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We study the non-equilibrium phase structure of the three-state random quantum Potts model
in one dimension. This spin chain is characterized by a non-Abelian D3 symmetry recently argued
to be incompatible with the existence of a symmetry-preserving many-body localized (MBL) phase.
Using exact diagonalization and a finite-size scaling analysis, we find that the model supports two
distinct broken-symmetry MBL phases at strong disorder that either break the Z3 clock symmetry
or a Z2 chiral symmetry. In a dual formulation, our results indicate the existence of a stable finite-
temperature topological phase with MBL-protected parafermionic end zero modes. While we find
a thermal symmetry-preserving regime for weak disorder, scaling analysis at strong disorder points
to an infinite-randomness critical point between two distinct broken-symmetry MBL phases.

I. INTRODUCTION

Little is known about the generic properties and possi-
ble phases of quantum systems out of equilibrium, where
even a basic understanding at the level of Landau the-
ory has remained elusive. Many-body systems can reach
an effective equilibrium state under their own dynam-
ics even in isolation, a process encoded in the proper-
ties of individual eigenstates via a set of criteria col-
lectively termed the eigenstate thermalization hypoth-
esis (ETH) 1,2. A distinct class of many-body local-
ized (MBL) systems3,4, usually with quenched random-
ness, violate these criteria and cannot self-thermalize. As
they need not satisfy the stringent requirements imposed
by ETH, even highly excited eigenstates of MBL sys-
tems can exhibit properties usually associated with quan-
tum ground states5,6. This permits the classification of
out-of-equilibrium MBL systems into distinct eigenstate
phases separated by eigenstate phase transitions7, echo-
ing the classification of ground states and critical points
in equilibrium systems, and providing a window into non-
equilibrium quantum order.

As ETH systems conform to the expectations of equi-
librium statistical mechanics, at infinite effective temper-
ature (T → ∞) they exhibit the eigenstate phase struc-
ture of a thermal paramagnet, with trivial spatial and
temporal correlations. In contrast, MBL systems can
exhibit richer behavior — for instance, an MBL Ising
model can exhibit both broken-symmetry (spin glass)
and paramagnetic phases even for T → ∞5,8–10. In
this regime — that is dominated by properties of highly-
excited eigenstates — a particularly sharp distinction
emerges for non-Abelian symmetries. While ETH sys-
tems with such symmetries are again thermal param-
agnets as T → ∞, a fully MBL phase is inconsistent
with non-Abelian symmetry11. This indicates that the
onset of full MBL must coincide with breaking of the
symmetry, and that any symmetry-preserving phase is

either (i) thermal, in the sense of ETH; or (ii) an ather-
mal ‘quantum critical glass’12 that does not admit the
local tensor product description of a fully MBL phase.
In recent work13, we illustrated the former scenario in
fermion chains with U(1) o Z2 symmetry, whose non-
Abelian semi-direct product structure (denoted ‘o’) re-
flects the nontrivial action of a Z2 particle-hole symmetry
(PHS) on a conserved U(1) charge. As disorder is in-
creased, PHS is spontaneously broken in highly excited
eigenstates whenever they are fully MBL. This rules out
the possibility of using PHS in conjunction with MBL
to stabilize a topological phase — corresponding to class
AIII in the usual taxonomy14,15 of symmetry-protected
topological (SPT) phases — as T → ∞. Similar con-
siderations11 limit MBL-protected SPT phases16–19, and
rule out many phases that host non-Abelian anyons.

Some 1D topological phases host non-Abelian
parafermionic edge modes independent of any protect-
ing symmetries20, and are therefore apparently more
amenable to localization protection. However, such
1D parafermionic chains are still inextricably linked
to symmetry, although indirectly: they are related,
via the Fradkin-Kadanoff mapping21, to Zn quantum
clock models, with the topological (trivial) phases of
the parafermions corresponding to ordered (disordered)
phases of the spins20. The question of MBL protection of
parafermion edge modes then turns on the interplay of lo-
calization with the symmetry of the spin chain. Though
Zn itself is Abelian, for special achiral parameter values,
Zn clock models with n ≥ 3 acquire an additional Z2

reflection symmetry, enhancing the global symmetry to
that of the non-Abelian dihedral group Dn

∼= Zn o Z2.
For n = 3, since D3 = S3, this is equivalent to the 3-
state quantum Potts model. Our focus here is on under-
standing how the non-Abelian symmetry of this model
influences its non-equilibrium phase structure.

