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By performing pressure simulations within density functional theory for the family of iron-based
superconductors AeAFe4As4 with Ae = Ca, Sr, Ba and A = K, Rb, Cs we predict in these systems
the appearance of two consecutive half-collapsed tetragonal transitions at pressures Pc1 and Pc2 ,
which have a different character in terms of their effect on the electronic structure. We find that,
similarly to previous studies for CaKFe4As4, spin-vortex magnetic fluctuations on the Fe sublattice
play a key role for an accurate structure prediction in these materials at zero pressure. We identify
clear trends of critical pressures and discuss the relevance of the collapsed phases in connection to
magnetism and superconductivity. Finally, the intriguing cases of EuRbFe4As4 and EuCsFe4As4,
where Eu magnetism coexists with superconductivity, are discussed as well in the context of half-
collapsed phases.

PACS numbers:

Introduction.– The so-called 122 Fe-based pnictides
(Fig. 1b) (AFe2As2, AeFe2As2, EuFe2As2) with A alkali
and Ae alkaline-earth cations crystallize at room temper-
ature in a body-centered tetragonal ThCr2Si2 structure
(I4/mmm)1,2 where As sites from the neighboring Fe-As
blocks face each other across the A or Ae plane. The
As-As interlayer distance in these systems can be then
tuned by either mechanical or chemical pressure down
to sufficiently small values allowing the formation of As-
As pz bonds. This is accompanied by a structural phase
transition to a collapsed tetragonal (cT) phase where the
c/a ratio is significantly reduced due to a dramatic con-
traction of the c-lattice parameter and a slight expan-
sion of the a-lattice parameter. This process is known
to suppress superconductivity or/and long-range “stripe”
magnetic order (Fig. 1d) due to the crossover to a more
three-dimensional structure and the loss of spin fluctua-
tions and local Fe moments caused by a compression of
Fe-As bonds.3 In the 122 materials, the transition to a
cT phase affects the whole structure leading to As-As pz
bond formation across each cation spacer layer.

In contrast, a half-collapsed tetragonal (hcT) phase
transition was recently reported for the 1144 material
CaKFe4As4

4 (Fig. 1c) where the periodic arrangement
of Ca and K spacer layers produces two different kinds
of As sites5–7 and the tetragonal structure (P4/mmm)
shows a layer-selective collapse upon application of pres-
sure. First, at 4 GPa the As-As pz bonding across the
Ca layer induces a collapsed tetragonal transition with
disappearance of superconductivity while a second col-
lapsed transition across the K layer was predicted around
∼12 GPa. Furthermore, Ref. 4 showed that “hedgehog”
(spin-vortex, Fig. 1e) magnetism had to be invoked in
the pressure-dependent density functional theory (DFT)
simulations in order to predict the observed structural
transitions. This magnetic order has been recently mea-
sured upon electron-doping CaKFe4As4.8

FIG. 1: (a) Cations of alkali (1+) and alkaline-earth (2+)
elements, as well as divalent Eu, together with their ionic radii
from Ref. 5,9. (b) The 122 and (c) 1144 structures of iron
pnictides. In general, the 1144 phase of AeAFe4As4 is stable
when the difference in the ionic radii ∆r = |r(Ae) − r(A)| is
larger than 0.3 Å. Possible Fe magnetic orders are shown in
(d) stripe order and (e) “hedgehog” or spin-vortex order.

The rare-earth-based EuRbFe4As4 and EuCsFe4As4
are also attracting growing attention due to the coex-
istence of Eu magnetism and bulk superconductivity as
reported in Refs. 10–13. However, the exact nature of the
Eu magnetic order and its effect on the superconductiv-
ity remain to be elucidated, as well as possible Eu2+ to
Eu3+ transitions previously observed for 122 systems.14

The interactions between the localized Eu spins are ex-
pected to be sensitive to the lattice parameters and, in
this respect, the half-collapse transition might influence
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the ground state which stimulates a detailed study.
Predicting the appearance of possible cT transitions

in ThCr2Si2-structured intermetallic compounds is not
only of relevance for the superconducting and magnetic
properties of these materials but also for their potential
superelastic behavior as has been recently shown.15

