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Proposed effective Hamiltonians from the literature for the material α-RuCl3 are used to compute
the magnon thermal Hall conductivity, κxy, using linear spin wave theory for the magnetically
ordered state. No model previously proposed that was tested explains published experimental data.
Models with Kitaev interaction K > 0 are seen to predict κxy & 0, which is inconsistent with the
data. Fluctuations toward a Kitaev-type spin liquid would have the wrong sign to explain the data.
However, a slight variant of a previously proposed model predicts a large κxy, demonstrating that
the low-temperature thermal Hall effect could be generated exclusively by the Berry curvature of the
magnon bands. The experimental data of κxy can therefore serve as another method to constrain a
proposed effective Hamiltonian.

I. INTRODUCTION

The Kitaev spin-spin interaction on a honeycomb lat-
tice provides a solvable model with abelian and non-
abelian anyonic excitations, as well as Majorana edge
modes.1 Renewed interest in finding a material that re-
alizes the Kitaev interaction was, in part, sparked by
the observation that it can arise as an effective Hamil-
tonian for some transition metals with strong spin-orbit
coupling.2

The material α-RuCl3 has generated much excitement
due to it presenting some promise as such a Kitaev-
magnet (see Ref. 3 and references therein). The Ru
atoms compose an ideal honeycomb lattice, and the ma-
terial itself is a Mott insulator with the requisite spin-
orbit coupling.4,5 At low temperatures, the spins enter
into a zigzag ordering, but a large in-honeycomb-plane
field may induce a spin liquid state.6–10

Raman scattering results on α-RuCl3 reveal a con-
tinuum of excitations that exists above and below
the magnetic transition temperature;11 after subtract-
ing a bosonic background, the excitations appear to
be fermionic, which suggests proximity to a spin liq-
uid state.12 The continuum of excitations is also seen
in inelastic neutron scattering data and seem to be qual-
itatively similar to that expected from the pure Kitaev
model,7,13 and linear spin wave theory fits to inelastic
neutron scattering data suggest a significant Kitaev inter-
action.8,13 Experiments with terahertz spectroscopy14–16

and electron spin resonance17 above and below the field
induced transition further demonstrate the existence of
interesting features in the excitation spectrum that might
also be a sign of the Kitaev spin liquid.

Numerous theoretical studies have proposed effective
Hamiltonians for α-RuCl3, which have all revealed a Ki-
taev term,18–23 and the symmetric off-diagonal exchange
term Γ24,25 plays an important role.18,19 As summarized
in Ref. 19, the differences in model proposals comes from
the fact that there are many different parameters allowed
by symmetry for an effective Hamiltonian, different crys-

tal structures have been proposed (with C2/m being pre-
ferred from more recent X-ray experiments26,27), and the
first-principle calculations depend heavily on interaction
parameters. Much of the theoretical analysis of the above
experiments has relied on spin wave theory (for below
TN ≈ 7 K) and/or on calculations within the pure Ki-
taev model as it is accessible to quantum Monte Carlo
simulations (see Ref. 28, for example).

Thermal conductivity measurements also provide a
unique probe of this material and have generally seen
“unusual” results.9,10,29–31 A subset of the thermal con-
ductivity data is an observation of a sizable thermal Hall
conductivity κxy,10,29,30 which, when compared with the
theoretical predictions of the thermal hall conductivity of
a pure Kitaev model at non-zero temperature,28 perhaps
suggests the Kitaev-magnet nature of α-RuCl3. Addi-
tionally, in the case of a large in-plane magnetic field,
κxy/T is reportedly quantized10 at the same value that
would be expected from the pure Kitaev model for a Ma-
jorana edge mode, πk2B/(12~).1

Though the data is not perfectly quantized, that may
be explained due to interaction with phonons.32,33 Theo-
retical investigation has tried to explain the quantized
value by finding the spin-liquid ground state of pro-
posed Hamiltonians through a variational Monte Carlo
method.34 It was shown that a Z2 spin-liquid, as in the
Kitaev model, is not preferred within the proposed K−Γ
model (see Eq. (1) and Table I), and the authors of Ref.
34 claim that such a result will be true for a J1−K−Γ−J3
model too.