This question is interesting for several reasons, ex-
plored in the remainder of this paper. First, while su-
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perficially similar to the previously-studied U(1) o Z2

example, the D3 model has a richer phase diagram — in-
tuitively, U(1) symmetry constrains possible phases more
strongly than D3 symmetry. Second, since breaking U(1)
symmetry is impossible even with MBL in d = 1, the only
possibility for an MBL phase in a U(1)oZ2 system breaks
the Z2 symmetry; in the clock model, the Z3 subgroup
of D3 may also be broken. This means that at strong
disorder it may be possible to tune between distinct
MBL phases via an unusual critical point. Third, there
is the intriguing possibility of an athermal, symmetry-
preserving quantum critical glass phase [case (ii) dis-
cussed above]. Finally, to return to our original motiva-
tion, Z3 breaking in highly excited eigenstates translates
via duality22 to the existence of a non-equilibrium topo-
logical phase that hosts edge parafermion modes relevant
to fault-tolerant quantum computing.

Before proceeding, we mention that related work by
Prakash et al.45, also considered the role of non-Abelian
symmetries in the excited states of a somewhat distinct
model. Our results are consistent with those, when they
overlap, though their emphasis was not on the nature of
the critical behavior between MBL phases. Their work
also speculates as to the existence of a QCG phase, a
question on which we remain for the moment agnostic.

II. MODEL AND SYMMETRIES

We now turn to the Z3 quantum clock model, described
by the Hamiltonian

H = −
L−1∑
j=1

Jje
iφj σ̂†j σ̂j+1 −

L∑
j=1

fje
iθj τ̂j + h.c., (1)

where Jj , fj , θj , φj are all real, and discussed below. The
operators commute on different sites and satisfy

σ̂3
j = τ̂3

j = 1, σ̂j τ̂j = ωτ̂j σ̂j , (2)

on a single site, where ω = e
2πi
3 .

In the eigenbasis of the weight operator, σ̂, defined by:
σ̂|m〉 = ωm|m〉, τ̂ is a shift operator: τ̂ |m〉 = |m+ 1〉,
with ket labels taken modulo 3 henceforth. The con-
jugate τ̂ -eigenbasis |q〉 interchanges these roles: τ̂ |q〉 =
ωq|q〉, σ̂|q〉 = |q − 1〉. Viewed as a 3-state quantum ro-
tor, −i ln σ̂ represents the angle of the rotor, and the τ̂
measures its angular momentum (modulo 3).

For generic parameter choices, (1) has a global Z3 ro-

tation symmetry generated by Q̂ =
∏
j τ̂j , with Q̂3 = 1.

For φj , θj ≡ 0 mod π/3, there is also a Z2 mirror symme-

try: X̂ ≡
∏
j X̂j , where X̂j exchanges the |1〉, |2〉 eigen-

states of either σ̂j , τ̂j , and X̂ 2 = 1. Together, Q̂, X̂
generate the group D3 = S3

∼= Z3oZ2, where the semidi-
rect product structure reflects the fact that Q̂, X̂ do not
commute. Consequently, in the σj basis there are two

additional Z2 symmetries X̂ Q̂, X̂ Q̂
2
, which respectively

leave |1〉, |2〉 invariant, while exchanging the other states.

When they are viewed as 3-state quantum rotors in the
xy-plane, Q̂ is a 2π/3 rotation, and X̂ is a mirror reflec-
tion of the rotor about one of its 3 directions (which also
inverts the angular momentum, τ̂).

In the clean limit of the Z3 Hamiltonian (1), the ground

state has an ordered phase that spontaneously breaks Q̂
for J � f , and a disordered phase for J � f . These cor-
respond respectively to parafermionic phases with and
without edge zero modes20. The chiral couplings ex-
plicitly break Z2, and the ground states in both limits

break two of the Z2 reflection symmetries X̂ , X̂ Q̂, X̂ Q̂
2
.

This model also possesses a sequence of incommensu-
rate phases23,24. Extensive recent work25–29 has focused
on the clean case; we shall instead study the situa-
tion when the couplings are disordered, i.e. Jj and fj
on each site are i.i.d. random variables, while keeping
φj , θj ≡ 0 mod π/3, so that the symmetry group is D3.
We wish to understand whether highly excited eigen-
states of (1) satisfy ETH, or are instead MBL; and if
the latter, whether and how they break the non-Abelian
D3 symmetry. We note that previous analysis30 of low-
energy excited-states of clock models focused on edge
zero modes in clean systems, a setting quite distinct
from the non-equilibrium disordered case studied here.
For the non-Abelian XXZ chain13, the excited-state real-
space renormalization group10 (RSRG-X) provides use-
ful insights; here, the reduced D3 symmetry complicates
matters, as explained in Appendix B 1. Since RSRG-X
is inconclusive, we turn instead to a numerical analysis,
which we now describe.

