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Ferromagnets in contact with a topological insulator have become appealing candidates for spin-
tronics due to the presence of Dirac surface states with spin-momentum locking. Because of this
bilayer Bi2Se3-EuS structures, for instance, show a finite magnetization at the interface at tem-
peratures well exceeding the Curie temperature of bulk EuS. Here we determine theoretically the
effective magnetic interactions at a topological insulator-ferromagnet interface above the magnetic
ordering temperature. We show that by integrating out the Dirac fermion fluctuations an effective
Dzyaloshinskii-Moriya interaction and magnetic charging interaction emerge. As a result individ-
ual magnetic skyrmions and extended skyrmion lattices can form at interfaces of ferromagnets and
topological insulators, the first indications of which have been very recently observed experimentally.

PACS numbers: 75.70.-i,73.43.Nq,64.70.Tg,75.30.Gw

Introduction— The spin-momentum locking property
of three-dimensional topological insulators (TIs)1,2 make
them promising candidate materials for future spin-based
electronic devices. One important consequence of spin-
momentum locking in TIs is the topological electromag-
netic response, which arises from induced Chern-Simons
(CS) terms3 on each surface4. This happens for instance
when time-reversal (TR) symmetry is broken, which ren-
ders the surface Dirac fermions gapped. This can be
achieved, for example, by proximity-effect with a ferro-
magnetic insulator (FMI)5–15. In this case, a CS term
is generated if there are an odd number of gapped Dirac
fermions, which is achieved only in the presence of out-
of-plane exchange fields11. The realization of several
physical effects related to the CS term that have been
predicted in the literature critically depend on growing
technologies required for the fabrication of heterostruc-
tures involving both strong TIs and FMIs. Recently, high
quality Bi2Se3-EuS bilayer structures have been shown
to exhibit proximity-induced ferromagnetism on the sur-
face of Bi2Se3

6,16,17. Other successful realizations of
the stable ferromagnetic TI interfaces were demonstrated
recently18,19. In addition it was shown that the interface
of FMI and TI can have magnetic ordering temperature
much higher than the bulk ordering temperature5, indi-
cating that topological surface states can strongly affect
the magnetic properties of a proximity-coupled FMI.

These experimental advances motivate us to investi-
gate the effective magnetic interactions that result from
the fluctuating momentum-locked Dirac fermion surface
states of a TI in contact with an FMI.

We show that even in the absence of any spontaneous

magnetization, at temperatures above the Curie temper-
ature of the FMI, intriguing topologically stable magnetic
textures, i.e., skyrmions, are induced as a result of quan-
tum fluctuations of the Dirac fermions at the interface. In
fact, we demonstrate that integrating out Dirac fermions
coupled to a FMI thin film generates a Dzyaloshinskii-
Moriya interaction (DMI), that depending on the form of
the Dirac Hamiltonian, favors either Néel-or Bloch-type
skyrmions20–23. However, skyrmions induced in TI-FMI
structures feature in addition a ”charging energy”, due
to the generation of a term proportional to the square
of the so called magnetic charge, ∇ · n, where n denotes
the direction of the magnetization24. An important fea-
ture of our finding is that the Dirac fermions that are
integrated out are not gapped, since there is no sponta-
neous magnetization above Tc that would lead to a gap
in the Dirac spectrum. Furthermore, the generated DMI
is only nonzero if the chemical potential does not vanish.
We obtain the phase diagram for the skyrmion solutions
and identify the region of stability for skyrmion lattices in
presence of the magnetic charging energy. This region we
determine numerically by analyzing the excitation spec-
trum of the skyrmion solution. An important discovery
is that the magnetic charging energy modifies the phase
diagram significantly in the case of DMIs favoring Néel
skyrmions, the situation relevant for Bi2Se3-EuS inter-
face. Our theoretical findings support conceptually the
recent experimental observation of a skyrmion texture at
a ferromagnetic heterostructure of Cr doped Sb2Te3

19.
Having a skyrmion profile on a TI surface will cause sig-
nificant changes in the conductance that may be observed
in transport measurements25.
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Interface exchange interactions— The Hamiltonian
governing the Dirac fermions at the interface of a FMI/TI
heterostructure has the general form,