In this work we systematically study via DFT calcu-
lations possible pressure-induced half-collapsed tetrago-
nal transitions in a series of previously synthesized 1144
systems5 with the following combinations of the spacer
cations: CaRb, CaCs, SrRb, SrCs, and BaCs,42 as well
as EuRb and EuCs. We discuss the tendencies expected
for the transition pressures in relation to the nature of
the spacer cations, the underlying Fe-moment fluctua-
tions and possible magnetism in Eu for the latter two
systems.
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FIG. 2: (a,b) Characteristic evolution of the non-spin-polari-
zed band structure43 and (c,d) the energy position E of the
antibonding As-As pz orbital relative to the Fermi energy EF

across a hcT transition in AeAFe4As4 (BaCsFe4As4 data are
taken here as an example). Upon the first hcT, only the As-
As pz antibonding band from the As facing the smaller cation
layer, in this case Ae (blue lines), shifts abruptly above the
Fermi level (plot c), while the band from As facing the larger
cation layer (orange lines) remains occupied. This suggests
that As-As bonds are strongly formed across the Ae layer.
The second hcT at higher pressures is identified in the same
fashion and, in contrast to the first hcT, reveals a smooth shift
of the corresponding As bands across the Fermi level (plot d).

Methods.– Structural transitions under pressure
are simulated using the projector-augmented wave
method16,17 as implemented in the VASP code18–20

within the GGA exchange-correlation approximation.21

For the two systems with Eu, strong correlations for
the 4f states were included using two different GGA+U
schemes.22,23 Convergence of the properties of interest is
achieved for a (5× 5× 5) k-mesh and an energy cutoff of

600 eV. Increase of the cutoff up to 800 eV changes the c-
lattice parameter by ∼0.05 Å and the critical pressure by
less than 0.5 GPa (see Fig. 8 in Appendix B), which is an
acceptable accuracy for studying the pressure-structure
trends in the 1144 systems.

At low pressures, the structural prediction is done
while imposing a “frozen” spin-vortex configuration of
Fe moments (Fig. 1e), which simulates, to a first ap-
proximation, the effect of spin fluctuations, as shown
in our previous work on CaKFe4As4.4,24 The assump-
tion of a particular underlying Fe magnetism is neces-
sary for a correct prediction of the collapsed tetragonal
transition, even if the actual system doesn’t show any
long-range magnetic order. Purely non-magnetic calcu-
lations in Fe-based superconductors fail to reproduce the
correct structural parameters.25–29 For EuRbFe4As4 and
EuCsFe4As4, we impose the fully ferromagnetic order
along the [100] direction on the Eu sublattice, in addition
to the Fe spin vortex. For selected pressures, the stripe-
like order within each Eu layer is compared to the ferro-
magnetic one in terms of the enthalpy, in order to identify
possible first-order transitions related to Eu spins. Such
antiferromagnetic order appears though not to affect the
optimized structure.

Once the optimized 1144 structures under pressure
are obtained, the electronic bands are calculated using
the all-electron full-potential localized orbitals basis set
(FPLO) code30 with the GGA exchange-correlation func-
tional (GGA+U for Eu-based systems). The critical
pressure for a hcT transition is captured by monitoring
the energy position of the antibonding As-As 4pz-based
molecular orbitals, which shift towards the Fermi level
with increasing pressure. At the transition, these bands
shift abruptly above the Fermi level (compare Fig. 2
(a) and (b)) and the corresponding As-As pz bonds are
enhanced. This criterium was successfully applied to
several AeFe2As2 systems (Ae=Ca, Sr, Ba),3,26–28,31,32 as
well as to CaKFe4As4.4 As shown in Fig. 2 (c) and (d),
the As band shift corresponding to the second hcT phase
at higher pressures is smoother than the one correspond-
ing to the first hcT phase.

Results (zero pressure).– For all systems studied here
we find that the assumption of a spin-vortex-type mag-
netism in our DFT calculations is crucial to reproduce
the experimental structure at zero pressure as shown in
Fig. 3 where the measured c- and a-lattice parameters
are compared with the optimized ones. In contrast, c is
severely underestimated by ∼(0.5 – 1.0) Å and a is overes-
timated by 2% in non-magnetic calculations (dashed lines
in Fig. 3). We note, however, that the theoretical values
for the c parameter still deviate by (0.1 – 0.3) Å from
the experimental result, where smaller deviations are ob-
served for compounds with larger spacer cations. One
possible source of discrepancy is the fact that the 1144
crystal structures were measured at room temperature,5

while DFT calculations formally correspond to the zero-
temperature case, suggesting that thermal expansion can
partially explain the observed deviations. For example,
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FIG. 3: Correlation between the zero-pressure a- and c-lattice
parameters and the sum of the ionic radii r1 +r2 of the spacer
cations (r1 for Ae and Eu and r2 for A cations) for different
1144 iron pnictides. The measured (circles) and theoretical
values (triangles) are shown for each system. Filled symbols
indicate the parameters of the Eu-based systems and the star
shows the low-temperature data for CaKFe4As4.6 The theory
prediction is obtained using GGA and the spin-vortex config-
uration of Fe moments, following previous work,4 from which
the data for CaKFe4As4 is taken for this plot. Dashed lines
show results of purely non-magnetic calculations.