III. NUMERICS

We investigate the random D3 chain via numerical ex-
act diagonalization of (1). Since we ahve three states per
site, only a discrete global symmetry, and study highly
excited eigenstates, we are limited to systems of length
L ≤ 10. Therefore, we must perform finite-size scaling
analysis of our data in order to extract the phase diagram
and conjectured critical behavior. It is convenient to

parametrize couplings as Jj = λj
(1+δ)

2 and fj = λ′j
(1−δ)

2 ;
with this choice, δ = ±1 are trivial limits correspond-
ing to idealized fixed-point Hamiltonians for the ordered
(spin glass) and paramagnetic phases respectively. (In
the parafermionic language, δ is the dimerization, i.e.
the bias in strength between odd and even couplings.)
The random coefficients λ, λ′ are drawn from the distri-
bution P (λ) = 1

W λ1−1/W , where disorder is stronger for
larger W , with W = 1.0 equivalent to a uniform dis-
tribution on (0, 1]. For each realization of disorder we
use the shift-invert method31 to obtain N = 50 eigen-
states from approximately the middle of the many-body
spectrum, and average our data over 103−104 such real-
izations. We use open boundary conditions, and slightly
reduce the Hilbert space size by restricting to eigenstates
of both Q̂ and X̂ with eigenvalue unity. Although Q̂ and
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X̂ do not commute, states constructed in the τ̂ basis have
eigenvalue ωQ under Q̂, where Q =

∑
j qj mod 3, and if

Q = 0 for some such state, then the Z2 partner of this
state also has Q = 0. In this way, we can construct a
basis of simultaneous eigenstates of Q̂ and X̂ from states
with Q̂|ψ〉 = |ψ〉 by superposing such states with their
Z2 partner.

A. Observables

To map out the ergodic and localized regions in the
transverse field-disorder plane (here parametrized by
δ,W respectively), we numerically measure several in-
dicative quantities. We study the energy level statis-
tics via the ‘r-ratio’32, defined in terms of gaps δn =
En − En−1 between successive energy eigenvalues as
r = min(δn, δn−1)/max(δn, δn−1). Once all symmetries
have been taken into account, for ETH systems energy
level repulsion results in r ≈ 0.53, characteristic of the
Gaussian orthogonal random matrix ensemble, whereas
for MBL systems r ≈ 0.38, reflecting the Poisson statis-
tics when level repulsion is absent32,33. It is crucial that
we consider only eigenstates within a given symmetry
sector, as pairing between different sectors will artificially
suppress r5,13 in broken-symmetry states, and our auxil-
iary Z2 order parameter is only valid when evaluated with
eigenstates of the Z3 cycle. We do not show level statis-
tics data for |δ| & 0.7 as they show unphysically small r-
ratios due to ‘fragmentation’ of the spectrum in the vicin-
ity of perfect dimerization. We also study the scaling of

the half-chain entanglement entropy S
(n)
E = −Trρ̂n ln ρ̂n,

computed in the nth eigenstate from the reduced density
matrix ρ̂n ≡ Tri>dL/2e|n〉〈n|.

B. Order parameters

Glassy breaking of the Z3 symmetry may be diagnosed
by an Edwards-Anderson-type order parameter,

m3 =
1

NL2

N∑
n=1

∑
i 6=j

∣∣∣〈n|σ̂†i σ̂j |n〉∣∣∣2 , (3)

where n labels eigenstates. This is analogous to the or-
der parameter used to analyze MBL phases in the Ising9

and XXZ13 chains, and will be non-zero in an eigen-
state only if Z3 symmetry is broken. The square aver-
age ensures that quenched site-to-site and eigenstate-to-
eigenstate variations do not cancel, a standard strategy
employed for spin-glass order. Breaking Z3 automati-
cally breaks Z2; we verify this explicitly in our numerics,
and will justify analytically in Appendix A 1. We term a
phase with m3 6= 0 a Z3 spin glass. In the parafermion
language, this Z3 spin glass corresponds to the topologi-
cal phase with parafermionic edge states.

In addition, there is a Z2 chiral symmetry, X̂ , in the
transverse-field phase f � J , in which Z3 is preserved.

To detect glassy chiral ordering, we examine

mχ =
1

NL2

N∑
n=1

∑
i 6=j

∣∣∣〈n|ĴiĴj |n〉∣∣∣2 , (4)

where the operator Ĵj = 1
i
√

3

(
τ̂j − τ̂

†
j

)
= 2√

3
Im(τ̂j) mea-

sures the chirality on a single site and anticommutes with
X̂ Q̂n. We term a phase with mχ 6= 0 but m3 = 0 a chiral
Z3 paramagnet since it preserves Z3 but breaks the chiral
Z2 symmetry. In the parafermionic representation, the
chiral paramagnet corresponds to a topologically trivial
MBL phase without edge states. Observe that D3 sym-
metry is broken in both the Z3 spin glass and the chiral
paramagnet: completely in the former, and down to an
Abelian Z3 subgroup in the latter. Note however that
mχ = 0 in the Z3 spin glass even though Z2 is broken, as
we have defined mχ in the dual basis, which we elucidate
in Appendix A.

