V B the
splitting of the DO off the rest of the excitations by the
interaction is both generic and essential to the present
formulation. For this reason we address the mode split-
ting before discussion of the life time of DO in Sec. V D 4.

The mode splitting can be analyzed in the limit of the
harmonic confinement as the dimensionless interaction,
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vint is assumed to be larger than the anharmonicity pa-
rameter, ε. In Sec. V D 2 we show that generic interaction
lifts the mode degeneracy leaving the DO, Eq. (13) unaf-
fected. The same task is achieved in Sec. V D 3 using the
standard diagrammatic technique. The two approaches
give identical results.

2. In- and out-of-phase modes splitting: memory function
formalism

Here we focus on the splitting between the two modes
A1 and A2. These modes represent the two independent
sloshing oscillations of particles in n = 0 and n = 1 bands
respectively. Interaction mixes the two types of sloshing
oscillations. The mixed modes are in- and out-of-phase
oscillations in n = 0 and n = 1 bands that are split
in frequency. The former, in-phase combination is the
dipole operator of entire system that according to KTh
retains the unrenormalized frequency, ω⊥. The out-of-
phase oscillations are expected to have a renormalized
frequency and finite life-time.

Our goal is to find the renormalized frequencies of col-
lective modes to the first order in interaction. In the
memory function formalism it amounts to calculating the
frequency renormalization matrix, Ω̂ to the first order in
interaction. From Eq. (72),

[Ω̂]i,j =
∑
l=1,2

〈[H0, Ai]|Al〉[χ−1
s ]lj + 〈[Hint, Ai]|Al〉[χ−1

s ]lj

(95)

Since [H0, Ai] = ω⊥Ai and in view of the definition
Eq. (71) the fist term in Eq. (95)∑

l=1,2

〈[H0, Ai]|Al〉[χ−1
s ]lj = ω⊥δij (96)

even in the presence of interactions. This observation
is akin to the cancellation of disconnected graphs in the
diagrammatic technique. It remains to evaluate the sec-
ond term in Eq. (95). As a result, to the first order in
interactions

[Ω̂]i,j ≈
∑
l=1,2

〈[Hint, Ai]|Al〉[χ(0)
s ]−1

lj , (97)

where both the correlation function 〈[Hint, Ai]|Al〉 should
be evaluated in the non-interacting system, and the non-

interacting static correlation function χ
(0)
s is explicitly

given by Eq. (94). In result we have reduced the cal-

culation of the frequency renormalization matrix, Ω̂ to
the evaluation of the non-interacting static correlation
functions of the observables Ai and their commutation
relations with the interaction Hamiltonian, [Hint, Aj ],
i, j = 1, 2. Since the observables A1,2 operate within the
first three bands, the commutation relations [Hint, Ai]
can be evaluated with the interaction projected onto

these three bands,

H ′int = H ′int,a +H ′int,b +H ′int,c, (98)

H ′int,a = U01
01

∑ ′
Vqψ

†
1,k−qψ

†
0,k′+qψ0,k′ψ1,k

+U01
10

∑ ′
Vqψ

†
1,k−qψ

†
0,k′+qψ1,k′ψ0,k

+
U00

00

2

∑ ′
Vqψ

†
0,k′+qψ

†
0,k−qψ0,kψ0,k′

+
U11

11

2

∑ ′
Vqψ

†
1,k′+qψ

†
1,k−qψ1,kψ1,k′ , (99a)

H ′int,b = U11
02

∑ ′
Vqψ

†
2,k−qψ

†
0,k′+qψ1,k′ψ1,k

+U02
11

∑ ′
Vqψ

†
1,k′ψ

†
1,kψ2,k−qψ0,k′+q (99b)

H ′int,c = U20
20

∑ ′
Vqψ

†
0,k−qψ

†
2,k′+qψ2,k′ψ0,k

+U20
02

∑ ′
Vqψ

†
2,k−qψ

†
0,k′+qψ2,k′ψ0,k

+U21
21

∑ ′
Vqψ

†
2,k′+qψ

†
1,k−qψ1,kψ2,k′

+U21
12

∑ ′
Vqψ

†
2,k−qψ

†
1,k′+qψ2,k′ψ1,k , (99c)

where
∑ ′

stands for
∑

k,k′,q. The commutation rela-

tions with each of the terms appearing in Eq. (99) are
computed in the App. H. Summarizing this straightfor-
ward calculation we obtain,

[A1,H
′
int]=(U00

00−U01
01−U10

01 )
∑ ′

Vqψ
†
1,k−qψ

†
0,k′+qψ0,k′ψ0,k

+(U01
01 +U10

01−U11
11 )
∑ ′

Vqψ
†
1,k−qψ

†
1,k′+qψ0,k′ψ1,k

−U11
02

∑ ′
Vqψ

†
2,k−qψ

†
0,k′+qψ1,k′ψ0,k

+U11
02

∑ ′
Vqψ

†
2,k−qψ

†
1,k′+qψ1,k′ψ1,k

+(U02
20−U21

12 )
∑ ′

Vqψ
†
2,k−qψ

†
1,k′+qψ2,k′ψ0,k

−(U02
02−U12

12 )
∑ ′

Vqψ
†
1,k−qψ

†
2,k′+qψ2,k′ψ0,k,

(100)

[A2, H
′
int] = (U01

01 − U02
02 )
∑ ′

Vqψ
†
2,k−qψ

†
0,k′+qψ0,k′ψ1,k

+(U01
10 − U02

20 )
∑ ′

Vqψ
†
2,k−qψ

†
0,k′+qψ1,k′ψ0,k

−U02
11

∑ ′
Vqψ

†
1,k−qψ

†
1,k′+qψ0,k′ψ1,k

+U02
11

∑ ′
Vqψ

†
1,k−qψ

†
2,k′+qψ0,k′ψ2,k

+U02
11

∑ ′
Vqψ

†
2,k−qψ

†
1,k′+qψ0,k′ψ2,k

+(U11
11−U12

12−U12
21 )
∑ ′

Vqψ
†
2,k−qψ

†
1,k′+qψ1,k′ψ1,k

−(U22
22−U12

12−U12
21 )
∑ ′

Vqψ
†
2,k−qψ

†
2,k′+qψ2,k′ψ1,k .

(101)
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To illustrate the formalism we compute the ω11 entry of
the matrix ω̂. As the correlation functions are computed
in the non-interacting system, all the terms in Eq. (100)
which contain the operators acting on the band n = 2 do
not contribute to ω11. The remaining, first two terms in
Eq. (100) give,

ω11 =(U00
00−U01

01−U10
01 )
∑ ′〈ψ†1,k−qψ

†
0,k′+qψ0,k′ψ0,k|ψ†1pψ0p〉

+(U01
01 +U10

01−U11
11 )
∑ ′〈ψ†1,k−qψ

†
1,k′+qψ0,k′ψ1,k|ψ†1pψ0p〉

(102)

In the non-interacting systems,

〈ψ†0,kψ
†
0,k′ψ0,k′+qψ1,k−q|ψ†1pψ0p〉 =

=〈ψ†0,k′+qψ0,k′〉〈ψ†0,kψ1,k−q|ψ†1pψ0p〉
− 〈ψ†0,kψ0,k′+q〉〈ψ†0,k′ψ1,k−q|ψ†1pψ0p〉 (103)

as can be deduced from Eq. (71). The two terms in
Eq. (103) represent the direct and exchange contribu-
tions to the frequency renormalization respectively. For
the sake of clarity we exclude the direct contributions
by setting Vq=0 = 0. It is straightforward to include it.
In addition, we make another simplifying but not essen-
tial assumptions of week momentum dependence of the
the interaction matrix elements, Vq ≈ V0. Under these
assumptions substitution of Eq. (103) in Eq. (102) yields

ω11 = −V0〈A1|A1〉
[
N0(U00

00 − U01
01 − U10

01 )

+N1(U01
01 + U01

10 − U11
11 )
]
. (104)

Proceeding in the similar fashion we obtain the full ma-

trix, ω̂ Then by Eq. (97) the matrix Ω̂ ≈ ω̂[χ̂
(0)
s ]−1 reads

Ω̂ =

[
Ω11 Ω12

Ω21 Ω22

]
, (105)

where

Ω11 = −V0N0(U00
00 − U01

01 − U10
01 )

Ω12 = V0(N0 −N1)U11
02

Ω21 = −U11
02N1

Ω22 = −V0N0(U01
10 − U02

20 )− V0N1(U11
11 − U12

12 − U21
12 ).

The diagonalization of the matrix, Eq. (105) gives the
collective modes we are after. Lets first clarify the trans-
formation properties of the matrix, Ω̂. By their very
definitions, Eqs. (71) and (72) these matrices, ˆ̄ω and ˆ̄χ
defined via the collective variables,

Fi =

2∑
j=1

OijAj (106)

are related to the corresponding matrices in terms of the
variables Ai as ˆ̄ω = Ôω̂Otr, and ˆ̄χ = Ôχ̂Ôtr. It follows

that ˆ̄Ω = ÔΩ̂Ô−1. The matrix Ô is fixed by KTh. In-
deed, one of the modes, Eq. (106) must be the dipole

operator, (13), namely F1 = A1 +
√

2A2. The second
out-of-phase mode, F2 should be orthogonal to F1 with
respect to the scalar product, Eq. (64). This orthog-
onality, according to Eq. (71) means that perturbation
coupled to F2 leaves 〈F1〉 = 0. It finally fixes the matrix,

Ô =

(
1

√
2

−
√

2
N0−N1

1
N1

)
. (107)

The matrix Ô in Eq. (107) is independent of interactions.
This means that the different matrix elements defining
the matrix, Ω, Eq. (105) are not independent. They have
to satisfy general relations that rely only on the confining
potential being harmonic. Here we bring some of these
identities,

U1 = U00
00 − U01

01 − U10
01 = 0 ,

U2 = U01
01 + U10

01 − U11
11 −

√
2U02

11 = 0 ,

U3 = U11
02 −

√
2(U01

01 + U10
01 − U02

02 − U02
20 ) = 0 ,

U4 = U11
02 +

√
2(U11

11 − U12
12 − U12

21 ) = 0 ,

U5 =
√

2(U01
10 − U02

20 )− U11
02 = 0 . (108)

The identities, Eq. (108) belong to an infinite set of re-
lations between different matrix elements valid for any
translational invariant interactions. We derive and dis-
cuss these and other identities of the same kind in
Sec. V D 4.