Interestingly, relative to the quantized value, the data
of Ref. 29 also suggests a large magnitude κxy/T even
in the magnetically ordered state of the material below
TN ≈ 7 K, with sign reversed relative to the putative
spin liquid state. Although the diagonal thermal con-
ductivity κxx receives a large contribution from phonons,
the phonon thermal Hall conductivity at T . 10 K and
µ0H . 15 T has been measured for multiple other ma-
terials to be small (κxy . 10−4 W/K/m).35,36 It is well
known that Berry curvature of the magnon bands can
induce a finite thermal Hall effect,37,38 and it is well
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Figure 1. (Color online). The conventions we use. The honey-
comb lattice is shown on the right with the X,Y, and Z bond
types labeled. The dashed line shows a unit cell containing
one point in each of the four sub-lattices, {A,B,C,D}. The
first Brillouin zone (1BZ) is shown in the upper left with four
points labeled. The dashed line represents the 1BZ corre-
sponding to the dashed box on the honeycomb lattice where
the solid line represents the 1BZ of the triangular lattice.
There are two coordinate systems xyz and abc that are shown
in the bottom left. Note c is in the [111] direction and a is in
the [112̄] direction. We fix the lattice spacing to be 1 so that
|αi| = 1.

studied that honeycomb Hamiltonians can have ther-
mal Hall effects.39–41 Recent studies have also found that
ferromagnetically ordered Kitaev materials have magnon
bands with non-zero Chern number42 and thermal Hall
effect.43

To our knowledge, however, no theoretical calculation
of the thermal Hall conductivity due to magnons for low
magnetic fields for α-RuCl3 has been carried out. Taking
the low-temperature data of Ref. 29 at face value, it pro-
vides a new test of any proposed effective Hamiltonian.
In this work, we carry out such a calculation via linear
spin wave theory (SWT). Though SWT may be unable
to capture some features of the aforementioned experi-
ments, it has been seen to well explain the THz spec-
troscopy data.16 Indeed, in this work, we find that no pre-
viously proposed model predicts a large enough magnon
thermal Hall effect, but, by decreasing the strength of
a third nearest-neighbor Heisenberg interaction, such a
model can be found. The conclusion is that the Berry
phase of magnon bands could explain the experimental
observations in the ordered phase, but only if the effective
Hamiltonian is somewhat different from previous propos-
als.

II. SPIN WAVE THEORY

Many effective Hamiltonian models have been pro-
posed for α-RuCl3 (see Table I), and most of them can

be captured by a J1 −K − Γ− Γ′ − J3 Hamiltonian:

H =
∑
〈ij〉

J1Si · Sj +KSγi S
γ
j + Γ(Sαi S

β
j + Sβi S

α
j )

+ Γ′
[
Sγi (Sαj + Sβj ) + Sγj (Sαi + Sβi )

]
+
∑
〈〈〈ij〉〉〉

J3Si · Sj −
∑
i

h · Si

(1)

where h = gµBµ0H with µB the Bohr magneton and g
the g-factor. The index γ(i, j) refers to the bond type of
(i, j) as indicated in Fig. 1, and α, β refer to the other
two coordinates (e.g. (α, β) = (x, y) if γ = z). Note that
the axes are arranged such that the, e.g., X bond type is
perpendicular to the x-axis.

Proceeding with a standard spin wave theory (SWT)
analysis following Ref. 44, we can arrive at a Hamil-
tonian of free magnons.45 We allow the spin moments
to be pointed in arbitrary directions along the four sub-
lattices indicated in Fig. 1. We introduce four types of
Holstein-Primakov bosons bXi on the X ∈ {A,B,C,D}
sublattice at point ri. We fix the angles by insisting on
having no linear term in the boson creation/annihilation
operators, and we always look for a zigzag solution (i.e.
θA = θB , θC = θD, φA = φB and φC = φD). Defin-

ing ψ†k = (bA,†k , bB,†k , bC,†k , bD,†k , bA−k, b
B
−k, b

C
−k, b

D
−k), we can

write the Hamiltonian, up to a constant, as

H =
1

2

∑
k

ψ†kHψk =
∑
k

4∑
n=1

ωn

(
γ†k,nγk,n +

1

2

)
, (2)

where, in the last step, we perform a Bogoliubov trans-

formation (~γk, ~γ
†
−k)T = φk = T−1k ψk to diagonalize the

Hamiltonian. To satisfy the boson commutation relations

σ3T
†
kσ3 = T−1k with σ3 = diag(1, 1, 1, 1,−1,−1,−1,−1).