C. Scaling exponents

In the strongly disordered limit W � 1, we conjecture
that a direct transition between an MBL spin glass and
a chiral MBL paramagnet occurs at the self-dual point
δ = 0, and is characterized by “random singlet” criti-
cal exponents. In particular, we expect this transition
to share the universal properties of the T = 0 disor-
dered Ising chain34 , including a true correlation length
with mean scaling exponent ν ≥ 2, consistent with Har-
ris and Chayes-Chayes-Fisher-Spencer bounds35, where
ξ ∼ ∆−ν and ∆ is a disorder-dependent logarithmic mea-
sure of distance from criticality36,37.

Additionally, the mean critical correlations behave like

C̄ij =
∣∣〈σ̂zi σ̂zj 〉∣∣ ∼ |i− j|−β . For the random Ising

case36,37, the exponent β has a known value of βIsing =

2 − ϕ, where ϕ is the golden ratio
(
1 +
√

5
)
/2. A

quick calculation reveals that the Edwards-Anderson-
type order parameters used to detect full D3 symmetry
breaking should then scale as L−β as well, viz. m3 =
1
L2

∑
i 6=j C̄ (|i− j|) ≈ 1

L2

∫ L
0

dx
∫ L

0
dy |x− y|−β ∝ L−β ,

and one expects the same value of β = βIsing only if the
D3-breaking transition is in the same universality class
as the random Ising transition.

Thus, in performing finite size scaling for strong disor-
der, we multiply the order parameters by Lβ to obtain a
quantity with scaling dimension zero. We display figures
for the values of β and ν that produce the best quality
fit, and take the quality of this collapse as good evidence
in favor of an infinite randomness critical point at δc = 0.
However, we do not claim to extract numerically precise
values of either ν or β; we only demonstrate that the
data obtained are consistent with the values of these ex-
ponents one would expect from the ansatz of infinite ran-
domness criticality. This scaling behavior is relevant only
near criticality and at strong disorder (large W , δ ∼ 0).
We find that the expected value of ν = 2 produces a
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FIG. 1. Random D3 chain at weak disorder, W = 0.5. (Top)
Level statistics measured by r-ratio display two transitions:
for |δc| . 0.5, r tends to the ETH value r ≈ 0.53 charac-
teristic of the Gaussian orthogonal ensemble with increasing
L, whereas outside this region r → 0.38, indicating Poisson
statistics of MBL. (Center) Half-chain entanglement entropy
density SE(L)/L is consistent with volume (area) law scaling
in the ETH (MBL) regions. (Bottom) Spin-glass order pa-
rameters of Z3 and chiral symmetry (scaled by L, see text)
also show crossings at |δc| ≈ 0.5, showing that MBL coincides
with the onset of symmetry-breaking.

good quality fit, but so too do all ν ∈ [2, 3]. As these
also satisfy the Harris bound, we cannot rule them out
conclusively.

IV. RESULTS

Armed with these measures of ergodicity and symme-
try breaking, we now study their behavior at weak and
strong disorder.

A. Weak Disorder

For a representative choice of weak disorder, W = 0.5
(Fig. 1), we identify a pair of transitions both in level
statistics and entanglement. For |δ| . 0.5, the r-ratio
increases towards the ETH value of 0.53 with increas-
ing system size, whereas outside this region it decreases
towards the MBL value of 0.38. This is also consistent
with the change from area-law to volume-law scaling ob-
served in the eigenstate-averaged entanglement entropy

(SE =
∑N
n=1 S

(n)
E /N ). We conclude that an ETH re-

gion for |δ| . 0.5 is flanked by a pair of MBL phases.
We next study symmetry-breaking, by considering the
scaled quantities Lm3, Lmχ: these scale ∼ L in a phase
with spin-glass order, and vanish in a symmetry preserv-
ing phase. Crossings of curves of either Lm3 or Lmχ

corresponding to different system sizes approximately

0. 35
0. 40
0. 45
0. 50
0. 55

r 
ra

ti
o

−0. 75 −0. 5 −0. 25 0. 0 0. 25 0. 5 0. 75

Bare Dimerization,  δ

0. 05

0. 1

0. 15

0. 2

S
E
/L

−0. 75 −0. 5 −0. 25 0. 0 0. 25 0. 5 0. 75

Scaled dimerization,  L 1/2 ∆

0. 0

0. 4

0. 8

1. 2

1. 6

L
1.

5
  
m
χ

0. 0

0. 1

0. 2

0. 3

0. 4

0. 5

L
0.