With the help of Eq. (108) the matrix, Ω̂, Eq. (105)
simplifies,

Ω̂ = −V0U
11
02

[√
2N1 N1 −N0

−N1 −(N1 −N0)/
√

2

]
. (109)

As a result,

Ω̂ = −V0
U11

02√
2

[
0 0
0 N0 +N1

]
. (110)

The renormalization of the frequencies of the in- (DO)
and out-of-phase collective modes are given as diagonal
entries of the matrix, Eq. (110). The frequencies of the
two modes become therefore,

ω̄1 = ω⊥ , ω̄2 = ω⊥ − V0
U11

02√
2

(N0 +N1) . (111)

Consider, for illustration the point-like interaction,

f [(zj − zj′)] = U0`⊥
√

2πδ(zj − zj′) . (112)

In this case, the frequency renormalization of the out-of-
phase mode reads

ω̄2 − ω⊥ = V0U0(N0 +N1)/8 . (113)

The results, Eq. (112) and Eq. (113) agree with the fre-
quency renormalization obtained by a direct diagram-
matic technique as is demonstrated in Sec. V D 3.
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3. In- and out-of-phase modes splitting: diagrammatic
analysis

In the previous section we have evaluated the inter-
action induced frequency splitting between the in- (DO)
and out-of-phase collective modes. The goal of this sec-
tion is to find both frequencies using the standard pertur-
bation theory. Here as in the Sec. V D 2 we do not include
the direct interaction processes and set Vq = V0. Evalua-
tion of the frequency renormalization to the first order in
interaction amounts to the summation of the diagrams
of all orders that are most singular at ω = ω⊥,34. This is
a basis of the Random Phase Approximation (RPA)-like
approaches to finding the spectrum of collective excita-
tions at weak interactions. For long range Coulomb in-
teractions RPA holds at long wave lengths52,53. Such a
scheme is consistent with KTh,52–56. It yields the RPA-
like expression for the correlation matrix, [K̂]ij = KAi,Aj

defined by Eq. (10),

K̂(ω) = [Π̂−1(ω) + V̂ ]−1 , (114)

where the inverse polarization operator

Π̂−1(ω) =

[
ω−ω⊥−Σ0

N0−N1
0

0 ω−ω⊥−Σ1

N1

]
(115)

includes the contributions of the self-energy renormaliza-
tions of the bands,

Σ0 = N0V0(U00
00 − U10

01 ) +N1V0(U10
01 − U11

11 ) ,

Σ1 = N0V0(U10
01 − U20

02 ) +N1V0(U11
11 − U21

12 ) (116)

and the interaction matrix reads,

V̂ = V0

[
U01

01 U12
01

U12
01 U12

12

]
. (117)

The expressions Eq. (115), (116) and (117) are derived
and discussed in details in Ref.34.

The frequencies of the collective modes are determined
by the condition,

det[Π̂−1(ω) + V̂ ] = 0 . (118)

It is convenient to introduce the diagonal matrix,

D̂ =

[√
N0 −N1 0

0
√
N1

]
(119)

because

D̂(Π̂−1 + V̂ )D̂ = ω − ω⊥

+

[
−Σ0 + V0U

01
01 (N0 −N1) V0U

12
01

√
N1(N0 −N1)

V0U
12
01

√
N1(N0 −N1) −Σ1 + V0U

12
12N1

]
,

(120)

and therefore the condition (118) amounts to a regular
eigenvalue problem. The relations, Eq. (108) allow us to

write Eq. (120) in the form,

D̂(Π̂−1 + V̂ )D̂ = ω − ω⊥

+V0U
12
01

[
−
√

2N1

√
N1(N0 −N1)√

N1(N0 −N1) −(N0 −N1)/
√

2

]
. (121)

The frequencies that nullify the determinant of the ma-
trix, Eq. (121) coincides with Eq. (111) demonstrating
the equivalence of the memory function and diagram-
matic approaches. The eigenvectors of the symmetric
matrix, Eq. (121),

ṽ1 =

[√
N0 −N1√

2N1

, 1

]tr
, ṽ2 =

[
−
√

2N1√
N0 −N1

, 1

]tr
(122)

are related to but do not coincide with the relative waits
of A1,2 in the collective modes. To find the collective
excitations we following Ref.33 consider the time evolu-
tion of expectation values, 〈A1,2〉(t) given their values at
〈A1,2〉(t = 0) at initial time, t = 0. In terms of Fourier
transformations the following relationship holds,

〈Ai〉(ω) =

2∑
j=1

Rij(ω)〈Aj〉(t = 0) . (123)

The response matrix,33

R̂(ω) =
1

ω
[K̂(ω)K̂−1(ω = 0)− 1] . (124)

The collective modes are the eigenvectors of the matrix
R̂, given by v1,2 = Dṽ1,2. So that the in- and out-of-
phase modes read,

v1 =
[
N0 −N1,

√
2N1

]tr
, v2 =

[
−
√

2, 1
]tr

. (125)

The Eq. (125) has a transparent meaning. Note that
each of the vectors v1,2 has two components equal to
expectation values of operators A1,2. The expectation

values N0 − N1 and
√

2N1 are induced by the operator

F1 = [χ̂
(0)
s ]−1v1 ∝ A1 +

√
2A2 which is exactly the pro-

jection of the dipole operator, Eq. (13) on the first two
bands. Therefore, the in-phase collective mode, v1 is the
expected DO.

We now turn to the significance of the second mode, v2.

This vector results from the operator, F2 = [χ̂
(0)
s ]−1v2 ∝

−
√

2A1/(N0−N1) +A2/N1. It follows that the expecta-
tion value, F1(2) vanishes for the ground state modified
by the operators F2(1). Equivalently, F1(2) does not in-
duces finite 〈F2(1)〉. In terms of the memory function
formalism this can be summarised as the orthogonality
statement, 〈F1|F2〉 = 0.

4. DO dissipation rate, 1/τ⊥: memory function formalism

To compute the life time of a Kohn mode, F1 =
A1 +

√
2A2 in the memory function formalism we use
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the basic relation, (81) in the same way as in a singly
occupied band. Inspection of (100) and (101) shows that
the Kohn mode, F1 has four kinematically allowed relax-
ation channels labeled by index c = 1, 2, 3, 4. As different
channels do not interfere their contributions to the relax-
ation rate add,

1

τ⊥
=

1

ω⊥〈F1|F1〉
4∑
c=1

U2
c ImKMc,Mc(ω⊥) . (126)

In Eq. (126), 〈F1|F1〉 = 〈A1|A1〉+2〈A2|A2〉 = ω−1
⊥ [(N0−

N1) + 2N1] = ω−1
⊥ (N0 + N1) is the normalization of the

DO,

M1 =
∑
k,k′,q

Vqψ
†
1,k−qψ

†
0,k′+qψ0,k′ψ0,k

M2 =
∑
k,k′,q

Vqψ
†
1,k−qψ

†
1,k′+qψ0,k′ψ1,k

M3 =
∑
k,k′,q

Vqψ
†
2,k−qψ

†
0,k′+qψ1,k′ψ0,k

M4 =
∑
k,k′,q

Vqψ
†
2,k−qψ

†
1,k′+qψ1,k′ψ1,k , (127)

and the matrix elements for the transitions are listed in
Eq. (108). We conclude that vanishing of the combina-
tions of the matrix elements, Eq. (108) follows from KT.
The identities, Eq. (108) represent just few of the infinite
set of relationships imposed by the KT. For instance, we
have for all l > 0,

U l+1,l−1
l,l =

√
l

l + 1
(U l,l−1

l,l−1 + U l−1,l
l,l−1 − U llll ) ,

U l+1,l−1
l,l =

√
l + 1

l
(U l,l−1

l,l−1 +U l,l−1
l,l−1−U

l+1,l−1
l+1,l−1−U

l+1,l−1
l−1,l+1 ) ,

U l+1,l−1
l,l =

√
l + 1

l
(U l,l+1

l,l+1 + U l+1,l
l,l+1 − U llll ) . (128)

Explicitly, Eq. (128) are the integral relations that are
satisfied by the eigenstates of the harmonic oscillator,

φ
(0)
n (z). For instance, the last of identities, (128) means

that for any even function f(x− y),∫
dx

∫
dy

{√
lφ

(0)
l−1(x)φ

(0)
l (x)φ

(0)
l (y)φ

(0)
l+1(y)

−
√
l + 1

[ [
φ

(0)
l (x)φ

(0)
l+1(y)

]2
−
[
φ

(0)
l (x)φ

(0)
l (y)

]2
+φ

(0)
l (x)φ

(0)
l (y)φ

(0)
l+1(x)φ

(0)
l+1(y)

]}
f(x− y) = 0 . (129)

The relation (129) guarantees that the DO do not decay
into three excitations in the band l and one excitation
in the band l + 1, as illustrated in Fig. 9. The

√
l and√

l + 1 coefficients naturally appear in (129) as the ma-
trix elements of the center of mass operator.