the thermal effect in the c parameter of CaKFe4As4 can
be as large as 0.16 Å when going from room temperature
down to a few kelvins,6 so that the overall agreement
between theory and experiment for this compound is ac-
ceptable (compare circles and triangle symbols in Fig. 3).

First half-collapsed tetragonal transition.– Assuming a
spin-vortex magnetic configuration, we performed pres-
sure simulations for all 1144 materials over a wide range
of pressures. The observed evolution of the in-plane, a,
and out-of-plane, c, lattice parameters with applied pres-
sure is qualitatively similar in all cases, despite large vari-
ations in their absolute values (see Figs. 4, 5 as well as
Figs. 9-13 in Appendix C). At the first hcT transition, the
c parameter and the As-As interlayer distances (dAs−As)
across the cation plane where the c collapse is happening
decrease abruptly, while the in-plane parameter a shows
an upturn. The As-As 4pz antibonding orbitals lie above

the Fermi level as illustrated in Fig. 2 (a) and (c). As a
matter of fact, the As-As distance right after the first hcT
is very similar for all 1144 compounds and varies between
(2.8 – 2.9) Å (Table I), which agrees with the chemical na-
ture of collapsed tetragonal transitions in these materials.

The estimated critical pressure for the first half-
collapsed tetragonal transition (Pc1 in Table I) shows
clear trends as a function of the cation sizes. For all
CaAFe4As4 (A = K, Rb, Cs) systems, the first hcT is ob-
served near 5 GPa, which agrees with the fact that the
As-As pz bonding is happening across the Ca layers in
all three systems. When Ae=Ca is replaced by Sr, Pc1

is shifted to larger values, up to 14–15 GPa for A=Rb
and up to 18 GPa for A=Cs. Similar critical pressures
for the first hcT are found here for Eu-based 1144 sys-
tems, which can be expected based on almost identical
ionic radii of Sr and Eu (Table I). The maximal critical
pressure Pc1 of 34 GPa is found for BaCsFe4As4 with
the largest alkaline-earth interlayer cation (Ba). From
Table I, it can be observed that for a given Ae cation, in-
creasing the size of the A cation shifts the first hcT phase
to higher pressures. Similarly to the 122 pnictides, the
half-collapsed transitions in the 1144 systems are more
abrupt for smaller spacer cations and become broadened
for cations with larger ionic radii.

One point to discuss is the consequences of invoking a
spin-vortex Fe magnetic order for the structural relaxa-
tions under pressure even though these systems at zero
pressure do not manifest magnetic order associated with
the Fe site. This assumption may lead to slightly over-
estimated Pc1. Whereas we have discussed above the
importance of introducing this “frozen” magnetic order,
the calculations show, on top of the structural collapse,
a “magnetic collapse” that is absent in the real system.
Such a collapse may happen simultaneously to the struc-
tural collapse or at slightly different pressures as it is the
case for CaRbFe4As4, CaCsFe4As4 or BaCsFe4As4 (see
the grey area in Figs. 9, 10, 13). This result may be inter-
preted in terms of the hcT phase being a broad transition
smeared by spin fluctuations.

