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Superconductivity provides a canonical example of a quantum phase of matter. When supercon-
ducting islands are connected by Josephson junctions in a lattice, the low temperature state of the
system can map to the celebrated XY model and its associated universality classes. This has been
used to experimentally implement realizations of Mott insulator and Berezinskii–Kosterlitz–Thouless
(BKT) transitions to vortex dynamics analogous to those in type-II superconductors. When an ex-
ternal magnetic field is added, the effective spins of the XY model become frustrated, leading to
the formation of topological defects (vortices). Here we observe the many-body dynamics of such
an array, including frustration, via its coupling to a superconducting microwave cavity. We take the
design of the transmon qubit, but replace the single junction between two antenna pads with the
complete array. This allows us to probe the system at 10 mK with minimal self-heating by using
weak coherent states at the single (microwave) photon level to probe the resonance frequency of the
cavity. We observe signatures of ordered vortex lattice at rational flux fillings of the array.

One of the central issues in modern physics is to elu-
cidate the behavior of many-body systems. They are
ubiquitous in nature, but our understanding is far from
comprehensive because of difficulties in analytical and
numerical calculations, especially for systems with frus-
tration or those that exhibit the sign problem. Soon
after the concept of building a controlled quantum sys-
tem to emulate a less-understood system was suggested1,
several groups around the world began investigation of
Josephson junction arrays (JJAs) formed in fabricated
superconducting lattice structures as a way to explore
ordered quantum matter2–15. More recently, the ability
to control individual elements has enabled a proliferation
of quantum simulation approaches16–18 as demonstrated
with ultracold neutral atoms19,20, arrays of atomic ions21,
electrons in semiconductors22, and superconducting cir-
cuits23.

Here we show how the architecture of circuit quan-
tum electrodynamics (cQED), so successful for qubit ex-
periments, enables new observations of JJA-based many-
body physics. Our system consists of a regular network
of small superconducting islands coupled to each other
via Josephson junctions [see Fig. 1(a)]2,3. Interesting
quantum many-body phenomena are expected as a re-
sult of competition between the Josephson energy EJ

associated with the tunneling of Cooper pairs and the
charging energy EC = e2/(2CJ) describing the Coulomb
blockade. (CJ is the capacitance between neighbor-
ing islands and e is elementary charge.) Indeed, low-
frequency (DC) transport measurements have revealed
that JJAs show a quantum phase transition between a
superconducting and an insulating phases6–8,10,12,13 and
a commensurate-incommensurate transition of vortices

in response to frustration induced by uniform external
magnetic fields9,11,24.

Circuit QED (cQED), a circuit implementation of a
cavity QED, offers a novel approach to address such prob-
lems. It is a technique that has developed in the field
of quantum information processing with superconduct-
ing qubits 25–27, where the strong coupling between an
isolated dipole—typically a qubit—and cavity microwave
photons allows for direct investigations of the dynamics
of a qubit at the single-photon level. Applying this tech-
nique to the dynamics of many-body systems built from
JJAs, we can investigate the ground states of JJAs with
a weak perturbation of a single-photon level and directly
detect dynamics of individual excitations. At the same
time, we can avoid the self-heating from vortex induced
phase slips. In this Letter, we report a cQED investiga-
tion of a JJA. Specifically, we observe the formation of
lattice orderings of vortices via the response of the cav-
ity. We find that the dynamics of the linearized response
of the JJA—the plasma modes—leads to a strong shift
of the cavity frequency in a manner that enables identi-
fication of ordered phases even with moderate disorder.
These experiments represent a first step towards quan-
tum many-body investigations, as we focus on the ‘clas-
sical’ regime where the Josephson energy is larger than
the charging energy of individual islands, i.e., EJ/EC ≈
2.

We use a JJA with a square network of superconduct-
ing islands arranged in a quasi-1D geometry of the length
L of 30 plaquettes and the width W of 3 plaquettes
(the area enclosed by one plaquette, S, is 6×6 µm2),
made of Al films evaporated on a silicon substrate. The
JJA has EJ/h = 25.8 ± 0.2 GHz estimated from the re-
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FIG. 1. (a) Schematic illustration of investigation of a JJA
using the circuit QED architecture. The JJA consisting of
30×3 plaquettes connected to the two pads is mounted in a
3D microwave cavity. Response of the cavity is investigated
by microwave reflection through the port. (b) Left: opti-
cal image of a JJA connected to the pads. Right: scanning
electron microscope (SEM) image showing individual islands
(false colored). Note the proximity along the lower left to
upper right diagonal leads to additional capacitance, as dis-
cussed in the text. (c) Typical resonance spectra of the TE101

cavity mode for two different flux values. Φ/Φ0 is the normal-
ized flux threading each plaquette.