To ensure the validity of SWT, we compute the spin
reduction for the ith boson

∆S0,i =
1

V1BZ

∫
1BZ

d2k

 8∑
j=1

|Tij |2nBE(|ωj |) +

8∑
j=4

|Tij |2
 ,

(3)
where nBE(ω) = 1/(eω/(kBT ) − 1) is the Bose-Einstein
distribution, and V1BZ is the volume of the (2D) first
Brillouin Zone (1BZ). The reduction is often significant,
but is always less than 70%, unless otherwise mentioned.

We can use SWT to find the magnon thermal Hall con-
ductivity using an expression derived in Ref. 37 through
linear response theory:

κxy
k2BT/~

= − 1/dc
(2π)2

∫
1BZ

d2k

4∑
n=1

(
c2(nBE(ωn))− π2

3

)
Ωnn

Ωnn =

(
iεµνcσ3

∂T †k
∂kµ

σ3
∂Tk
∂kν

)
nn

(4)
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Name J1 K Γ Γ′ J2 J3 K3 Ref.

HK −4.6 7.0 − − − − − 13

KΓ − −6.8 9.5 − − − − 8

1(HKΓJ3) −1.7 −6.7 6.6 − − 2.7 − 18

2(HKΓJ3) −5.5 7.6 8.4 − − 2.3 − 18

3(HKΓJ3) −0.5 −5.0 2.5 − − 0.5 − 19

4(HKΓJ3) 0.1 −5.5 7.6 − − 0.1 − 22

5(HKΓJ3) −0.3 −10.9 6.1 − − 0.03 − 22

6(HKΓJ3) −3.5 4.6 6.4 − − 0.8 − 20

(HKΓΓ’) −1 −8 4 −0.95 − − − 20

HKΓ −12 17 12 − − − − 21

HKΓK3 −1.8 −10.6 3.8 − − 1.25 0.65 23

HKΓJ2 1.2 −5.6 1.0 − 0.3 0.3 − 46

7(HKΓJ3) −0.5 −5.0 2.5 − − 0.1125 − this paper

Table I. This information is primarily drawn from Table 1 in
Ref. 50 with some models added. All values are in meV. For
this analysis, we ignore the K3, J2 values, which are there for
completeness. Some groups propose different models within
the same paper depending on the space group symmetry. For
the HK and KΓ model, we add a small Γ and J3 term, re-
spectively to help the numerics.

where εijk is the Levi-Civita symbol, dc is the distance
between 2D planes (assuming well separated layers), Ωnn
is the Berry curvature of the nth magnon band, and, with
Li2(z) being the dilogarithm, c2(x) = (1 +x)(ln(1 +x)−
ln(x))2 − (lnx)2 − 2Li2(−x).

We now specify the parameters in Eq. (1) to perform
the calculation. We consider many different parameter
sets as have been proposed in the literature, which are
summarized in Table I. Though there is some experi-
mental disagreement in the g-factor,27,46 susceptibility
measurements3,47,48 give the paramagnetic moment to be
& 2µB , with S = 1/2. We therefore fix g = 2.3 to get
the correct order of magnitude as in Refs. 16, 18, and
19, and S = 1/2. According to Refs. 29 and 49, the
interplanar distance is dc = 5.72 Å.

The results of our SWT calculation are presented in
Figs. 2. We have compared our code with the results
of Refs. 39 and 43 to verify correctness. We have also
plotted the data from Ref. 29. We do not plot 5(HKΓJ3)
or HKΓJ2 since the spin wave solution is not stable (i.e.
there are complex eigenvalues) above some critical field
µ0Hc < 10 T.

We see rather poor agreement between the models and
the theory. Although most models do predict κxy of the
correct sign, models HK, KΓ, 4(HKΓJ3) do not. Further
notice that all models with K > 0 predict κxy & 0.