3
7
2
  
m

3

L= 8

L= 9

L= 10

FIG. 2. Random D3 chain at strong disorder, W = 2.0.
(Top) Since r ≈ 0.38 for all values of δ, we infer that the sys-
tem is always MBL. (Center) Entanglement entropy density
is consistent with area-law scaling as L → ∞, again consis-
tent with MBL. (Bottom) Scaling collapses of m3 (4) and
mχ (3), both consistent with a direct transition at δc = 0
between distinct broken-symmetry MBL phases. Here ν = 2,

and ∆ = ln J−ln f
varJ+varf

= 1
2W2 ln 1+δ

1−δ is a rescaled tuning param-

eter. [The point where the two collapsed curves cross has no
physical significance.]

locate transitions between a paramagnetic and broken-
symmetry phase. Within the accuracy of our numerics,
these appear to coincide with the crossings in level statis-
tics, with the δ & 0.5 (δ . 0.5) phase breaking the D3

(Z2) symmetry in a spin glass sense. We track similar
behavior up to W ≈ 1.0, whereupon the ETH phase
disappears; we therefore identify W > 1.0 with strong
disorder. Fig. 3 shows the extent of the ETH phase and
approximate locations of the crossings in r,m3 and mχ.
Crucially, a fully D3 symmetric MBL phase is absent, in
accord with general symmetry restrictions11.

B. Strong Disorder

For strong disorder (e.g. W = 2.0, see Fig. 2) we find
no evidence for an ETH phase in either level statistics or
entanglement: with increasing L, r → 0.385 and SE/L
decreases, consistent with either MBL or eigenstate crit-
icality12, for all δ. Extrapolating from weak disorder,
we see that the two MBL-ETH transition lines appear
to converge at around W ≈ 1.0. Recall that the two
MBL phases have distinct broken symmetries. At strong
disorder, as the ETH phase is absent and an MBL para-
magnet is inconsistent with D3 symmetry11, there must
be either a direct transition between the two broken-
symmetry MBL phases, or an intervening symmetry-
preserving quantum critical glass phase. [A third possi-
bility, namely that a narrow sliver of ETH phase persists
to strong disorder38–40, is not evident in our numerics
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FIG. 3. Non-equilibrium global phase diagram of random
D3 chain. The MBL-ETH boundary (red line) is an estimate
based on crossings in level statistics and scaled entanglement
entropy (denoted×, † respectively). For weak disorder we also
indicate crossings in the Z3 (4) and chiral (3) order param-
eters. At strong disorder, we find scaling collapse consistent
with an infinite-randomness critical point at δc = 0; however,
we cannot conclusively rule out a non-ergodic quantum criti-
cal glass in the transition region (hatched). (Inset) schematic
of the symmetry-breaking pattern and the topological/trivial
phases of dual parafermions.

but we cannot rule it out for L → ∞.] Although it is
challenging to distinguish these scenarios given our lim-
ited range of system sizes, we find some support for the
former via finite-size scaling analysis, as follows. First,
we argue that self-duality of (1) implies symmetry under
reflection of δ, fixing a single direct transition to occur
at δc = 0 (we ignore small finite-size corrections to du-
ality from the open boundary conditions; note that the
weak disorder MBL-ETH transitions are at roughly ±δc,
consistent with duality). Second, we assume that a di-
rect transition between MBL phases is controlled by an
infinite-randomness fixed point, with length-time scaling
`ψ ∼ ln t. We fix ψ = 1/2, characteristic of a random
singlet critical point, the generic scenario34 in systems
with Abelian global symmetries (as both phases lack full
non-Abelian D3 symmetry), and use the scaling form

m(δ, L) = L−βΦ
[
L1/ν∆

]
, (5)

where ν = 2, ∆ = ln J−ln f
varJ+varf = 1

2W 2 ln 1+δ
1−δ tunes across

the δc = 0 critical point, and Φ is a universal function.
For m3, the exponent β = 0.372 derives from known re-
sults for ψ = 1/2 infinite-randomness critical scaling of
the random transverse-field Ising model36,37, which pre-
dict an exponent βIsing = 2 − ϕ. The same scaling does
not hold for mχ, where β is not known analytically, and
we merely fit these data using the scaling form (5). As we
see from the bottom panel of Fig. 2, the data for m3,mχ

show reasonably good collapse when scaled according to

(5), with the exponent βχ = 1.5 chosen to show that a
satisfactory collapse according to (5) exists, though we
do not claim to have extracted a precise value from the
data. With no other free parameters, the collapses are at
least consistent with a direct infinite-randomness transi-
tion between the Z3 spin glass and the chiral paramagnet
(though other exponent choices also give reasonable data
collapses). Furthermore, we cannot rule out a possible
sliver of a quantum critical glass phase rather than a
critical point, which might show similar scaling collapse
for accessible system sizes. We indicate this ambiguity by
the hatched lines marking the transition region in Fig. 3.