HDirac(n(r)) = [d (−i~∇)− J0n(r)] · σ, (1)

where r = (x, y), σ = (σx, σy, σz) is a vector of Pauli ma-
trices and J0 is the interface exchange coupling. The op-
erator d is a function of the momentum operator −i~∇.
Here we consider the two possibilities leading to a Dirac
spectrum,

d1 = −i~vF∇, d2 = −i~vF∇× ẑ, (2)

with the latter arising in TIs like Bi2Se3, Bi2Te3, and
Sb2Te3

26. Experimentally, in order for the effective
Hamiltonian (1) to give a valid low-energy description
of the physics at the interface, the TI must be at least 7
nm thick. The end result will be that d1 induces a DMI
of the type n · (∇ × n), which is often referred to as a
bulk DMI, but for clarity we call it Bloch DMI. Instead
d2 leads to different type of DMI, ∼ n · [(ẑ×∇)× n] =
(n ·∇)nz − nz(∇ · n), in the magnetic literature some-
times known as surface DMI, but to which we refer as
Néel DMI.

The effective energy Eeff of the system is obtained by
integrating out the Dirac fermions c = (c↑, c↓) in the
partition function,

e−βEeff (n) = e−βρsL
∫
S
dS(∇n)2

×
∫

Dc†Dce−
∫ β
0
dτ

∫
d2rc†[∂τ−µ+HDirac(n(r))]c, (3)

where ρs is the magnetization stiffness of the FMI, L is
the film thickness and the integration is over the film
area S. Due to the nonzero z-component of the magneti-
zation, the above model yields a gapped Dirac spectrum
for T < Tc with spin wave excitations, which give rise
to a Chern-Simons term10. However, this gap does not
occur for T > Tc. In the following we assume that the
gap vanishes for T ≥ Tc and obtain the corresponding
corrections to the free energy after integrating out the
gapless Dirac fermions.

Effective free energy and induced DMI — The non-
interacting Green function for a spin-momentum locked
system can be written in general as

Gαβ(ωn,k) = G(ωn,k)δαβ + F(ωn,k) · σαβ , (4)

where ωn = (2n+ 1)π/β is the fermionic Matsubara fre-
quency. From the Hamiltonian (1) and the functional
integral in (3) we have,

G(ωn,k) =
iωn + µ

(iωn + µ)2 − d2(k)
, (5)

F(ωn,k) = − d(k)

(iωn + µ)2 − d2(k)
, (6)

where d(k) is either d1 or d2 from Eq. (2) in momentum
space. Integrating out the fermions and expanding the

free energy expression up to J2
0 , we obtain after a long

but straightforward calculation, the following correction
to the effective free energy density27

δFmag
Dirac =

s

2

{
[∇n(r)]2 + [∇ · n(r)]2

}
+ i

a

2
n(r) · [d(−i~∇)× n(r)], (7)

where (∇n)2 =
∑
i=x,y,z(∇ni)

2 defines
the usual exchange term, and we have de-
fined s = βJ2

0/[24π cosh2(βµ/2)] and a =
3J2

0 (π~vF )−1 tanh(βµ/2). We can drop the con-
stant term FDirac(0) from the free energy, since it does
not depend on the field. Thus, we can safely write
FDirac = δFDirac. The above expression features a DMI
induced by Dirac fermion fluctuations. In addition, a
contribution ∼ (∇ · n)2 is also generated. We will see
below that the presence of this term leads to interesting
physical properties when d2 is replaced for d in Eq. (7),
modifying in this way the behavior of Néel skyrmions.
Note that differently from the case where the Dirac
fermion is gapped15, no intrinsic anisotropy is generated
by the Dirac fermions. At the same time, we note that
the form of δFmag

Dirac including the DMI term will persist
also below Tc as long as the chemical potential is outside
the gap, meaning that the TI surface is metallic, despite
the generated mass m for the Dirac fermions.