To investigate why there is such a large discrepancy
between the theoretical κxy and the data of Ref. 29,
we try to find a large κxy in a minimal J1 − K − Γ −
J3 model. It is worth noting that there is not much
freedom. From Curie-Weiss temperature data |K| ∼ 100
K = 8.6 meV,3,51 which is similar to the estimate of Ref.
29 and is commonly seen in almost all of the models
in Table I. Furthermore, it has been observed that the

magnetic moments lie in the ac plane and make an angle
of approximately 35◦,26 which requires a particular Γ/K.
Minimizing the classical energy assuming the moments
are in the [xxz] direction, in the J1 −K − Γ− J3 model,
we obtain an expression equivalent to one in Ref. 50:

Γ

K
=

2√
2 tan(θ) + 1−

√
2 cot(θ)

, (5)

where z = cos(θ) and we assume x > 0. Two minima
of the classical energy can be found with K < 0; Γ/K ≈
−0.82 and K > 0; Γ/K ≈ 0.0065.

Therefore, for two values of Γ/K with differing signs
of K, we have only freedom in J1 and J3. J1 < 0 and
J3 > 0 help stabilize the zigzag order, so we place these
constraints. In the K > 0 case with large enough |J1|
to stabilize the zigzag order, we always found κxy & 0,
though a more thorough search of the parameter space
might be needed.

In the K < 0 case, we instead start with the results
of the meta-analysis of ab initio models from Ref. 19:
Γ/|K| ≈ 0.5 and J1/|K| ≈ 0.1. Fixing K = −5 meV as
in their proposed model, we scan possible values of J3.
We find that sufficiently low J3 leads to large enough κxy
to explain all but the lowest temperature point of Ref.
29. As a representative model, we find that J3 = 0.1125
does well to reproduce the temperature data, as is shown
in Fig. 2. Note that this model is representative not
unique. Generically, with −5 meV & K & −8 meV,
there is a value of J3 & |K|/200 that provides an order-
of-magnitude fit to the data. For small J3, though, we
find a large spin reduction with ∆S0/S ∼ 0.9. Further,
these models predict much larger κxy at T = 7 K than
is measured in Ref. 29 as is seen in Fig. 2(b). Because
of the proximity to the temperature at which long range
order is lost, it is perhaps expected that whatever process
is creating a large positive κxy above TN ∼ 7 K is begin-
ning to affect the conductivity at T = 7 K. We are not
claiming that our model explains the considerable exist-
ing data from other experiments (e.g. inelastic neutron
scattering, electron spin resonance, etc.); the model is to
demonstrate that, theoretically, the thermal Hall effect
data could be described solely through SWT while still
satisfying the conditions from Ref. 19.

To see why the κxy increased, we plot in Fig. 3 an ex-
ample of the linear SWT bands and Berry curvature for a
particular path through the 1BZ for our model 7(HKΓJ3)
vs. the similar model 3(HKΓJ3) on which it is based. It
is worth noting that even though the bands are qualita-
tively similar, the Berry curvature of the two models is
quite different. For example, there is a large enhance-
ment of the Berry curvature around the Y point.

The difference in magnitude of κxy can be understood
as follows. The function f(ωn) = −(c2(nBE(ωn))−π2/3)
scaling the Berry curvature in the κxy integrand essen-
tially serves as a high-pass filter with frequency ωHi =
kBT . That is, if ωn � kBT , f(ωn) ∼ T/ωn and
if ωn � kBT, f(ωn) ∼ π2/3. Since the sum of the
Berry curvature integrated over the 1BZ is zero,37 then
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Figure 2. (Color online). We plot κxy as computed from Eq. (4) for the various models in Table I as a function of (a)
temperature and (b) magnetic field. We also plot the data from Ref. 29 as blue dots. The inset of (a) shows a zoomed-out
version of the same graph. In (b), models with κxy & 0 were removed. Our model, which agrees well with the data in (a), does
not agree with the data in (b). Since the data of Ref. 29 shows κxy > 0 at T > TN and excitations in the pure Kitaev model
contribute to κxy > 0,28 it is expected that at T ≈ TN ≈ 7 K the contribution from just the magnons should be below the
experimental data, as is true for our model. We do not plot 5(HKΓJ3) or HKΓJ2 since the zigzag spin wave solution becomes
unstable for some critical magnetic field µ0H < 10 T. Our proposed model, 7(HKΓJ3) has a large spin reduction ∆S0/S ∼ 0.9
at T = 7 K.
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Figure 3. (Color online). See Fig. 1 for the naming of the
1BZ points. We plot the SWT bands, ωn, and the Berry
curvature, Ωnn, for the 3(HKΓJ3) model (solid lines) and the
7(HKΓJ3) model (dashed lines) at µ0H = 12 T. The latter
model has a much larger κxy as seen in Fig. 2 due to the fact
that a) the gap between the lower two bands around the Y
point is smaller and at lower energy and b) the gap between
the green and red band is at a lower energy. Note that the
Berry curvature is largest where the band gap is smallest, and
the lower energy means that the effect of −c2(nBE(ωn)) is
more significant. (For Ωnn, the path is changed to be slightly
inside the 1BZ as opposed to being on the boundary, when
applicable.)