To each of the decay channels corresponds the identity
similar to Eq. (129). As an example consider the decay

p
l + 1

l + 1

l

l
l

l

0

p
l + 1

l + 1

l
l
l

l + 1

p
l

l

l � 1

l + 1

l

l

p
l + 1 l + 1

l
l

ll + 1

FIG. 9. The total amplitude for all relaxation channels of the
DO in parabolic confinement vanishes according to KTh. The
figure illustrates this statement expressed by Eqs. (128) and
(129) for the decays into a particle-hole pair in the band l, one
particle at the band l+1 and another hole in the band l. The
fermion propagators are denoted by arrowed lines with band
index specified. The prefactors of each of the contributions
are matrix elements of the dipole operator, Eq. (13).

processes into a final state containing the two particles
in the bands l + 1 and m, and two holes in the bands l
and m, such that m 6= l, l + 1, l − 1. Vanishing of the
amplitude of such a processes gives rise to the following
identity,

√
l + 1(Um,l+1

m,l+1 + U l+1,l+1
m,m − Um,ml,l − U l,ml,m )

+
√
m+ 1(Um+1,m

l+1,l + Um+1,l
m,l+1 )

−√m(U l+1,m
l,m−1 + U l,l+1

m−1,m) = 0 , (130)

which could be illustrated by the figure similar to Fig. 9.
In its explicit form, Eq. (130) reads,∫

dx

∫
dy

{√
l + 1

[[
φ(0)
m (x)φ

(0)
l+1(y)

]2
+φ(0)

m (x)φ
(0)
l+1(x)φ(0)

m (y)φ
(0)
l+1(y)

−φ(0)
l (x)φ(0)

m (x)φ
(0)
l (y)φ(0)

m (y)−
[
φ

(0)
l (x)φ(0)

m (y)
]2]

+
√
m+ 1

[
φ

(0)
m+1(x)φ

(0)
l+1(x)φ(0)

m (y)φ
(0)
l (y)

+ φ
(0)
m+1(x)φ(0)

m (x)φ
(0)
l (y)φ

(0)
l+1(y)

]
−√m

[
φ

(0)
m−1(x)φ(0)

m (x)φ
(0)
l (y)φ

(0)
l+1(y)

+φ
(0)
m−1(x)φ

(0)
l (x)φ(0)

m (y)φ
(0)
l+1(y)

]}
U(x− y) = 0

(131)

for any even function U(x− y).
We are not aware of an analytical proof of Eqs. (129)

and (131). Instead, we have verified them numerically.
The identities, Eqs. (128), (130) do not exhaust the list
of relations imposed by KTh. The remaining identities
have the same underlying origin, and we do not bring
them here for brevity.

In the presence of finite anharmonicity, the above iden-
tities do not hold, because the eigenfunctions of the trans-
verse motion differ from the eigenstates of the harmonic
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oscillator. As a result, the rate 1/τ⊥ 6= 0 in both quasi-
1D and quasi-2D for the two occupied bands. The actual
value of the relaxation rate in this case is up to a numer-
ical coefficient coincides with Eq. (23).

VI. DISCUSSION

In summary, we have studied the relaxation of the DO
in the quasi-1D and quasi-2D systems. In both geome-
tries the ultimate relaxation was produced by emission
of soft particle-hole excitations along the direction or-
thogonal to the direction of confinement. We looked at
this problem from three different perspectives. Assuming
the interactions are weak we have started with applying
perturbation theory to compute the leading correction
to the dipole-dipole correlation function. The latter pos-
sess an infinitely sharp peak at frequency ω⊥ without
interactions and broadens because of the inelastic pro-
cesses. In the quasi-2D case the relaxation rate at T = 0
is finite and scales as 1/τ⊥ ∝ (δω⊥/ω⊥)2(1/τin). Here
δω⊥ is the typical variation of the classical oscillation
frequency due to anharmonicity, and 1/τin is the usual
Fermi-liquid-like inelastic relaxation rate controlled by
the phase space available for scattering. The proportion-
ality, 1/τ⊥ ∝ (δω⊥/ω⊥)2 reflects the KTh satisfied by
virtue of an infinite set of identities obeyed by the ma-
trix elements of interaction computed using the wave-
functions of harmonic oscillator, see e.g. Fig. 9. At
δω⊥ 6= 0 the transverse matrix elements are non-zero,
and produce the above scaling.

The shift of the pole of the dipole correlation function
off ω = ω⊥ along the real (frequency renormalization)
and imaginary (life time) axis in the complex ω plane is
a result of the resummation of infinite set of most singular
contributions at every order of the perturbation theory.
Such resummation in the case of the frequency renormal-
ization is equivalent34 to the RPA. The frequency renor-
malization has been studied in the number of works52–56.
In practice, the base frequency of the DO is hard to mea-
sure accurately enough to obtain the frequency shift re-
liably. The life time, in contrast is infinite in the absence
of interactions. For this reason it is a more fundamental
quantity.

The solution of the Bethe-Salpeter equation revealed
that the perturbation theory is valid if the two condi-
tions are met. First, as usual the interaction in units
of inverse density of states has to be small. Second re-
quirement, 1/τ⊥ � 1/τin amounts to the weak anhar-
monicity condition, δω⊥ � ω⊥. The presented analysis
holds only sufficiently close to the equilibrium. Which
in the present context means that the distribution func-
tion deviates weakly from the equilibrium Fermi-Dirac
distribution.

The latter condition also justifies the memory func-
tion approach to the problem. The treatment of DO
relaxation is similar to the analysis of the velocity decay
of the Brownian particle33. In the latter case, the de-

1

⌧?

Tcr T
FIG. 10. Schematic temperature dependence of the relaxation
rate, 1/τ⊥ of the DO mode in quasi-2D geometry. Initially, at
low T the rate 1/τ⊥ grows from finite value as the phase space
for scattering opens up. Then it reaches a maximum at the
crossover to the hydrodynamic regime, T ≈ Tcr. The subse-
quent upturn is due to effectively more anharmonic potential
felt by the expanding atomic cloud.

cay time is given by the correlation function of the force
acting on the Brownian particle at rest. The whole pro-
cedure holds when the Brownian particle is much heavier
than surrounding particles. This condition in turn trans-
lates into the velocity damping being slower compared to
the time between the collisions with surrounding parti-
cles. In our problem the role of the mass ratio is played
by the anharmonicity parameter, and we similarly have
1/τ⊥ � 1/τin.

The kinematical constrains are substantially more re-
strictive in 1D than in 2D4. Only if the Fermi-energy,
EF of the lowest transverse band lies below the critical
value, EF < 3ω⊥/4 the same distinction holds between
quasi-1D and quasi-2D systems. Above it, EF > 3ω⊥/4
the relaxation in quasi-1D is qualitatively similar to the
relaxation in quasi-2D, unless the system is close to in-
tegrability. This happens because at EF > 3ω⊥/4 the
inter-band relaxation processes become kinematically al-
lowed. Moreover, for EF < 3ω⊥/4 the DO relaxation
is kinematically forbidden to all orders in interaction at
T = 0 even if the trapping potential is anharmonic. At
finite temperature, T � EF , 1/τ⊥ ∝ T 3.

Let us consider the quasi-1D system in the regime,
EF > 3ω⊥/4 and assume that the underlying system
is close to integrability. To be specific, consider bosons
interacting via the local interaction ∝ cδ(r− r′). If only
a single band is included, the 3D local interaction trans-
lates into the 1D Lieb-Liniger model57,58 with the inter-
action VB(x − x′) ∝ cδ(x − x′) that is likewise local.
To compute the boson correlation functions the Lieb-
Liniger model can be mapped to the model of fermions
interacting via the singular interactions, VF (x − x′) ∝
c−1δ′′(x − x′),38. With such interactions the inelastic
life time indeed vanishes,39 as expected in the integrable
case. We speculate that for large number of modes occu-
pied the variation of the matrix elements with the band
index may be neglected, and as a result starting with the
Lieb-Liniger model we would recover 1/τ⊥ ≈ 0.

Finally, in this work we have studied the regime of
rare collisions, 1/τin � ω⊥ which is complementary to
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the hydrodynamic regime, 1/τin � ω⊥. Since the in-
elastic rate 1/τin grows upon heating, the crossover be-
tween the two regimes occurs at temperature Tcr such
that 1/τin(Tcr) ≈ ω⊥. As a result, the rate 1/τ⊥ is ex-
pected to exhibit a non-monotonic temperature depen-
dence reaching maximum at the crossover T ≈ Tcr, see
Fig. 10. Such behaviour is typical to other collective exci-
tations such as quadrupole mode in the quasi-2D dipolar
Fermi gas,59. In addition, specifically for the dipole os-
cillations, the effect of anharmonicity becomes more pro-
nounced as the atomic cloud expands with heating. This
causes the second crossover in the form of upturn in the
scattering rate at higher temperatures, see Fig. 10. In
fact, the described temperature dependence agrees qual-
itatively with that reported in Ref.24 based on the data
of Ref.60.
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Appendix A: Calculation of 1/τ⊥ for a one occupied band in quasi-2D for the model specified in Sec. III.

Our goal is to compute the relaxation rate 1/τ⊥ as given by Eq. (22) for the specific choice of anharmonicity and
interaction. Namely, we consider the quartic anharmonicity with u(x) = x4 in Eq. (3) and f(x) = δ(x) in Eq. (5).
The calculation naturally splits into two parts. First we compute the polarization operators, Eq. (115) and their
convolution appearing in the second line of Eq. (22) Next we compute the prefactor in the same equation for a given
anharmonicity and the interaction strength.