Effective magnetic energy in an external field — The
contributions from the FMI and Dirac fermions allows
one to recast the effective energy for a thin ferromagnetic
layer in the form,

Eeff = L

∫
S

{
A
[
(∇n)2 + ε(∇ · n)2

]
+ DEdmi +MsH(1− nz)} dS, (8)

where A = ρs + s/(2L) is the effective magnetiza-
tion stiffness including the fluctuations due to the Dirac
fermions. We assumed that the sample lies in the pres-
ence of an external magnetic field H applied perpen-
dicular to it. We have also introduced the parameter
ε = s/(2AL) = s/(2ρsL+ s). The DM coupling is given
by D = a/(2L). The DM interaction has the possible
forms, E b

dmi = n · (∇ × n) or E n
dmi = nz∇ · n − n ·∇nz,

depending on whether d1 or d2 arises in the Dirac Hamil-
tonian (1). The latter is more adequate for Bi2Se3-EuS
samples13. The ab initio results from Ref. 28 indicate
that J0 is largely enhanced due to RKKY interactions at
the Bi2Se3-EuS interface, ranging from 35 to 40 meV. Us-
ing J0 = 35 meV one can estimate that at room temper-
ature s ∈ [0.05, 0.63) meV, and therefore ε ∈ [0.08, 0.51)
for 1 nm thick film and µ ∈ (0, 0.1] eV29. Note that ε
strongly depends on the value of µ, which can be reduced
by doping.

Although the temperature fluctuations usually
destroys skyrmions in thin films, the individual
skyrmions30–32 as well as skyrmion lattices33 are
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FIG. 1. Eigenfrequencies of two localized modes, namely
radially-symmetric (m = 0) and elliptic (m = 2) are found
by means of numerical solution of the eigenvalue problem for
different DM terms. Modes, which do not demonstrate insta-
bility, are not shown. Stability/instability regions are indi-
cated for the case ε = 1.

observed in various multilayer structures for room tem-
peratures. Therefore, in experiments, it is reasonable
to use a multilayer structure in form of the periodically
repeated stack TI/FMI/NI, where NI is a normal
insulator. In the following we neglect the influence of
the thermal fluctuations on the magnetization structure,
which holds when model (8) is applied for a multilayer
structure.

Before studying the energy functional (8), let us em-
phasize that while the DMI is absent for the case of a
vanishing chemical potential, the term (∇ ·n)2 is always
there, even if µ = 0. Thus, this term is a unique fea-
ture of thin film FMIs proximate to a three-dimensional
TI. In fact, it has been recently demonstrated that it is
also induced for µ = 0 at zero temperature when the sur-
face Dirac fermions are gapped by proximity effect to the
FMI15.

Ground states of system (8) are well studied for the
case ε = 034–38. The uniform saturation along the field
is the ground state with Eeff = 0 for large field and
weak DM interaction, and 1D structure in form of pe-
riodical sequence of 2π domain walls is the ground state
with Eeff < 0 for small fields and strong DM inter-
action. The criterion for the periodical state appear-
ance is negative energy of a single domain wall, it reads

d > dc = 8/π, where d =
√

2D/
√
AMsH is dimension-

less DM constant. In vicinity of the boundary d ≈ dc,
an intermediate phase in form of 2D periodical structure
(skyrmion lattice) forms the ground state20,21,34,39. An
isolated skyrmion21,22,35,40 may appear as a topologically
stable excitation of the uniformly saturated state. The
slyrmions and domain walls are of Bloch and Néel types
for the DM interaction in form E b

dmi and E n
dmi, respec-

tively.
Here we study how the ground states and individual

skyrmions are changed when ε > 0. Since ∇ ·n ≡ 0
for any domain wall and skyrmion of the Bloch type
(induced by E b

dmi) the influence of the term (∇·n)2

is not significant in this case. However, it drastically
changes the ground state digram and stability of the
static solutions for the case of E n

dmi. In this case, dc =

dnc (ε) = (8/π)
∫ 1

0

√
1 + ε(2ξ2 − 1)2 dξ and period of the

1D structure is increased with ε27. Energy per period
is En

1d(d, ε) ≈ ALE(d, ε), where E(d, ε) is determined by

the implicit relation d/dnc (ε) = E(4/E)
√
−E/4, with E(k)

being the complete elliptic integral of the second kind41

(note that E < 0). For the case E b
dmi the 1D periodical

structure is not affected by ε and one has dbc = dnc (0) and
Eb

1d(d) = En
1d(d, 0)27.