kBT & ωn for κxy to be significant. Furthermore, we
can see from Fig. 3 that the Berry curvature is largest
when there is a small gap between the bands. To make
the largest possible κxy, there must be small gaps in the
bands at energies ωn . kBT .

Our analysis tends to favor J3 smaller than has been

proposed. As can be seen in plots in Refs. 18 and 46,
decreasing J3 tends to move closer to a transition out of
the zigzag order. Since smaller band gaps lead to larger
Berry curvature, this result makes sense as SWT would
predict a magnetic ordering phase transition when a gap
in two bands close: assuming the energies of the bands
have the form ω± = a±

√
b, a transition occurs at b = 0

since b < 0 leads to instability of the spin wave solution.

These observations, however, call into question
whether the magnon thermal Hall effect is indeed respon-
sible or if the low temperature data is accurate. Denot-
ing x ≡ ωn/T , we see that f(ωn) = π2/3− e−x(2 + 2x+
x2) +O(e−2x) for x� 1. Since the mass of the magnons
has been estimated to be ∼ 2 meV from inelastic neutron
scattering,8 κxy, as predicted from linear SWT, should be
exponentially decreasing in 1/T at T � 2 meV ≈ 23 K.
All the predictions of magnon thermal Hall effect shown
in Fig. 2 show such a dependence but the data does not.

Another interpretation of our results is that the models
in Table I are consistent with the data if the magnons are
not the dominant source of the κxy at low temperatures.
Phonons could in principle give a larger contribution than
ordinarily observed. To elaborate, in past experiments,
although κxy . 10−4 W/K/m, the Hall angle was mea-
sured at µ0H ∼ 10 T to be κxy/κxx ∼ 1− 5× 10−4.35,36

Since κxx ∼ 2 − 6 W/K/m for α−RuCl3 at T . 10
K,9,29–31 we would then estimate κxy ∼ 3 × 10−4κxx ≈
1.2 × 10−3 W/K/m, which is of the correct order. Re-
garding contributions in the ordered phase by Kitaev-like
excitations from fluctuations, note that since the pure
Kitaev model predicts κxy > 0,28 and the experimental
data shows that κxy switches sign at T ∼ TN ,29 these ob-
servations would be inconsistent with having fluctuations
into the Kitaev model explain the discrepancy between
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the predicted and observed low temperature κxy.

Finally, we should emphasize that our results focus on
linear SWT. Since the condition ∆S0/S � 1 is not met
in a rigorous sense, our results should be treated as a
first-order estimate. A more detailed calculation using
non-linear SWT keeping interaction terms between the
magnons would be an important addition in the future,
though such a calculation would be difficult with known
techniques.

III. CONCLUSIONS

We have investigated whether the thermal hall con-
ductivity data reported in Ref. 29 at low temperatures
for the material α-RuCl3 can be explained through lin-
ear SWT as an example of the magnon thermal Hall ef-
fect. Although for many of the effective Hamiltonians

proposed in the literature, we find a non-zero κxy of the
correct sign, none could satisfactorily explain the data.
By modifying the model of Ref. 19, we were able to find
large enough κxy to explain the 7 K & T & 3 K data
showing that it is possible to explain the data via linear
SWT. It also appears that K > 0 is not favored solely
based on the sign of κxy. Taking the data at face value,
these measurements provide a novel way to constrain a
proposed effective Hamiltonian. In the future, more ex-
perimental data, better theoretical methods to incorpo-
rate both spin waves and Kitaev-model quasiparticles,
and more careful treatment of the phonon thermal Hall
effect would be useful in constraining proposed effective
Hamiltonians.
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