1. Polarization operators entering the relaxation rate, Eq. (22)

We start with the calculation of Π10(q, ω). The Fermi energy, EF lies in between the partially occupied n = 0 and
empty n = 1 bands. Therefore, f1,k = 0, and f0,k = θ(kF − k), where Fermi momentum is kF =

√
2mEF . In result,

the definition, Eq. (115) yields,

ImΠ10(q, ω) = − 1

4π

∫ kF

0

dkk

∫ 2π

0

dφδ(ω − ω⊥ − kq cosφ/m− q2/2m) , (A1)

where θ is the angle between the vectors k and q. Note that in Eq. (A1) there is no summation over spin variables
as we are considering spinless fermions throughout the paper. It is convenient to measure the momentum and energy
in units of kF and EF respectively. We hence introduce the dimensionless variables, k̄ = k/kF , ω̄ = ω/EF , q̄ = q/kF
and ω̄⊥ = ω⊥/EF . In terms of new variables, Eq. (A1) takes the form,

ImΠ10(q, ω) = −m
2π

∫ 1

0

dk̄k̄

∫ 2π

0

dφδ(ω̄ − ω̄⊥ − 2k̄q̄ cosφ− q̄2) , (A2)

To evaluate Eq. (A2) note first that it is non-zero only for ω̄ satisfying, ω̄− < ω̄ < ω̄+, where ω̄± = ω̄ + q̄2 ± 2q̄. For
these values of ω̄ the finite angular integration results only for 1 > k̄ > k̄d, where

k̄d = |ω̄ − ω̄⊥ − q̄2|/(2q̄). (A3)

Evaluating the integral over θ, we obtain,

ImΠ10(q, ω) = − m

2πq̄

∫ 1

k̄d

dk̄k̄
1√

k̄2 − k̄2
d

(A4)

The remaining integration is straightforward and yields,

ImΠ10(q, ω) = − m

2πq̄

√
1− k̄2

d (A5)
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Returning to the original variables, we obtain,

ImΠ10(q, ω) = − m2

2πq2

√
(ω⊥ + vF q + q2/2m− ω)(ω − ω⊥ + vF q − q2/2m) (A6)

for For ω satisfying ω⊥ + q2/2m− vF q < ω < ω⊥ + q2/2m+ vF q. For ω outside of this interval, ImΠ10(q, ω) = 0.
We now turn to the evaluation of ImΠ00(q, ω), which according to Eq. (115) is given in terms of the dimensionless

variables introduced above, by

ImΠ00(q, ω) = −m
2π

∫ 1

0

k̄dk̄

∫ 2π

0

dφθ(|k̄ + q̄| − 1)δ(ω̄ − 2k̄q̄ cosφ− q̄2) , (A7)

where |k̄ + q̄| =
√
k̄2 + 2k̄q̄ cosφ+ q̄2. It is convenient to change from the variables, k̄ and φ to the variables, k̄ and

p̄ = |k̄ + q̄|. In terms of new variables Eq. (A7) takes the form,

ImΠ00(q, ω) = −m
π

∫ 1

0

k̄dk̄

∫ |k̄+q̄|

|k̄−q̄|
dp̄θ(p̄− 1)

2pδ(ω̄ + k̄2 − p̄2)√
[p̄2 − (k̄ − q̄)2][(k̄ + q̄)2 − p̄2]

. (A8)

Let’s denote p̄0 =
√
ω̄ + k̄2. The limitation p̄ > 1 may become relevant only for ω̄ < 1. We therefore consider the

two cases separately.
First assume ω̄ > 1. In this case Eq. (A8) is

ImΠ00(q, ω) = −m
π

∫ 1

0

k̄dk̄

∫ |k̄+q̄|

|k̄−q̄|
dp̄

2pδ(ω̄ + k̄2 − p̄2)√
[p̄2 − (k̄ − q̄)2][(k̄ + q̄)2 − p̄2]

. (A9)

The limitations imposed on the k̄ integration, are |k̄ − q̄| < p̄0 < |k̄ + q̄| amounts to k > k1 = |ω̄ − q̄2|/2q̄. It follows
that the non-zero range of integration exists provided, k1 < 1, or |ω− q̄2| < 2q̄, or equivalently, q̄2− 2q̄ < ω̄ < q̄2 + 2q̄.
For values of ω̄ in this range, Eq. (A9) gives,

ImΠ00(q, ω) = −m
π

∫ 1

k1

dk̄
k̄√

[ω̄ + 2k̄q̄ − q̄2][2k̄q̄ + q̄2 − ω̄]
. (A10)

Introducing the new variable, ξ = k̄2 and recalling the definition of k1 we obtain,

ImΠ00(q, ω) = − m

2π(2q̄)

∫ 1

k21

dξ
1√
ξ − k2

1

= − m

2πq̄

√
1− k2

1 . (A11)

If ω̄ < 1 the additional constrain p̄0 > 1 in Eq. (A8) translates into the limitation on the rage of integration
as k > k2 =

√
1− ω̄. Since k2 < 1 this constrain does not further limit the interval of ω̄. It limits the range of k̄

integration in addition to k1 < 1 only if k2 > k1. The latter condition amounts to ω̄ < −q̄2 +2q̄. Because −q̄2 +2q̄ < 1,
the condition ω̄ < 1 is satisfied automatically. The condition −q̄2 + 2q̄ < 1 also implies that |ω̄ − q̄2| < 2q̄. It follows
that for ω̄ < −q̄2 + 2q̄, instead of Eq. (A11) we obtain,

ImΠ00(q, ω) = − m

2π(2q̄)

∫ 1

k22

dξ
1√
ξ − k2

1

= − m

2πq̄

[√
1− k2

1 −
√
k2

2 − k2
1

]
. (A12)

In summary,

ImΠ00(q, ω) = − m

2πq̄
×
{√

1− k2
1 |q̄2 − 2q̄| < ω̄ < q̄2 + 2q̄√

1− k2
1 −

√
k2

2 − k2
1 ω̄ < −q̄2 + 2q̄

(A13)

Returning to the original variables, we obtain

ImΠ00(q, ω) = − m2

2πq2
×


√

(vF q + q2/2m− ω)(ω + vF q − q2/2m) , |q2/2m− vF q| < ω < q2/2m+ vF q√
(vF q + q2/2m− ω)(ω + vF q − q2/2m)

−
√

(vF q − q2/2m− ω)(ω + vF q + q2/2m) , ω < −q2/2m+ vF q .

(A14)
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Now we compute the frequency and momentum integrals appearing in Eq. (22) using the explicit expressions,
Eqs. (A6) and (A14). Let’s first clarify the implication of the kinematical restrictions on the region of integration.
Note first that, ImΠ10(q, ω⊥−Ω) 6= 0 only for −q2/2m− vF q < Ω < −q2/2m+ vF q. As Ω > 0 this effectively defines
the integration region as 0 < Ω < −q2/2m+ vF q.

∫ ω⊥

0

dΩ

π

∑
q

ImΠ10(q, ω⊥ − Ω)ImΠ00(q,Ω) =

∫ 2kF

0

qdq

2π
(
m2

2πq2
)2

∫ vF q−q2/2m

0

dΩ

π

×
√

(vF q + q2/2m+ Ω)(−Ω + vF q − q2/2m)

×
[√

(vF q + q2/2m− Ω)(Ω + vF q − q2/2m)−
√

(vF q − q2/2m− Ω)(Ω + vF q + q2/2m)
]
, (A15)

We change in Eq. (A15) to new variables, y = Ω/EF , x = q/kF and write∫ ω⊥

0

dΩ

π

∑
q

ImΠ10(q, ω⊥ − Ω)ImΠ00(q,Ω) =
2E3

Fm
4

(2π)4k2
F

∫ 2

0

dx

x3

∫ 2x−x2

0

dy
√

(2x+ x2 + y)(−y + 2x− x2)

×
[√

(2x+ x2 − y)(y + 2x− x2)−
√

(2x− x2 − y)(y + 2x+ x2)
]
. (A16)

The remaining integration in Eq. (A16) is trivially computed numerically giving,∫ ω⊥

0

dΩ

π

∑
q

ImΠ10(q, ω⊥ − Ω)ImΠ00(q,Ω) =
k4
Fm

4(2π)4
C , (A17)

where C ≈ 0.94.

2. Calculation of the combination of the matrix elements, U01
01 + U10

01 − U00
00 in the relaxation rate, Eq. (22)

To compute the matrix elements of interaction in the presence of anharmonicity we consider the anharmonicity,
Hε,⊥, Eq. (3) as a perturbation to the harmonic potential, H0,⊥, Eq. (2). The unperturbed wave-functions are the
eigenstates of the harmonic oscillator,

φ(0)
n (z) = (2nn!`⊥)−1/2π−1/4 exp(−z2/2`2⊥)hn(z/`⊥) . (A18)

The standard expression for the corrections to the first order in ε corrections wave-functions, φ
(1)
n ∝ ε reads,

φ(1)
n (z) =

∞∑
m=0

′ 〈φ(0)
m |Hε,⊥|φ(0)

n 〉
(n−m)ω⊥

φ(0)
n (z) , (A19)

where the prime specifies that the summation excludes m = n, and we used the expressions for the energies of the

harmonic oscillator, H0,⊥φ
(0)
n = (n + 1/2)φ

(0)
n . Taking for definiteness the quartic anharmonicity, Hε,⊥ ∝ z4 as

specified at the beginning of the section we obtain by evaluating the matrix elements in Eq. (A19),

φ
(1)
0 = −ε 3

2
√

2
φ

(0)
2 − ε

√
3

4
√

2
φ

(0)
4 ,

φ
(1)
1 = −ε5

√
3

2
√

2
φ

(0)
3 − ε

√
15

4
√

2
φ

(0)
5 . (A20)

Substituting Eq. (A20) into the definition of the interaction matrix elements, Eq. (7) with the point-like interaction
as stated at the beginning of the section gives to the first order in the anharmonicity parameter, ε

U01
01 + U10

01 − U00
00 ≈

3ε

2
√

2π
. (A21)

3. Relaxation rate 1/τ⊥

The occupation of a single occupied band is N0 = k2
F /(2π

2) and clearly, N1 = 0. Therefore the substitution of
Eqs. (A17) and (A21) in Eq. (22) yields Eq. (23).
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Appendix B: Boundaries of continua on frequncy-wave-number, (q, ω) plane

In this section we find the lower edge of the the two inter-band particle-hole continuum, ω0→1
{2} (q) and four particle-

hole continuum, ω0→1
{4} and show that the critical filling E∗F = 3ω⊥/4.