sistance of the junction using the Ambegaokar-Baratoff
relation28 and EC/h = 13 GHz, corresponding to the
nearest-neighbor capacitance CJ of 1.5 fF. We note that
variations of EJ in individual junctions are estimated to
be 5%, the impact of which is considered in the Supple-
mental Material29. In addition to the nearest neighbor
capacitance, there is also a diagonal (next-nearest) ca-
pacitance along the upper-right axis of 120 aF [See right
figure of Fig. 1(b)] and a capacitance between each island
and ground of Cg = 8 aF. All capacitance parameters are
estimated by the finite element calculations29. The JJA
is connected to two large antenna pads [Fig. 1(b)] to al-
low for strong coupling to the modes of a 3D microwave
cavity. The two pads in the cavity also form a capaci-
tance of CS = 68.5 fF (ECS

/2π ≈ 250 MHz). Note that,
in our design, there is no Josephson junction on the top
and bottom edges of the JJA shown in Fig. 1(a).

The JJA is placed in the center of a 3D cavity made of
oxygen-free copper30, where the strength of the electric
field of the fundamental transverse electric (TE101) mode
with a bare frequency 10.127 GHz is strongest [Fig. 1(a)].
The coupling to the cavity is made by the two antenna

pads connected to the JJA extending in the direction of
the electric field of the TE101 mode. The pads provide
a large electric dipole moment, allowing for a coupling
strength of g/2π ≈ 100 MHz. We measure the cavity’s
complex reflection coefficient S11, see [Fig. 1(c)]. Photons
enter and exit the cavity through the input port at a rate
κext/2π ≈ 1.5 MHz. The cavity containing the JJA is
cooled down to ≈ 10 mK with a dilution refrigerator.
In order to study the frustration-induced properties

of the JJA, we apply a magnetic field B normal to the
JJA plane using a coil. Figure 2(a) shows |S11| for the
JJA as a function of magnetic field and probe frequency.
Here the magnetic field is expressed by the frustration
parameter: a normalized flux per plaquette Φ/Φ0, where
Φ = SB is a flux threading in a plaquette and Φ0 = h/2e
is flux quantum (h is Plank’s constant). The spectrum
shown in the figure is symmetric around Φ/Φ0 = 1/2
as expected, and exhibits structure near the fractional
values of Φ/Φ0 of 0, 1/9, 1/6, 1/3, 1/2, · · · , as well as
additional fine structure at non-fractional values of Φ/Φ0.
We note those structures corresponds to individual flux
insertions. We also remark that the commensurate values
listed above provide features also at 100 mK.
To understand the features observed, we consider the

dual theory of the array, where we use vortices as our
‘particle’ rather than Cooper pairs. Specifically, in a
uniform magnetic field, vortices have a chemical poten-
tial and are induced with a density of Φ/Φ0. These
vortices behave as particles with long-range interactions
in a periodic potential made by the JJA pattern31,32.
The vortices tunnel from site to site with a rate that
scales with EC and they interact strongly with a re-
pulsive potential characterized by EJ . Our JJA with
EJ/EC ≈ 2 ≫ 2/π233 suggests the predominance of the
repulsive interaction, which allows for formation of vor-
tex lattices commensurate with the underlying pattern
of the JJA at the fractional Φ/Φ0 as a result of the re-
pulsion between vortices and the commensurability effect
by the JJA pattern. The large shifts in the dip in reflec-
tion observed at around the fractional values of Φ/Φ0 in
Fig. 2(a) is one piece of evidence for such vortex-lattice
formations.
To confirm the formation of vortex lattices, we numer-

ically calculate the classical ground state of our problem,
and capacitive terms are treated perturbatively in order
to find the semi-classical response of the system. The
Hamiltonian of the JJA is given by3

HJJA =
(2e)2

2

∑

〈i,j〉

niC
−1
ij nj − EJ

∑

〈i,j〉

cos(φi − φj −Aij),

(1)
where ni is the number of Cooper pairs and φi is a phase
of the order parameter of the i-th island, satisfying the
commutation relation [φj , nk] = iδj,k. The first term
in Eq.(1) represents the charging energy and the second
term describes the Josephson effect, where Cij is an ele-
ment of a capacitance matrixC composed of CJ , CS , and