V. DISCUSSION

Our results are summarized in a global non-equilibrium
phase diagram for the random D3 chain (Fig. 3). To the
extent we are able to determine, MBL always coincides
with the breaking of the non-Abelian discrete D3 sym-
metry. The MBL Z3 spin glass completely breaks this
symmetry; in a different language, this phase will host
parafermionic zero modes stable at finite temperature.
The other MBL phase is a Z3-symmetric paramagnet,
which — unlike its ground-state counterpart — breaks
the remaining Z2 chiral symmetry, consistent with the
no-go theorem forbidding MBL with non-Abelian sym-
metry. At δ = −1, the model describes a trivial param-
agnet, the eigenstates of which feature extensive degen-
eracies due to the D3 symmetry. Our numerics show that
for any finite interaction δ > −1, the degeneracy due to
the chiral Z2 component of D3 is lifted by spontaneous
symmetry breaking. This is precisely the instability of
the MBL phase to non-Abelian symmetries predicted in
a previous work11. While an ETH phase intervenes at
weak disorder, at strong disorder we find evidence for
an infinite-randomness transition between these distinct
broken-symmetry MBL phases, although a more exotic
possibility, an athermal quantum critical glass, cannot be
definitively ruled out. We conjecture that similar features
apply, mutatis mutandis, to other non-Abelian random
spin chains with Dn symmetry. Further investigation of
such models, e.g. via matrix product state methods41–44,
would be an interesting avenue for future work.
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Appendix A: Order Parameters

1. Subsidiary Z2 breaking in the Z3 spin glass

For the parameter space we investigate, the model (1)
has a global D3 = S3 symmetry generated by the action
of a Z3 cycle Q̂ =

∏
j τ̂j and a Z2 swap X̂ ≡

∏
j X̂j ,

where X̂j interchanges local eigenstates |1〉 ↔ |2〉 of either
σj or τj , while leaving |0〉 invariant. In the Z2 Ising
model, spin glass order is detected using an Edwards-
Anderson order parameter. The Ising chain has only a
global Z2 symmetry generated by Ŝ =

∏
j σ̂

x
j , and the

corresponding eigenstate-averaged order parameter is

mIsing =
1

NL2

N∑
n=1

∑
i 6=j

∣∣〈n|σ̂zi σ̂zj |n〉∣∣2 , (A1)

where σ̂zj anticommutes with the local symmetry gen-

erator, σ̂xj . For D3, the analogous operator Ĵj =

1
i
√

3

(
τ̂j − τ̂

†
j

)
anticommutes with the chiral Z2 genera-

tor X̂j , as evinced by their matrix representations in the

τ̂j-basis:

X̂j =

1 0 0
0 0 1
0 1 0


j

, Ĵj =

0 0 0
0 1 0
0 0 −1


j

, (A2)

which have the appropriate Pauli matrix structure. We
therefore use the conjugate operator Ĵ to construct
the chiral Edwards-Anderson order parameter for X̂ -
breaking,

mχ =
1

NL2

N∑
n=1

∑
i 6=j

∣∣∣〈n|ĴiĴj |n〉∣∣∣2 . (A3)

As previously stated, X̂j has the same matrix form
in the σ-basis; one may also construct the conjugate in

that basis, K̂j = 1
i
√

3

(
σ̂j − σ̂

†
j

)
, whereupon the order

parameter becomes

m̃χ =
1

NL2

N∑
n=1

∑
i 6=j

∣∣∣〈n|K̂iK̂j |n〉∣∣∣2 (A4)

=
1

9NL2

∑
n
i 6=j

∣∣∣〈n|(σ̂†i σ̂j + σ̂iσ̂
†
j − σ̂

†
i σ̂
†
j − σ̂iσ̂j

)
|n〉
∣∣∣2 .

(A5)

However, the energy eigenstates |n〉 are constructed as

eigenstates of Q̂ =
∏
j τ̂j , and therefore correspond

to states with a fixed Z3 charge Q =
∑
j qj mod 3.

The latter two terms in (A5) both change the total Z3

charge by ±1, and therefore have a trivially zero ex-
pectation value. The σ-basis order parameter then be-

comes m̃χ = 1
9NL2

∑N
n=1

∑
i 6=j

∣∣∣〈n|(σ̂†i σ̂j + σ̂iσ̂
†
j

)
|n〉
∣∣∣2 =

4
9m3, i.e, proportional to the Edwards Anderson order-
parameter for Z3-breaking. As an aside, using either

of the other two Z2 symmetry operators X̂ Q̂, X̂ Q̂
2

and
constructing the corresponding order parameters in the
σ-basis has the same result: the only respective changes

are factors of ω and ω2 multiplying the trivial σ̂†i σ̂
†
j term.

Hence, the Z3-breaking spin glass necessarily breaks chi-
ral Z2, and so D3 is fully broken in this phase.