The boundary is determined by minimization of the excitation energy, E2,k1+q1 −E1,k1 +E2,k2+q2 −E1,q2 under the
condition, q1 +q2 = q, and |k1,2| < kF . Let us first show that the minimum is achieved for |k1,2| = kF . Introducing the
Lagrange multiplier λ we minimize the function E2,k1+q1−E1,k1 +E2,k2+q2−E1,q2−λ(q1+q2−q) with the constraint on
q1,2 lifted. Differentiating this function with respect to k1,2 we obtain the condition q1 = q2 = 0 which can be realized
only for a special case of q = 0. Even for q = 0 the energy of q1 = q2 = 0, 2ω⊥ is lager then the energy 2(ω⊥ − EF )
resulting for q1 = −q2 = kF . We conclude that the minimum must be found at the boundaries of the domain, i. e. at
|k1,2| = kF . Which is in fact obvious as at finite q1,2 the energy difference E2,k1,2+q1,2−E1,k1,2 has finite derivative with
respect to k1,2. There are only three possibilities, k1 = −k2 = kF , and k1 = k2 = ±kF . Consider the first option and
find the q1 that minimizes E2,kF +q1−E1,kF +E2,−kF +(q−q1)−E1,kF = 2(ω⊥−EF )+(kF+q1)2/2m−(−kF+(q−q1))2/2m.

As the function f(x) = x2 is convex, we have an inequality, (kF + q1)2/2m− (−kF + (q − q1))2/2m ≤ 2(q/2)2/2m =
q2/4m. So that the resulting condition reads ω0→1

{2} ≤ 2(ω⊥ − EF ) + q2/4m. Now the possibility of k1 = k2 = ±kF
results in the similar way in the condition ω0→1

{2} ≤ 2(ω⊥ − EF ) + (q ± 2kF )2/4m. As a result we obtain

ω0→1
{2} = 2(ω⊥ − EF ) + min

u=0,±1

[
(q + 2ukF )2/4m

]
, (B1)

which agrees with Eq. (26) in the particular case l = 1. The generalization of Eq. (B1) to arbitrary even number of
inter-band particle hole pairs proceeds using the Jensen’s inequality applied to the convex function, f(x) = x2 and is
straightforward.

Appendix C: Derivation of expressions for the self energies and the inelastic relaxation rates used in the text

Consider the auxiliary sum over Matsubara frequencies of the product of the fermion Green function and the boson
propagator

SΣph
(k, εn) = T

∑
εn′

∑
k′

Gm,k′(εn′)χkk′(εn − εn′) (C1)

which describes the dressing of fermions by the fluctuations in the particle-hole channel with the correlation function
χkk′(Ωn). Using the method of analytic continuation one arrives at the expression,

ImSRΣph
(k, ε) =

∫
dε′

2π

∑
k′

[
tanh

ε′

2T
− coth

ε′ − ε
2T

]
ImGRm,k′(ε

′)ImχRkk′(ε− ε′). (C2)

It is also useful to write the expression, Eq. (C2) in a slightly different form as,

ImSRΣph
(k, ε+ ω) =

∫
dε′

2π

∑
k′

[
tanh

ε′ + ω

2T
− coth

ε′ − ε
2T

]
ImGRm,k′(ε

′ + ω)ImχRkk′(ε− ε′). (C3)

In addition we will need to consider the effect of the quasi-particle dressing by interactions in the Cooper channel.
To this end we study the auxiliary function,

SΣC
(k, εn + ωn) = T

∑
εn′

∑
k′

χkk′(εn + εn′ + ωn)Gmk′(εn′) (C4)

analogous to the function SΣph
we have introduced before in Eq. (C1) to analyze the effect of interactions in the

particle-hole channel. The summation in Eq. (C4) followed by the analytic continuation gives

ImSRΣC
(k, ε+ ω) =

∫
dε′

2π

∑
k′

[
tanh

ε′

2T
− coth

ε+ ε′ + ω

2T

]
ImχRkk′(ε+ ε′ + ω)ImGRmk′(ε

′) . (C5)
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1. Derivation of Eqs. (16) for the quasi-particle inelastic relaxation rates

The scattering rates 1/τ̄0k, 1/τ̄1a(b)k are obtained by computing the on-mass-shell self energies,

1

τ̄1a(b)k
= −2U−2

1(1̄)
ImΣR1a(b)k(ξ1k) ,

1

τ̄0k
= −2U−2

0 ImΣR0k(ξ0k). (C6)

Let’s consider first Eq. (16a). The self energy appearing in Fig. 3a takes the form similar to Eq. (C1),

Σ1ak(iεn) = −U2
1T
∑
εn′

∑
k′

V 2
q G1,k−q(εn′)Π00(q, εn − εn′), (C7)

where the intra-band polarization operator,

Π00(q,Ωn) = T
∑
εn′ ,k

′

G0k′+q(εn′ + Ωn′)G0k′(εn′) =
∑
k′

f0k′ − f0k′+q

iΩn + ξ0k′ − ξ0k′+q
. (C8)

As a result Eq. (C3) gives

U−2
1 ImΣR1ak(ξ1k) = −π

2

∑
k′,q

V 2
q

[
tanh

ξ1,k−q
2T

− coth
ξ1,k−q − ξ1,k

2T

]
(f0,k′ − f0,k′+q)δ(ξ1k − ξ1,k−q + ξ0k′ − ξ0k′+q).

(C9)

Finally using the identity

1

2

[
tanh

b

2
− coth

b− a
2

]
[f(c)− f(d)] =

1− f(b)

1− f(a)
[1− f(d)]f(c) (C10)

with f(x) = (ex + 1)−1 which holds provided a− b+ c− d = 0, and Eq. (C6), we obtain,

1

τ̄1ak
= 2π

∑
k′,q

V 2
q

1− f1,k−q
1− f1,k

(1− f0,k′+q)f0,k′δ(ξ1k − ξ1,k−q + ξ0k′ − ξ0k′+q), (C11)

which is Eq. (16a). The derivation of Eq. (16b) reduces to the one above upon replacement of ξ0,k′+q and ξ1,k−q with
ξ1,k′+q and ξ0,k−q respectively.

For the derivation of Eq. (16c) we write the self-energy appearing on Fig. 3c in the form,

Σ0k(iε) = −U2
0T
∑
εn′

∑
k′

V 2
q G0,k+q(εn′)Π00(−q, εn − εn′), (C12)

where the polarization operator,

Π00(−q,Ωn) = T
∑
εn′ ,k

′

G0k′(εn′ + Ωn′)G0k′+q(εn′) =
∑
k′

f0k′+q − f0k′

iΩn + ξ0k′+q − ξ0k′−q
. (C13)

Repeating the steps leading to Eq. (C9) we obtain

U−2
0 ImΣR0k(ξ0k) = −π

2

∑
k′,q

V 2
q

[
tanh

ξ0,k+q

2T
− coth

ξ0,k+q − ξ0,k
2T

]
(f0,k′+q − f0,k′)δ(ξ0k − ξ0,k+q + ξ0k′+q − ξ0k′).

(C14)

And using the identity

1

2

[
tanh

b

2
− coth

b− a
2

]
[f(c)− f(d)] =

f(b)f(d)

f(a)
[1− f(c)] (C15)

valid under condition a− b+ c− d = 0 and Eq. (C6) we obtain

1

τ̄0k
= 2π

∑
k′,q

V 2
q

f0,k+qf0k′

f0k
(1− f0k′+q)δ(ξ0k − ξ0,k+q + ξ0k′+q − ξ0k′) (C16)

which is Eq. (16c).
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2. Derivation of the expressions, Eqs. (39a), (39b) and (39c) for the quasi-particle inelastic relaxation rates

Since the Eqs. (33) are of the form identical to Eq. (C1) we have for the analytic continuation of the hole self-energy
at the m = 0 band two equivalent expressions,

ImΣR0,k(ε) = U2
0

∫
dε′

2π

∑
k′

[
tanh

ε′

2T
− coth

ε− ε′
2T

]
ImGR0,k′(ε

′)ImTR1(2)kk′(ε− ε′) . (C17)

As we compute the imaginary part of the self energy to the leading order in interactions we set in Eq. (C17),

ImGR0,k′(ε
′) = −πδ(ε′ − ξk′) (C18)

to obtain,

ImΣR0,k(ε) = −1

2
U2

0

∑
k′

[
tanh

ξk′

2T
− coth

ε− ξk′
2T

]
ImTR1(2)kk′(ε− ξk′) . (C19)

With the definition, Eq. (37) of the life time we obtain the two alternative expressions, Eqs. (39a).
By making a comparison of Eqs. (35) and (36) to Eq. (C3) we obtain for the self-energies of the hole,

ImΣ
(a)R
1,k (ε+ ω) = U2

1

∫
dε′

2π

∑
k′

[
tanh

ε′ + ω

2T
− coth

ε− ε′
2T

]
ImGR1,k′(ε

′ + ω)ImTR1kk′(ε− ε′) , (C20)

and in the same fashion,

ImΣ
(b)R
1,k (ε+ ω) = U2

1̄

∫
dε′

2π

∑
k′

[
tanh

ε′ + ω

2T
− coth

ε− ε′
2T

]
ImGR1,k′(ε

′ + ω)ImTR2kk′(ε− ε′) . (C21)

With the approximation, ImGR1,k′(ε
′+ω) = −πδ(ε′+ω− ξk′ −ω⊥) the definition Eq. (38) yield one of the expressions

in each of the two equation Eqs. (39b) and (39c).
Making use of the definition of the scattering rates, Eq. (38), the correspondence between Eq. (C4) and Eqs. (35)

and (36) and the approximation Eq. (C18) we recover the other two expressions in Eqs. (39b) and (39c).