Cg
29 and Aij = (2π/Φ0)

∫ j

i
A · dl is the line integral of
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FIG. 2. (a) Experimental measurement of |S11| as a function of Φ/Φ0 and probe frequency for the JJA of EJ/EC ≈ 2.0. The
spectra are taken at 10 mK and at a power of PMW = −132 dBm (6.3 × 10−17 W) at the input port of the cavity, which
corresponds to the average number of intracavity photons of 2.4. The cyan zones of the flux bias are magnified in Figs. 3(a) and
(d). (b) Theoretical calculation of |S11| based upon the linear response theory of assuming fixed vortex configurations and no
fitting parameters. (c) Plasma modes of the JJA as a function of Φ/Φ0. Proximity of a plasma mode to the cavity frequency
leads to the strong dispersive shift seen in (a). The horizontal dashed line indicates the bare cavity frequency.

the vector potential A from an island i to an island j. To
find the ground state vortex configuration, i.e., the low-

est classical-energy stable configuration of phases ~φ(0), we
neglect any charging effect and numerically minimize the

Josephson term VJ(~φ) = −EJ

∑

〈i,j〉

cos(φi − φj − Aij) at

a given Φ/Φ0. [Here ~φ = (φ1, · · · , φn)
T.] Note that, in

this approximation, Eq.(1) reduces to the classical XY-
spin model with a tunable frustration by Aij and vortices
correspond to classical ones. The obtained vortex config-
urations are identified by calculating the circulating cur-
rent around each plaquette [cf. Figs. 3(a)(iv) and (b)(ii)]
and show a periodic arrangement at fractional values of
Φ/Φ0. These periodic structures are stabilized to avoid
the energy cost due to the vortex-vortex repulsion and
the vortex-edge repulsion9,11.

Once the vortex configurations of the ground states
are known, the frequency of non-topological excitations
ωi can be evaluated in the presence of small EC (≪ EJ ).
These excitations are plasma modes in the JJA or spin-
wave modes in the language of the XY model. They are

collective oscillations of ~φ around ~φ(0) due to kinetic fluc-

tuations in ~φ associated with the charging energy. The

mode frequencies are calculated by expanding VJ(~φ) to

second order

VJ (~φ) = VJ (~φ
(0)) +

hij

2
(φi − φ

(0)
i )(φj − φ

(0)
j ) (2)

with hij = ∂φi
∂φj

VJ (~φ)
∣

∣

∣

~φ(0)
and combining with the

charging energy described in terms of C. Then, a set

of ω2
i are given as eigenvalues of

(

2π
Φ0

)2

hC
−1, where h

is a matrix having elements hij . Note that [
(

2π
Φ0

)2

h]−1

can be regarded as an effective inductance matrix L of
the JJA (see Supplemental Materials29 for details).
For our regime of large EJ/EC — the classical regime,

the spin waves correspond entirely to the response of
a network of inductors and capacitors, and thus are
not chiral. The corrections to this behavior arise from
voltage-induced twisted boundary conditions for the flux
variables, exactly the effects that are exponentially sup-
pressed in our transmon-like design. We anticipate that
reducing EJ/EC will lead to chiral effects in systems like
ours.
The calculated spectra of the plasma modes are shown

in Fig. 2(c). There are 63 modes in our JJA with 30×3
plaquettes for a given vortex configuration. The spec-
tra steeply move and exhibit many discontinuous jumps
with increasing Φ/Φ0. The jumps are due to changes
in the configuration of vortices induced by injections of
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FIG. 3. Enlarged figures of the experimentally obtained |S11|
and the calculated plasma modes shown in Fig. 2 around (a,b)
Φ/Φ0 = 4/9 through 1/2 and (d,e) 1/6 through 1/5. Calcu-
lated current circulation around each plaquette are shown in
(c,f); Circulation near the maximum I/IC = 4 is indicative
of vortex locations, where IC is the single junction critical
current. Dashed lines in (a,b,d,e) correspond to the specific
Φ/Φ0 used in (c,f). We see individual vortex insertions from
the theory are consistent with (a,d).

individual vortices. Remarkably, we see band structure
with gaps at around Φ/Φ0 = 0, 1/9, 1/6, 1/3, and 1/2 as
a result of a repeated arrangement of vortices along the
quasi-1D direction [see Fig. 2(c)], leading to an emergent
super-cell and band-gap formation due to the associated
Bloch theorem.