For the special cases of EuRbFe4As4 and EuCsFe4As4
we find the first hcT phase to occur across the Eu layer
at a Pc1 of about 12.5 GPa and 14 GPa respectively
(Figs. 4, 5). This prediction shows a rather good agree-
ment with the most recent experimental study of pressure
effects in EuRbFe4As4 and EuCsFe4As4.13 In our simu-
lations, Eu magnetism44 survives well beyond the first
hcT as has also been recently observed13. This indicates
that the localized Eu spins are little influenced by the As-
As pz bonding. At much higher pressures, as we discuss
below, the second collapse occurs across the Rb plane
(Pc2 ∼ 23.5 GPa) for EuRbFe4As4 and across the Cs
plane (Pc2 ∼ 48.5 GPa) for EuCsFe4As4. The magnetic
order of Eu persists up to the highest studied pressure
slightly above the second collapse. No drastic changes of
the Eu oxidation state are observed in the whole pressure
range. However, from the enthalpy analysis, we observe
that the Eu order in EuRbFe4As4 transforms from FM
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TABLE I: Predicted critical pressures Pc1 and Pc2 and As-As interlayer distances dAs−As for the two hcT transitions in the
1144 series (data for CaKFe4As4 is taken from Ref. 4). Note that the values provide indicative trends for the real systems. The
ionic radii r1 and r2 are provided for the Ae and A species and Eu (same data in Fig. 1a). The accuracy of the provided critical
pressures lies within 0.5 GPa, as determined by the smallest pressure step and convergence of the simulations. Superconducting
Tc from Ref. 5 and 10 is shown for each compound together with the zero-pressure As height asymmetry η0 = η(P = 0) defined
below by expression (1).

first hcT second hcT

Compound Tc (K) η0 (%) r1 (Å) Pc1 (GPa) dAs−As (Å) r2 (Å) Pc2 (GPa) dAs−As (Å)

CaKFe4As4 33.1 1.47 1.12 4 2.82 1.51 12.4 3.00

CaRbFe4As4 35.0 1.48 1.12 5.25 2.79 1.61 26 2.95

CaCsFe4As4 31.6 1.54 1.12 5.8 2.79 1.74 58 2.81

SrRbFe4As4 35.1 0.76 1.26 14.5 2.88 1.61 24 2.95

SrCsFe4As4 36.8 0.72 1.26 18 2.78 1.74 46.5 2.88

BaCsFe4As4 26.0 0.43 1.42 34 2.91 1.74 39 2.97

EuRbFe4As4 36 0.76 1.25 12.5 2.82 1.61 23.5 2.98

EuCsFe4As4 35 0.73 1.25 14 2.80 1.74 48.5 2.87
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FIG. 4: Pressure evolution of (a) lattice parameters a = b and c, (b) volume and c/a ratio and (c) As-As distances across both
hcT transitions for EuRbFe4As4. The critical pressures of the two half-collapsed transitions are marked by vertical dashed
lines. Here, the first hcT and the collapse of Fe moments occur simultaneously.
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to AFM near 3 GPa, but gets back to FM at higher pres-
sures. In contrast, EuCsFe4As4 remains ferromagnetic in
the whole pressure range (0 – 50) GPa, although the en-
ergy splitting between the two magnetic states varies sig-
nificantly in-between. These findings motivate a more de-
tailed study including Eu orders with different q-vectors,
which would clarify the ground state of the 4f -subsystem
in these superconductors.

Second half-collapsed tetragonal phase.– At higher
pressures, the studied 1144 systems undergo a second
hcT transition in our simulations. In our previous work
on CaKFe4As4, we predicted the second structural col-
lapse to occur around 12 GPa.4 Here, we find that the
second critical pressure Pc2 correlates with the size of the
corresponding spacer cation (A = K, Rb, Cs), similarly to
the first hcT phase where Pc1 rapidly increases in the se-
ries Ca, Sr, Eu, Ba. The lowest pressure for the second
hcT is expected for CaKFe4As4, whereas the highest one
(58 GPa) is found for CaCsFe4As4. For that reason, the
second hcT transition might be difficult to access experi-
mentally.

Interestingly, the second hcT transition has a relatively
smaller effect on the lattice parameters (only a small
kink is observed for a and c) and is detected in our first-
principles calculations again based on the analysis of the
As-As 4pz orbital bonding, as demonstrated in Fig. 2.
The characteristic As-As distance dAs−As across the A
layer is around (2.8 − 3.0) Å after the collapse (Table I),
which is on average slightly larger than dAs−As across the
Ae layer at Pc1. The smallest critical dAs−As of 2.81 Å is
found for CaCsFe4As4, which correlates with the highest
critical pressure Pc2 of 58 GPa. It should be emphasized
that, for all studied 1144 systems, the Fe moments are
fully suppressed long before the second hcT transition
and play no role for this transition. The purely chemi-
cal nature of the second half collapse becomes then even
more apparent.