Appendix D: Derivation of expression Eq. (41)

In order to derive the expression Eq. (41) we define the auxiliary function Qkk′(iωn) to coincide with the left hand
side of Eq. (31),

Qkk′(iωn) = T
∑

−iωn<εn<0

G1,k(εn + ωn)G0,k(εn)Γk,εn(ωn) (D1)

The summation over εn in Eq. (D1) is done by the method of analytic continuation, iεn → z. The analytic continuation
of the vertex function Γk,εn(ωn) is regular in the strip −ω < Imz < 0. For any function for any function f(iεn, iωn)
satisfying this condition we have

T
∑

−ωn<εn<0

f(iεn, ωn) =

∫
dε

4πi

[
tanh

ε+ ω

2T
− tanh

ε

2T

]
f(ε, ω) , (D2)

where the right hand side is analytic continuation of the sum on the left hand side. Making use of the relation Eq. (E5)
we obtain for the analytic continuation of the function Qkk′(iωn),

Qkk′(ω) =

∫
dε

4πi

[
tanh

ε+ ω

2T
− tanh

ε

2T

]
GR1,k(ε+ ω)GA0,k(ε)Γε,ω;k , (D3)

The Green functions in Eq. (D3) read

GR1,k(ε+ ω) =
1

ε+ ω − ξ1,k + i/2τ1,k
, GA1,k(ε) =

1

ε− ξ0,k − i/2τ0,k
, (D4)



27

where we have omitted the effects of the spectrum renormalization, and the scattering rates are assumed to be
smooth functions of energy. As such 1/τ0,k,ε and 1/τ1,k,ε+ω are evaluated at the corresponding mass shells, ε = ξ0,k
and ε+ ω = ξ1,k respectively. The energy argument of the scattering rates can therefore be suppressed. The product
of the two Green functions in Eq. (D4) can be transformed as follows,

GR1,k(ε+ ω)GA1,k(ε) =
1

ω − ω⊥ + i/2τ1,k + i/2τ0,k

[
1

ε− ξ0,k − i/2τ0,k
− 1

ε+ ω − ξ1,k + i/2τ1,k

]
. (D5)

The product of the retarded and advanced Green functions, Eq. (D5) multiplies functions of energy ε having the
scale of variation parametrically exceeding the quasi-particle relaxation rates 1/τ1,k, 1/τ0,k. The example of such a
function is the vertex function Γk,ε(ω). The scattering rates control the ε dependence of the Green function product
in Eq. (D5) contained entirely in the difference of the two Green functions in the square brackets in Eq. (D5). The real
part of the difference of the retarded and advanced Green functions is convergent upon ε integration. As the function
multiplying this combination are smooth functions of ε the real part of the expression in square brackets of expression
Eq. (D5) gives negligible contribution to the integrals over ε. To the contrary, the imaginary part of this combination
produces a finite contribution. Under the above assumptions we can approximate, (ε−ξ0,k− i/2τ0,k)−1 ≈ iπδ(ε−ξ0,k)
and (ε + ω − ξ1,k + i/2τ1,k)−1 ≈ −iπδ(ε + ω − ξ1,k). These two forms are equivalent close to the resonance, ω ≈ ω⊥
and we write

GR1,k(ε+ ω)GA1,k(ε) ≈ 2πiδ(ε− ξ0,k)

ω − ω⊥ + i/2τ1,k + i/2τ0,k
. (D6)

Note that the strong ω dependence of the product, Eq. (D5) has been isolated in the denominator of Eq. (D6).
Equation (41) is readily obtained from substitution of Eq. (D6) in Eq. (D3).

Appendix E: Derivation of the expression, Eq. (42a) for the matrix T1kk′

To derive the Eq. (42a) we obtain the analytic continuation of the expression of the generic type,

Skk′(iωn) = T 2
∑
εn

∑
ε′n

G+
k (εn + ωn)G−k (εn)ϕkk′(iεn − iεn′)G+

k′(εn′ + ωn)G−k′(εn′)Γk′,ε′n,ωn
, (E1)

where the summations over εn and εn′ are limited by the −iωn from below and by zero from above, the superscript
of the correlation functions denote the sign of the imaginary part of the frequency argument. Hence, the analytic

continuation of G±k (εn) to the real axis, iεn → ε±i0 gives retarded and advanced Green functions, G
R(A)
k (ε) respectively.

We start with the summation over εn′ . This summation is standard and is performed by the method of analytic
continuation into a complex z′ plane, iεn′ → z′, see50 for details. The resulting expression contains four terms,

Skk′(iωn) = SAkk′(iωn) + S
B+

kk′ (iωn) + S
B−
kk′ (iωn) + SCkk′(iωn) obtained by the transformation of the discrete sums over

Matsubara frequencies to the integrals along the the four contours A, B± and C parametrized by the real integration
variable ε′ in the complex z′ plane, respectively. The contour A is horizontal and runs in the negative direction just
below the real axis. It is parametrized by the real integration variable ε′ as z′ = ε′ − i0. Similarly, the contours B±
are z′ = ε′+ iεn± i0, run in positive and negative directions respectively, and finally the contour C is z′ = ε′− iωn+ i0
and runs in the positive direction. The contributions of each one of the four contours read,

SA = −T
∑
εn

∫
dε′

4πi
tanh

ε′

2T
G+
k (εn + ωn)G−k (εn)ϕ−kk′(iεn − ε′)G+

k′(ε
′ + iω)GAk′(ε

′)Γk′,ε′,ω, (E2)

SB+ + SB− = −2iT
∑
εn

∫
dε′

4πi
coth

ε′

2T
G+
k (εn + ωn)G−k (εn)ImχRkk′(−ε′)G+

k′(ε
′ + iεn + ωn)G−k′(ε

′ + iεn)Γk′,ε′+ε,ω, (E3)

SC = T
∑
εn

∫
dε′

4πi
tanh

ε′

2T
G+
k (εn + ωn)G−k (εn)ϕ+

kk′(iεn − ε′ + iωn)GRk′(ε
′)G−k′(ε

′ − ω)Γk′,ε′−ω,ω (E4)

In deriving Eq. (E3) we have used the relation tanh(x± iπ/2) = coth(x) and the jump of the function ϕ−kk′(iεn − z′)
across the contours B± being equal to −2iImϕRkk′(−ε′).
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The remaining summation over εn again can be done by the same method of analytic continuation, iεn → z in the
same fashion as the summation over εn′ above. In this case, however the function of z′ is analytic in the whole strip,
−ωn < Imz < 0 which allows us to use the general relation

T
∑

−ωn<εn<0

f(iεn, ωn) =

∫
dε

4πi

[
tanh

ε+ ω

2T
− tanh

ε

2T

]
f(ε, ω) (E5)

where the right hand side is analytic continuation of the sum on the left hand side. The relation, Eq. (E5) holds for
any function f(iεn) such that its analytic continuation, f(z) is analytic in the region −ωn < Imz < 0. We hence
perform the summation over εn in Eqs. (E2), (E3) and (E4) using Eq. (E5),

SA = −
∫

dε

4πi

[
tanh

ε+ ω

2T
− tanh

ε

2T

] ∫
dε′

4πi
tanh

ε′

2T
GRk (ε+ ω)GAk (ε)ϕAkk′(ε− ε′)GRk′(ε′ + ω)GAk′(ε

′)Γk′,ε′,ω , (E6)

SB+ + SB− = −2i

∫
dε

4πi

[
tanh

ε+ ω

2T
− tanh

ε

2T

] ∫
dε′

4πi
coth

ε′

2T
GRk′(ε

′ + ε+ ω)GAk′(ε
′ + ε)

× ImχR(−ε′)GRk (ε+ ω)Gk(ε)Γk′,ε′+ε,ω (E7)

SC =

∫
dε

4πi

[
tanh

ε+ ω

2T
− tanh

ε

2T

] ∫
dε′

4πi
tanh

ε′

2T
GRk (ε+ ω)GAk (ε)ϕRkk′(ε− ε′ + ω)GRk′(ε

′)GAk′(ε
′ − ω)Γk′,ε′−ω,ω

(E8)

We keep the imaginary part of the correlation function, ϕkk′(ε− ε′) by replacing ϕ
R(A)
kk′ (ε− ε′) with ±iImϕRkk′(ε− ε′)

in Eqs. (E6) and (E8) and shift the integration variable, ε′ by ω in the latter to write,

SA = i

∫
dε

4πi

[
tanh

ε+ ω

2T
− tanh

ε

2T

] ∫
dε′

4πi
tanh

ε′

2T
GRk (ε+ ω)GAk (ε)ImϕRkk′(ε− ε′)GRk′(ε′ + ω)GAk′(ε

′)Γk′,ε′,ω ,

(E9)

SC =i

∫
dε

4πi

[
tanh

ε+ ω

2T
− tanh

ε

2T

] ∫
dε′

4πi
tanh

ε′ + ω

2T
GRk (ε+ ω)GAk (ε)ImϕRkk′(ε− ε′)GRk′(ε′ + ω)GAk′(ε

′)Γk′,ε′,ω

(E10)

We rewrite Eq. (E7) by shifting the ε′ integration variable to ε′−ε, and using the property, ImϕRkk′(−x) = −ImϕRkk′(x)
as

SB+ + SB− = −2i

∫
dε

4πi

[
tanh

ε+ ω

2T
− tanh

ε

2T

] ∫
dε′

4πi
coth

ε′ − ε
2T

GRk′(ε
′ + ω)GAk′(ε

′)

× ImϕR(ε− ε′)GRk (ε+ ω)Gk(ε)Γk′,ε′,ω (E11)

Adding up the contributions (E9), (E11) and (E10) we obtain for the analytic continuation of the sum Skk′(ω) defined
in Eq. (E1),

Skk′(ω) = i

∫
dε

4πi

[
tanh

ε+ ω

2T
− tanh

ε

2T

] ∫
dε′

4πi

[
tanh

ε+ ω

2T
+ tanh

ε′

2T
− 2 coth

ε′ − ε
2T

]
×GRk (ε+ ω)GAk (ε)ImϕRkk′(ε− ε′)GRk′(ε′ + ω)GAk′(ε

′)Γk′,ε′,ω . (E12)

Integration of (E12) over ε and ε′ using the representation, (D6) yields Eq. (42a).