2. Details of the auxiliary Z2 order parameter

The Z2 order parameter defined in (4) measures chi-
ral order in the τ -basis – i.e., breaking of D3 to a Z3-
preserving paramagnet. This order parameter is designed
for use only in a paramagnetic phase, wherein Z3 is pre-
served, and is not a useful measure of Z2 breaking when
evaluated with states that are not eigenstates of the Z3

generator. Although the derivation from conjugacy to
the Z2 generator derived in the preceding subsection is
sufficient, we also performed several sanity checks to con-
firm this quantity is reasonable. To wit, it has the ap-
propriate action on generic states constructed specifically
to preserve or break the Z2 symmetry. Additionally, it
is everywhere zero when computed in ground states of
the D3 model, where the quantum phase transition at
T = 0 only admits either a fully D3-preserving param-
agnet or a spin glass that breaks D3 completely. Lastly,
it shows chiral ordering when calculated in eigenstates
of the chiral Z3 Hamiltonian, which breaks explicitly the
Z2 subgroup of D3 (provided f̄j > J̄j). The fact that
this quantity is zero even in D3 ground states and all
Z3 eigenstates for J̄j > f̄j confirms that it is only mean-
ingful on the putatively paramagnetic side of the phase
diagram, δ ≤ 0.

Appendix B: Real space renormalization group

The real-space renormalization group (RSRG) is a
perturbative decimation scheme originally formulated to
construct and study approximate ground states of disor-
dered spin chains. The RG generates a flow in the space
of couplings, which is asymptotically exact if towards
stronger disorder. Properties of the ground state are
then controlled by an ‘infinite-randomness’ fixed point
with universal scaling properties. RSRG-X is an exten-
sion of this approach that targets excited states10,46. In
each step of RSRG-X, we diagonalize the strongest re-
maining term in the Hamiltonian, HΩ, ignoring all other
terms. In systems with an Abelian global symmetry (e.g
Zn), eigenstates of HΩ will generically be non-degenerate
singlets. Choosing any of these states then completely
fixes the states of the ‘decimated’ spins in HΩ, whose
virtual fluctuations mediate interactions between the re-
maining spins, which may be computed via second-order
perturbation theory. A specific temperature is targeted
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by weighting these choices with appropriate Boltzmann
probabilities.

1. Real space renormalization group for D3

This procedure is complicated by the presence of non-
Abelian symmetries, since diagonalizing the strong bond
may not completely determine the states of the spins
involved. Instead, they may collectively transform ac-
cording to a D > 1- dimensional irreducible representa-
tion of the symmetry group. In the RG language, this
means a ‘superspin’ survives the decimation, and couples
to the remaining spins computed via first-order pertur-
bation theory. While such non-singlet decimations can
sometimes be ruled out in ground states – as with the
random-bond Heisenberg antiferromagnet – they will al-
ways occur in finite-energy density excited states. Such a
finite density of localized non-singlet states in turn implies
an exponential degeneracy. Absent fine-tuning, this will
either drive the system thermal (in the ETH sense), or
else be split by spontaneously breaking the non-Abelian
symmetry down to an Abelian subgroup11,13 .

Athermal phases that lack a local tensor product struc-
ture — dubbed ‘quantum critical glasses’ (QCGs) —
evade this argument as their symmetry-enforced degen-
eracies cannot be lifted by local perturbations; therefore
QCGs may be paramagnetic, though their eigenstate en-
tanglement entropy will exceed the area law characteris-
tic of MBL. The key question is to determine which of
these distinct possibilities — an ETH phase, a QCG, or
a broken-symmetry MBL phase — emerges for a given
choice of parameters. One approach is to keep higher-
order contributions in perturbation theory when deci-
mating spins; these could indicate, e.g., a bias towards
thermalization or symmetry-breaking. This was success-
fully employed in the XXZ chain13 , where the lead-
ing corrections drive spin glass order. In the S3 case,
however, this approach is challenging since the reduced
symmetry permits many distinct competing higher-order
terms, with no clear dominant contribution.

A related issue arises even in the nominally simpler
Z3 case, where φi also takes random values in [0, 2π).
Näıvely, every decimation in this case should result in a
singlet; however, for values of φj ≈ 0 modπ/3, rather
than an O(1) energy splitting between the different sin-
glets set by the overall scale of HΩ, two of the singlets are
nearly degenerate. Even if avoided at the initial stages of
the RG, such near-degeneracies become more frequent as
the RG proceeds, since the couplings are multiplicatively
renormalized. Therefore, even in the Z3 case, RSRG-X
becomes challenging, necessitating a different approach.
For completeness, we briefly discuss RSRG-X in the Z3

case, to see how such degeneracies appear.

FIG. 4. Bond decimation for Z3. The two parafermion
modes corresponding to the bond drop out of the chain,
and the resulting couplings leave the Hamiltonian self-similar,
with one fewer site to consider in subsequent steps of the RG.