As height asymmetry.– The main difference between
the well-known 122 and the new 1144 (AeAFe4As4) com-
pounds is the broken glide-plane symmetry in the latter
case, which creates two types of As sites. This asymme-
try of As tetrahedra in the 1144 systems was found to
play a leading role for the emergence of spin-vortex mag-
netism under electron doping.8 We can characterize this
structural property by the parameter

η =
h(A) − h(Ae)

h(A) + h(Ae)
× 100%, (1)

with h(Ae) and h(A) being the As heights on the side
of the Ae and A spacer layers, respectively (Fig. 6a).

We find that h(A) is always larger than h(Ae) for
all studied 1144 pnictides. Also, the largest As height
asymmetry at zero pressure is found for CaAFe4As4
(η ≈ 1.5%), while the asymmetry gradually decreases
towards 0.4% in the series Ae = Ca, Sr, Ba. As evident
from Table I, this fact is directly related to the difference
in the ionic radii of the Ae and A cations.
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FIG. 6: (a) Definition of two different As heights in 1144
compounds. (b) As height asymmetry (1) vs pressure for
EuRbFe4As4 and EuCsFe4As4. The critical pressures Pc1 and
Pc2 for both hcT are indicated by the vertical dashed (EuRb)
and dotted (EuCs) lines. Similar qualitative behavior is ob-
served for other 1144 systems.

Upon increasing pressure, the As height asymmetry
η grows continuously until the first hcT transition is
reached where it shows a clear upturn (Fig. 6b). The Fe
magnetic collapse in the calculation is always accompa-
nied by a sudden increase of the asymmetry parameter
η, while the second hcT transition slightly reduces the
asymmetry. These trends are observed for all studied
systems.

Since a large As height asymmetry favors the “hedge-
hog” spin-vortex magnetic order in CaKFe4As4

8 and
increases under pressure for the studied 1144 systems
(example in Fig. 6b), we can argue that pressure can
stabilize the spin-vortex state relative to the usual stripe
phase. On the other hand, BaCsFe4As4 is predicted here
to have a more symmetric As-Fe-As block than other
1144 systems and, for that reason, is likely to be closer
to stripe order than the other 1144 compounds.

Conclusions.– We performed first-principles density
functional theory simulations under pressure of various
members of the 1144 family of Fe-based superconduc-
tors and found clear trends in the appearance of layer-
selective half-collapsed tetragonal transitions as well as
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changes in the electronic properties of these systems.
First of all, the critical pressures Pc1 and Pc2 for both
consecutive hcT transitions increase rapidly with the
cation size of the respective spacer layers. This agrees
with the already known features of collapse in AeFe2As2
systems (Ae = Ca, Sr, Ba)27,31,33–36 and EuFe2As2.14,37.
Secondly, even though the systems considered don’t show
magnetic long-range order at the Fe sites, it is necessary
to include Fe spins in a certain magnetic arrangement in
simulations in order to correctly predict the structure in
the low-pressure range. Depending on the chosen chemi-
cal composition, the Fe moments either survive or vanish
across the structural collapse. In the case of BaCsFe4As4,
the local Fe moments are suppressed even before the for-
mation of As-As bonds.

Based on our calculations, the critical value for the
As-As distance leading to a structural collapse varies be-
tween (2.8 – 3.0) Å, depending on the spacer cation size.
The initial As-As distance at zero pressure determines
then the critical pressure necessary for a structural tran-
sition. Finding ways of bringing the 1144 systems closer
to the critical As-As separation already at zero pressure
will eventually allow the observation of half-collapsed
phases at ambient pressure in this class of materials.
For instance, the critical pressures at which the half col-
lapses happen can be significantly reduced in uniaxially
compressed systems as has been already observed in 122
systems,27,34,38 making the observation of this structural
transition, in principle, possible for some of the explored
compounds. Also, study of collapsed tetragonal phases in
other 1144 systems based on tri- and monovalent spacer
cations that were newly suggested to be stable at ambient
pressure,39,40 e.g. LaKFe4As4 and EuKFe4As4, might be
another promising research direction.

For the EuRbFe4As4 and EuCsFe4As4 systems, the
character of the half-collapsed transition and the criti-
cal pressures are similar to the Sr-based systems which
is explained by almost identical ionic radii of Eu and
Sr 2+ cations. The Eu magnetism is stable across both
collapse transitions, with the 4f moments staying close

to the expected value of 7µB. Very recent experimen-
tal observations13 seem to confirm the predicted pressure
trends. In addition, our simulations suggest that the or-
dering vector of Eu may change under pressure in the
EuRbFe4As4 system.