Appendix F: Correlation functions and memory
function formalism

In this appendix we summarize the basic definitions
and properties of the correlation functions within the

linear response theory. We then summarize the mem-
ory function formalism. Although the presentation fol-
lows closely the Ref.33 we generalize the latter to include
properties used in the present work. We focus on the dy-



29

namics of slow variables An, n = 1, 2, . . .. The system is
assumed to be symmetric under the time reversal oper-
ation O, such that O−1HO = H. Furthermore, the slow
variables are assumed to have a definite signature under
time reversal, O, such that O−1AnO = εAn

An. The vari-
ables An are not in general Hermitian and the general
scheme requires generalization as outlined below. In the
main text we work with variables defined by (11). These
variables are non-Hermitian and time reversal even. In-
deed, they are proportional to the raising operator of
the harmonic operator, z + ipz projected onto a pair of
adjacent bands. In the text the variables An are sin-
gled out thanks to their simple harmonic time dynamics,
An(t) = Ane

−iω⊥t in the leading approximation. As a
result these variables would be more properly referred to
as resonant rather than slow variables. Since the crucial
element of the whole analysis is the time scales separation
this distinction plays no role, and we follow the standard
terminology. For the sake of generality we allow for the
r-dependence of the operators, An(r, t).

The response functions are introduced via modifying
the Hamiltonian, H to include the perturbation,

K = H −
∑
i

∫
drAi(r)δaexti (r, t) , (F1)

where δaexti (r, t) is a time dependent perturbation field
coupled to a variable Ai(r). The response obtained from
the equations of motion,

δ〈A†i (r, t)〉 =
∑
j

∫ t

−∞
dt′
∫
dr′2iχ′′ij(rt, r

′t′)δaextj (r′t′)

(F2)
where we have defined the function,

χ
′′

ij(rt, r
′t′) =

1

2
〈[A†i (rt), Aj(r′t′)]−〉 (F3)

and the time dependence, An(r, t) = eiHtAn(r)e−iHt

is according to the Heisenberg representation. In
the stationary, and translationally invariant system,
χ
′′

ij(rt, r
′t′) = χ

′′

ij(r − r′, t− t′).
With the definition of the Fourier transform of a func-

tion, F (r, t) as

F (k, ω) =

∫ ∞
−∞

dt

∫
dreiωt−krF (r, t) (F4)

the response function χij(k, ω) satisfying

δ〈A†i 〉(k, ω) =
∑
j

χij(k, ω)δaextj (k, ω) . (F5)

reads

lim
ε→0

χij(k, ω + iε) = χij(k, ω) = −KR
Ai,Aj

(k, ω) (F6)

where

KR
i,j(k, ω) = −i

∫
dteiωtθ(t)〈[A†i (k, t), Aj(k, 0)]−〉 (F7)

It is often useful to define the Laplace transformation
of a function F (t) for Imz ≥ 0,

F (z) =

∫ ∞
0

dteiztF (t) (F8)

The Laplace transformation, Eq. (F8) is related to the
Fourier transformation, Eq. (F4) as (Imz > 0),

F (z) =

∫ ∞
−∞

dω

2πi

F (ω)

ω − z . (F9)

The response function in (F5) is related to the function
of the complex variable z (Imz 6= 0) defined as

χij(k, z) =

∫
dω

π

χ′′ij(k, ω)

ω − z (F10)

via the analytic continuation,

χij(k, ω) = lim
ε→0

χij(k, z)|z=ω+iε (F11)

from the upper complex half plain, Imz > 0, where the
definition (F10) is equivalent to

χij(k, z) = 2i

∫ ∞
0

dteiztχ′′ij(k, t) . (F12)

Now introduce the Kubo relaxation function,

Cij(r, r
′, t− t′) =

∫ β

0

dβ′
[
〈A†i (r, t)Aj(r′, t′ + iβ′)〉

−〈A†i 〉〈Aj〉
]
. (F13)

This function has the several properties crucial in con-
structing the formalism.

1. Equivalence of equal time Kubo correlation
function and the scalar product in the space of

observables

The function (F13) defines the scalar product at coin-
ciding times,

Cij(r, r
′, t = t′) ≡ 〈Ai|Aj〉

=

∫ β

0

dβ′
[
〈A†i (r)Aj(r′, iβ′)〉 − 〈A†i 〉〈Aj〉

]
(F14)

provided that all participating variables are normal or-
dered, i.e. their equilibrium or invariant part has beed
subtracted out, in such a way that 〈Ai〉 = 0. This prop-
erty is important to construct the memory matrix for-
malism. However, the use of the original operators, Ai
and their normal ordered counterpart, Ai − 〈Ai〉 leads
to identical expressions. We will comment on this be-
low. For now let us show the property (F14). The
properties, 〈A|c1B1 + c2B2〉 = c1〈A|B1〉+ c2〈A|B2〉 and
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〈c1A1+c2A2|B〉 = c∗1〈A1|B〉+c∗2〈A2|B〉 are obvious. An-
other property, 〈A|B〉∗ = 〈B|A〉 is shown as follows

Z−1

∫ β

0

dτTr[e−βĤA†e−τĤBe+τĤ ]∗

= Z−1

∫ β

0

dτTr[e−βĤA†e−τHBe+τĤ ]†

= Z−1

∫ β

0

dτTr
[
e+τH [e−βĤA†e−τĤB]†

]
= Z−1

∫ β

0

dτTr
[
e+τHB†[e−βĤA†e−τĤ ]†

]
= Z−1

∫ β

0

dτTr[e+τHB†e−τHAe−βĤ ]†

= Z−1

∫ β

0

dτTr[e−βĤB†e−τĤAe+τĤ ] . (F15)

And since [〈A†〉〈B〉]∗ = 〈B†〉〈A〉 the postulated property
follows, where Z = Tre−βH is the partition function.

It remains to show that 〈A|A〉 = 0 implies A = 0. To
show this we denote pn = Z−1e−βEn . We have,

〈A|A〉 =

∫ β

0

dτ
[∑
n,m

pnA
∗
mnAmne

−(Em−En)τ

−
∑
n

pnAnn
∑
m

pmAmm

]

=

∫ β

0

dτ
∑
n,m

pn

∣∣∣∣∣Anm − δnm∑
k

pkAkk

∣∣∣∣∣
2

e−(Em−En)τ

≥ 0 (F16)

as it should be. However, 〈A|A〉 = 0 implies A = 〈A〉
rather than A = 0. We see, therefore that strictly speak-
ing 〈A|A〉 is not a scalar product. To remedy for this,
one can decide to work with quantities that have zero
equilibrium statistical averages. Or in other words with
their fluctuation part subtracted,51. Alternatively one
could refer to normal ordered operators only to avoid
the above complication. Then (F13) is a scalar product.
The reason why this formal point is usually omitted,33 is
that computing the frequency shift and the memory ma-
trix with observables, Ai−〈Ai〉 and Ai gives exactly the
same answers. This is physically obvious, and formally
is a consequence of the structure of the memory function
formalism. Namely that all the correlation functions are
expressed in terms of the commutators of the observables
with Hamiltonian, and clearly subtracting the invariant
part, 〈Ai〉, as referred by51 does not affect final expres-
sions even though it is formally important at the inter-
mediate stages of the derivations.

2. Asymptotic behavior of the Kubo correlation
function at long times

lim
t−t′→∞

Cij(r, r
′, t− t′) = 0 . (F17)

This follows from the subtraction of the product of the

expectation 〈A†i 〉〈Aj〉 values in (F13).