At the fractional values of Φ/Φ0, the spectra occupy a
wider range of Φ/Φ0 without exhibiting a jump than the
case of non-fractional values of Φ/Φ0. This fact indicates
the stability and the incompressibility of the commensu-
rate vortex lattice. On the other hand, at non-fractional
Φ/Φ0, where vortices do not show a periodic arrange-
ment, a vortex configuration can be easily changed when
Φ/Φ0 is varied because there are a number of similar
configurations with an energy close to that of the ground
state.

To understand the cavity response displayed in
Fig. 2(a), we theoretically analyze it by considering the
coupling to the plasma modes. The analysis is based on
the following assumptions: (i) The plasma modes cou-
ple to cavity photons via a dipole charge induced on the
pads. (ii) The coupling of the cavity photons to the input
port is formulated by the input-output relation34. (iii) A
small amount of ohmic loss in the Josephson junctions as-
sociated with the tunneling of quasiparticles is included.
(See Supplemental Material for details of the theoretical

analysis29.) The calculated cavity response is compared
with the experimental data in Fig. 2. We show there is
a reasonable correspondence between them, especially a
large frequency shift over a finite range of Φ/Φ0 at around
the fractional values of Φ/Φ0.

We note that for regions where the lowest frequency
spin-wave modes are dense and rapidly moving with flux,
i.e., the incommensurate regions, we see poor qualita-
tive agreement between the input-output theory and the
experiment. We interpret this as due to a natural con-
sequence of the 5% disorder in the array (see the Sup-
plemental Material29 for realizations of the theoretical
spectra with different disorder); the need to include the
quantum dynamics of the vortices, which are here en-
tirely neglected; and the lack of inclusion of finite tem-
perature corrections, where the system may be in a dif-
ferent, metastable vortex configuration some or all of the
time. On the other hand, the ordered phases at the com-
mensurate flux bias points are not affected even in the
presence of the 5% disorder since these configurations are
energetically stable (see the Supplemental Material29.

At half vortex filling (Φ/Φ0 = 1/2), we can plot the
current around each plaquette from the theoretical cal-
culation as shown in Fig. 3(c). Vortices are seen as peaks
in circulation around individual plaquettes, and form a
checkerboard. If we introduce one defect (by raising or
lowering the magnetic field to create a vortex or anti-
vortex, respectively), we see in the spin-wave response
and in the reflection of the experiment a cusp at the inser-
tion point of either a vortex or anti-vortex [see Figs. 3(a)
and (b)]. However, one defect does not destroy the band
gap observed in the spin-wave spectrum, which can be
understood as a finite-size effect in the induced robust-
ness of the checkerboard phase. Eventually, here around
three anti-vortices, the spin wave spectrum begins to col-
lapse and we observe a dramatic change in the cavity
response, consistent with our qualitative interpretation
of the destruction of rigidity in the vortex crystal. In
principle, this rigidity is briefly recovered as we approach
4/9, which is again ordered, but has much lower funda-
mental frequency and is not as robust to single vortex
subtraction.

Another key ordering occurs at 1/6 shown in Fig. 3(f),
where we have alternating columns of empty columns and
columns with one vortex in the middle. This is a quasi-1D
phase, which with one anti-vortex added has appreciable
compressibility24. However, with one vortex added, we
see the onset of zig-zag ordering and expect these zig-zag
excitations of a pair of vortices pushed towards the pads
to have much smaller kinetic fluctuations than individual
vortices. This persists down to 1/5 filling, where the ad-
dition of one more vortex leads to a compressible regime
again [see Figs. 3(d) and (e)].

In conclusion, we have shown that cQED-based prob-
ing allows for the observation of low temperature phases
of an engineered many-body superconducting system.
While the present work has operated in the large capac-
itance regime, which suppresses the quantum dynamics
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of the vortices, future work should be able to investigate
a wider range of parameters and address key questions
about the transition from vortex ordering to Cooper-pair
hopping in a magnetic field3. This is particularly intrigu-
ing as, at low offset-charge disorder, the case of charged
bosons with long-range interactions in a magnetic field
naturally leads to fractional quantum Hall states35. Our
approach may provide a framework for enabling such ex-

periments.
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