2. Real Space Renormalization Group for Z3

We begin with the Hamiltonian from the main text,

H =

L−1∑
j=1

Jje
iφjσ†jσj+1 +

L∑
j=1

fje
iθjτj + h.c., (B1)

and rewrite in terms of parafermion operators αj , defined
via

σ†jσj+1 = ω−1α†2jα2j+1, τj = ω−1α†2j−1α2j . (B2)

It is convenient to redefine the parameters via

(Kx , ϕx) =

{
(Jj , φj) if x = 2j

(fj , θj) if x = 2j − 1

The Hamiltonian then takes the simple form:

H =
1

ω

2L−1∑
x=1

Kx

(
eiϕxα†xαx+1 + e−iϕxαxα

†
x+1

)
.(B3)

Note that this procedure is analogous to rewriting Ising
spins in terms of Majorana fermion operators: each clock
spin has been replaced by a pair of parafermions. This is
convenient since both ‘transverse field’ and ‘bond’ terms
in the clock model are ‘bond‘ terms in the parafermion
language, permitting us to discuss them on the same foot-
ing. We now proceed to implement the RSRG procedure.

In this language, the strongest remaining term in a
given RG step, HΩ, corresponds to some [pseudo-]site x,
and writing Kx, φx → Ω,Φ on the strong bond,

HΩ = Hx,x+1 =
Ω

ω

(
eiΦα†xαx+1 + e−iΦαxα

†
x+1

)
.(B4)

The operator ω−1α†xαx+1 recovers either τj or σ†jσj+1,
and therefore has eigenvalues ωqx , where qx is a book-
keeping integer with value 0, 1, 2. Thus, the unperturbed
energy is E0 = 2Ωcos

(
Φ + 2πqx

3

)
. The perturbing po-

tential V consists of couplings to nearest neighbors, so
we need only consider four pseudo-sites: x, x + 1, and
the two neighboring sites on the left/right, denoted L/R
respectively (Fig. 4)
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The dashed red line in Fig. 4 indicates the strongest
bond, with coupling Ω, and the two solid lines are con-
tained in the perturbing potential, V :

V ≡ Ω

ω

(
{KL

(
eiϕLα†Lαx + e−iϕLαLα

†
x

)
+

KR

(
eiϕRα†x+1αR + e−iϕRαx+1α

†
R

)}
, (B5)

so that the full Hamiltonian is given by

H = H0 + λV , λ = Ω−1. (B6)

Next we implement degenerate perturbation theory, and
we have

〈ψα|Ṽ1|ψβ〉 = Ω−2
∑
|γ〉/∈Hd

〈ϕα|V |γ〉〈γ|V |ϕβ〉
Ed − 〈γ|H0|γ〉

. (B7)

The result is that the parafermions on sites x and x+1
drop out of the chain, frozen in the state E0, and a new
term is coupling between the parafermions L and R with
magnitude K̃LR and chiral phase ϕ̃LR is generated via

K̃LR =
KLKR

Ω

cos
(
Φ + 2πqx

3

)
cos 2

(
Φ + 2πqx

3

)
+ 1

2

(B8)

ϕ̃LR = ϕL + ϕR −
2πqx

3
. (B9)

Note that the effective coupling diverges if the random
phase Φ is an integer multiple of π, corresponding to
a non-chiral bond, for which there are two degenerate
states (the generic bond in the S3 case). For an infinite
Z3 chain, at some point in the RG the effective coupling
resulting from a decimation will be close enough to an
integer multiple of π to produce a resonance, and effec-
tively an S3 Potts term. Hence RSRG, while nominally
controlled for the Z3 case, may have lead to dangerous
resonances during the RG flow.

Appendix C: Additional numerical evidence

1. Weak Disorder

Fig. 5-10 present additional data showing transitions
in the level statistics, entanglement, and crossings in the
L-scaled order parameters for weak disorder, used to de-
termine the ETH phase boundary in Fig. 3 of the main
text.

2. Strong Disorder

Fig. 11-14 present additional data showing Poisson
level statistics and area law entanglement as one moves
toward strong disorder (W ∼ 2), as well as finite-size scal-
ing collapse predicated on a direct infinite-randomness
transition. Note the improvement in the quality of col-
lapse as we move to stronger disorder.

FIG. 5. W = 0.5 (Fig. 1 of main text)
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FIG. 6. Additional results for W = 0.6
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FIG. 7. Additional results for W = 0.7
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FIG. 8. Additional results for W = 0.8
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FIG. 9. Additional results for W = 0.9
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FIG. 10. W = 1.0 for comparison
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FIG. 11. ‘Strong Disorder’ plot for W = 1.0
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FIG. 12. Additional results for W = 1.5
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FIG. 13. W = 2.0 for comparison
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FIG. 14. Additional results for W = 2.5
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