3. Time derivative of the Kubo correlation function

Lets demonstrate the important property,

i∂tCij(r, r
′, t− t′) = 2χ′′ij(r, r

′, t− t′) . (F18)

To see this property we perform the transformations,

i∂tCij(r, r
′, t− t′) = i∂t

∫ β

0

dβ′〈A†i (r, t)Aj(r′, t′ + iβ′)〉

= i

∫ β

0

dβ′〈∂tA†i (r, t)Aj(r′, t′ + iβ′)〉

= −i
∫ β

0

dβ′〈A†i (r, t)∂tAj(r′, t′ + iβ′)〉

= − i
i

∫ β

0

dβ′〈A†i (r, t)∂β′Aj(r′, t′ + iβ′)〉

=
[
〈A†i (r, t)Aj(r′, t′)〉−〈A†i (r, t)Aj(r′, t′+iβ)〉

]
(F19)

Now observe that

〈A†i (r, t)Aj(r′, t′ + iβ)〉 =

Z−1Tr
[
e−βHA†i (r, t)e

i(iβ)HAj(r
′, t′)e−i(iβ)H

]
= 〈Aj(r′, t′)A†i (r, t)〉 . (F20)

Therefore, substituting (F20) in (F19) gives by compar-
ison with (F3),

i∂tCij(r, r
′, t− t′) = 〈[A†i (r, t), Aj(r′, t′)]−〉

= 2χ
′′

ij(rt, r
′t′). (F21)

4. Equivalence of the equal time Kubo correlation
function and static, zero frequency response function

Equal time Kubo relaxation function, (F13) is equal to
the zero frequency response function (F11),

Cij(r, r
′,t = 0) = 〈Ai|Aj〉 = χij(r, r

′, ω = 0)

= χsij(r, r
′) = −KR

Ai,Aj
(r, r′, ω = 0) , (F22)

where the superscript s stands for the static correlation
function. Integrate (F21) using that our system is time
translational invariant, so all the correlation functions
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depend on the time difference t− t′, and use the property
(F17), to write

i

∫ ∞
0

∂tCij(r, r
′, t′) = −iCij(r, r′, t′ = 0) = 2

∫ ∞
0

dt′χ
′′

ij(r, r
′t′)

= lim
ε→0

2

∫ ∞
0

dt′χ
′′

ij(r, r
′t′)e−εt , (F23)

where in the last infinity we used the fact that χ
′′

ij(r, r
′t′)

vanishes in the t′ →∞ limit because it is defined via the
commutator in (F3). With (F12), (F23) becomes

Cij(r, r
′, t′ = 0) = 2i lim

ε→0

∫ ∞
0

dt′χ
′′

ij(r, r
′t′)e−εt

= lim
ε→0

χij(k, z = iε) = χij(r, r
′, ω = 0)

= χsij(r, r
′) = −KR(r, r′, ω = 0) . (F24)

5. Laplace transformation of the Kubo relaxation
function

We introduce the Laplace transform of the Kubo re-
laxation function, (F13) as

Cij(r, r
′, z) =

∫ ∞
0

dteiztCij(r, r
′, t). (F25)

The crucial relationship is

Cij(r, r
′, z) =

1

iz

[
KR
Ai,Aj

(r, r′; z = i0)−KR
Ai,Aj

(r, r′; z)
]
,

(F26)
where Imz > 0 and KR(r, r′; z) is a function that is an-
alytic in the upper complex plain, Imz > 0 and coin-
cides with the retarded Green function at the real axis,
limε→0K

R(r, r′; z = ω + iε) = KR(r, r′;ω). Clearly this
function coincides with the Matsubara Green function at
the discrete Matsubara frequencies, z = iΩn in the same
region Imz > 0, Ωn > 0. In fact we will always use the
relationship (F26) for z = ω + iε in the limit limε→0.

To show (F26) integrate (F25) by parts,

Cij(r, r
′, z) =

∫ ∞
0

dt
1

iz

d

dt
[eizt]Cij(r, r

′, t)

= − 1

iz
Cij(r, r

′, t = 0)− 1

iz

∫ ∞
0

eizt∂tCij(r, r
′, t)

=
1

iz
KR
ij(r, r

′, ω = 0)− 1

iz
KR
ij(r, r

′, z), (F27)

where we used (F12), (F6), (F21) and (F22).

Appendix G: Derivation of the expression (89) for

the correlation function K
(0)

M̄,M̄

Equation (89) is most simply derived by using the fluc-
tuation dissipation relation between the imaginary part

of the (retarded) response and correlation functions,

ImKM̄,M̄ = −1

2
(1− e−ω/T )iK>

M̄M̄
(ω) , (G1)

where the iK>
M̄M̄

(t) = 〈M̄(t)M̄(0)〉 Within the Keldysh

diagrammatic technique61

iK>
M̄M̄

(ω) =
∑

k,k′,q

∫
dεdε′dΩ

(2π)3
(V 2
q − VqVq−k′+k)iG<0,k(ε)

× iG>1,k−q(ε+ ω − Ω)iG<0,k′+q(ε
′ + Ω)iG>0,k′(ε

′). (G2)

The functions G>,< defined in the standard way,62 in
the non-interacting limit take the form, G>m,k(ε) = 2π(1−
fm,k)δ(ε−ξm,k), and G<m,k(ε) = −2πfm,kδ(ε−ξm,k) With

these definitions combination of Eqs. (G1) and (G2) re-
produces Eq. (89).

Appendix H: Commutation relations

The commutations relations used in the main text can
be conveniently evaluated using the relation, [A,BC]− =
[A,B]−C +B[A,C]−, [A,BC]− = [A,B]+C −B[A,C]+.

And for the fermions [ψ†1ψ2, ψ
†
3ψ4]− = [ψ†1ψ2, ψ

†
3]−ψ4 +

ψ†3[ψ†1ψ2, ψ4]− = ψ†1[ψ2, ψ
†
3]+ψ4 − ψ†3[ψ†1, ψ4]+ψ2 =

ψ†1ψ4δ2,3 − ψ†3ψ2δ1,4

1. Commutators with the observables,
A1 =

∑
p ψ
†
p,1ψp,0 and A2 =

∑
p ψ
†
p,2ψp,1.

[A1,
1

2
ψ†0,k−qψ

†
0,k′+qψ0,k′ψ0,k]− = ψ†0,k−qψ

†
1,k′+qψ0,k′ψ0,k

(H1a)

[A2,
1

2
ψ†0,k′+qψ

†
0,k−qψ0,kψ0,k′ ]− = 0 (H1b)

[A1,
1

2
ψ†1,k′+qψ

†
1,k−qψ1,kψ1,k′ ]− = −ψ†1,k′+qψ

†
1,k−qψ1,kψ0,k′

(H2a)

[A2,
1

2
ψ†1,k′+qψ

†
1,k−qψ1,kψ1,k′ ]− = ψ†2,k′+qψ

†
1,k−qψ1,kψ1,k′

(H2b)
(H2b) is obtained from (H1a) by shifting all the band
indices by one up.

[A1, ψ
†
2,k′+qψ

†
2,k−qψ2,kψ2,k′ ]− = 0 (H3a)

[A2, ψ
†
2,k′+qψ

†
2,k−qψ2,kψ2,k′ ]− = −ψ†2,k′+qψ

†
2,k−qψ2,kψ1,k′

(H3b)
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(H3b) is obtained from (H2a) by shifting all the band
indices by one up.

[A1,ψ
†
1,k−qψ

†
0,k′+qψ0,k′ψ1,k]− = −ψ†1,k−qψ

†
0,k′+qψ0,k′ψ0,k

+ ψ†1,k−qψ
†
1,k′+qψ0,k′ψ1,k (H4a)

[A2, ψ
†
1,k−qψ

†
0,k′+qψ0,k′ψ1,k]− = ψ†2,k−qψ

†
0,k′+qψ0,k′ψ1,k

(H4b)

[A1, ψ
†
1,k−qψ

†
0,k′+qψ1,k′ψ0,k]− = −ψ†1,k−qψ

†
0,k′+qψ0,k′ψ0,k

+ ψ†1,k−qψ
†
1,k′+qψ1,k′ψ0,k (H5a)

[A2, ψ
†
1,k−qψ

†
0,k′+qψ1,k′ψ0,k]− = ψ†2,k−qψ

†
0,k′+qψ1,k′ψ0,k

(H5b)

[A1, ψ
†
2,k−qψ

†
0,k′+qψ1,k′ψ1,k]− = −ψ†2,k−qψ

†
0,k′+qψ1,k′ψ0,k

+ ψ†2,k−qψ
†
1,k′+qψ1,k′ψ1,k (H6a)

[A2, ψ
†
2,k−qψ

†
0,k′+qψ1,k′ψ1,k]− = 0 (H6b)

[A1, ψ
†
1,k−qψ

†
1,k′+qψ0,k′ψ2,k]− = 0 (H7a)

[A2, ψ
†
1,k−qψ

†
1,k′+qψ0,k′ψ2,k]− = −ψ†1,k−qψ

†
1,k′+qψ0,k′ψ1,k

+ ψ†1,k−qψ
†
2,k′+qψ0,k′ψ2,k + ψ†2,k−qψ

†
1,k′+qψ0,k′ψ2,k

(H7b)

[A1, ψ
†
2,k−qψ

†
0,k′+qψ0,k′ψ2,k]− = ψ†2,k−qψ

†
1,k′+qψ0,k′ψ2,k

(H8a)

[A2, ψ
†
2,k−qψ

†
0,k′+qψ0,k′ψ2,k]− = −ψ†2,k−qψ

†
0,k′+qψ0,k′ψ1,k

(H8b)

[A1, ψ
†
2,k−qψ

†
0,k′+qψ2,k′ψ0,k]− = ψ†2,k−qψ

†
1,k′+qψ2,k′ψ0,k

(H9a)

[A2, ψ
†
2,k−qψ

†
0,k′+qψ2,k′ψ0,k]− = −ψ†2,k−qψ

†
0,k′+qψ1,k′ψ0,k

(H9b)

[A1, ψ
†
2,k′+qψ

†
1,k−qψ1,kψ2,k′ ]− = −ψ†1,k−qψ

†
2,k′+qψ2,k′ψ0,k

(H10a)

[A2, ψ
†
1,k−qψ

†
2,k′+qψ2,k′ψ1,k]− = ψ†2,k−qψ

†
2,k′+qψ2,k′ψ1,k

− ψ†1,k−qψ
†
2,k′+qψ1,k′ψ1,k (H10b)

[A1, ψ
†
2,k−qψ

†
1,k′+qψ2,k′ψ1,k]− = −ψ†2,k−qψ

†
1,k′+qψ2,k′ψ0,k

(H11a)

[A2, ψ
†
2,k−qψ

†
1,k′+qψ2,k′ψ1,k]− = −ψ†2,k−qψ

†
1,k′+qψ1,k′ψ1,k

+ ψ†2,k−qψ
†
2,k′+qψ2,k′ψ1,k . (H11b)
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