In view of the novel magnetism discovered recently in
electron-doped CaKFe4As4,8 the rest of the 1144 family
is worth studying in terms of their magnetic properties.
CaRbFe4As4 and CaCsFe4As4 have the largest As height
asymmetry and are therefore promising candidates for a
spin-vortex magnetic crystal with a high ordering tem-
perature. Search for other 1144 materials with a larger
difference in the two cation sizes, leading to a stronger
asymmetry between the As sites, appears to be a natural
next step. In contrast, 1144 systems with bigger cations,
such as BaCsFe4As4, have a more symmetric structure
and are likely to be closer to stripe order than more asym-
metric 1144 compounds. The motivation to look for fur-
ther spin-vortex ordered Fe-based systems is the recently
proposed relation of this magnetic order to the strong
unconventional superconductivity in 1144 systems. Fur-
thermore, this is a first example of a non-collinear double-
Q magnetic order in iron pnictides and presents an im-
portant part of their general phase diagram.8
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V. Borisov, Y. Lee, S. L. Bud’ko, R. Valent́ı, P. C. Canfield,
and Y. Furukawa, Magnetic fluctuations and supercon-
ducting properties of CaKFe4As4 studied by 75As NMR,
Phys. Rev. B 96, 104512 (2017).

25 Y.-Z. Zhang, H. C. Kandpal, I. Opahle, H. O. Jeschke, and
R. Valent́ı, Microscopic origin of pressure-induced phase
transitions in the iron pnictide superconductors AFe2As2:
An ab initio molecular dynamics study, Phys. Rev. B 80,
094530 (2009).

26 N. Colonna, G. Profeta, A. Continenza, and S. Mas-
sidda, Structural and magnetic properties of CaFe2As2 and
BaFe2As2 from first-principles density functional theory,
Phys. Rev. B 83, 094529 (2011).
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Y. Lee, Dramatic changes in the electronic structure upon
transition to the collapsed tetragonal phase in CaFe2As2,
Phys. Rev. B 89, 020511 (2014).

29 S. L. Bud’ko, X. Ma, M. Tomić, S. Ran, R. Valent́ı, and
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Appendix A: Role of local Fe moments

As emphasized in the main text, the presence of lo-
cal Fe moments is a necessary ingredient of our simula-
tions, since otherwise the predicted structures would have
a largely underestimated c lattice parameter, which, in
case of CaRbFe4As4, even leads to the formation of As-
As bonds near Ca already at zero pressure, confirmed by
the band structure analysis (Fig. 7). We have also per-
formed some test calculations with Fe magnetic orders
other than spin-vortex and found that the best agreement
with structural parameters from experiment is achieved
assuming a spin-vortex arrangement of Fe moments.

FIG. 7: Comparison of the As-4pz orbitals for CaRbFe4As4
structures relaxed at zero pressure (a) using the spin-vortex
Fe order or (b) non-magnetically. In the latter case, the As-As
bonds across Ca are already formed, as opposed to the former
structure, which emphasizes the importance of spin-vortex
fluctuations in 1144 systems. For both relaxed geometries,
the band structure is non-spin-polarized. The color code is
the same as in Fig. 2.
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Appendix B: Accuracy of structure optimization

Regarding the accuracy of our pressure simulations, as
mentioned in the main text and illustrated in Fig. 8, the
increase of the energy cutoff from 600 eV to 800 eV leads
to rather small changes in the lattice parameters, which
do not affect the general trends in the 1144 family.

12.2

12.4

12.6

12.8

c
(A

)

4 5 6 7

P (GPa)

600 eV

800 eV

CaCsFe4As4

FIG. 8: Comparison of the calculated pressure-dependent c-
lattice parameter of CaCsFe4As4 for two different energy cut-
off values 600 eV and 800 eV.

Appendix C: Structure-evolution under pressure

The pressure-dependence of the in-plane (a) and out-
of-plane (c) lattice parameters along with the As-As dis-
tances across both collapse transitions is summarized
for all studied 1144 systems in Figs. 9-13. At the first
half collapse, the qualitative behavior is the same for
all CaAFe4As4 compounds, but for SrRbFe4As4 and
SrCsFe4As4 the structural collapse transition overlaps
with the suppression of Fe moments. BaCsFe4As4 seems
to be an extreme case, since it shows the magnetic col-
lapse first and then undergoes an actual half collapse at
a somewhat higher pressure.
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