Skyrmion solutions —Here we consider the topolog-
ically stable excitations of the saturated state n = ẑ.
First, we utilize the constraint n2 = 1 by expressing the
direction of the magnetization in spherical coordinates,
n = sin θ(cosφ x̂+sinφ ŷ)+cos θẑ. One can show27 that
for the case E n

dmi the total energy (8) has a local mini-
mum if φ = χ and function θ = θ(ρ) is determined by
the equation

(1 + ε cos2 θ)∇2
ρθ − sin θ cos θ

(
1 + ε

ρ2
+ ε θ′2

)
+ d

sin2 θ

ρ
− sin θ = 0,

(9)

where we introduced the polar frame of reference {ρ, χ}
with the radial distance ρ measured in units of ` =√

2A/(MsH) and ∇2
ρf = ρ−1∂ρ(ρ ∂ρf) denotes radial

part of the Laplace operator. Equation (9) must be
solved with the boundary conditions θ(0) = π, θ(∞) = 0.
A number of examples of skyrmion profiles determined by
Eq. (9) for various values of parameters d and ε are shown
in Fig. S227. Note that the skyrmion size is mainly deter-
mined by the parameter d, while the parameter ε weakly
modifies the details of the skyrmion profile. For the case
E b
dmi the equilibrium solution is φ = χ+π/2 and the cor-

responding equation for the profile θ(ρ) coincides with
(9) when ε = 0. Note that in this case Eq. (9) is reduced
to the well known skyrmion equation23,34,40.

In order to analyze stability of the obtained static
solutions we study spectrum of the skyrmion eigen-
excitations by means of the methods commonly applied
for skyrmions38,42 as well as for others two-dimensional
magnetic topological solitons43–47. Namely, we intro-
duce time-dependent small deviations θ = θ0 + ϑ and
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φ = φ0+ϕ/ sin θ0, where ϑ, ϕ� 1 and θ0 = θ0(ρ), φ0 de-
notes the static profile. The linearization of the Landau-
Lifshitz equations, sin θ∂tφ = γ

Ms
δEeff/δθ, − sin θ∂tθ =

γ
Ms
δEeff/δφ, in the vicinity of the static solution re-

sults in solutions for the deviations in the form ϑ =
f(ρ) cos(ωτ + mχ + χ0), ϕ = g(ρ) sin(ωτ + mχ + χ0),
where m ∈ Z is an azimuthal quantum number andχ0

ia an arbitrary phase. Here τ = tΩ0 is the dimension-
less time, where Ω0 = γH is the Larmor frequency with
γ being the gyromagnetic ratio. The eigenfrequencies
ω and the corresponding eigenfunctions f , g are deter-
mined by solving the Bogoluybov-de Gennes eigenvalue
problem27. The numerical solution was obtained for a
range of d and a couple of values of ε. A number of
bounded eigenmodes with ω < 1 are found in the gap.
Eigenfrequencies of the radially-symmetric (m = 0) and
elliptic (m = 2) modes are shown in Fig. 1, where we
compare both types of DM terms48. If ε = 0, the spectra
are identical for both cases, in particular, the well known
elliptical instability35,38 take place due to the softening
of the elliptic mode in the region d > dc, where the uni-
formly saturated state is thermodynamically unstable38.
For the case E n

dmi the ε-term shifts the elliptical instabil-
ity to the larger values of d with the condition d > dnc (ε)
kept, while in the case E b

dmi the effect of the ε-term is
negligible.

Remarkably, the ε-term influences oppositely on the
breathing mode (m = 0), for different DM types. For
the case E b

dmi the eigenfrequency ω0 is increased and for
small d the breathing mode is pushed out from the gap
into the magnon continuum. As a result, the small-
radius skyrmions are free of the bounded states. This
is in contrast to the case E n

dmi, when the breathing mode
eigenfrequency is rapidly decreased resulting in a radial
instability for small d. In order to give some physical
insight to the latter effect we consider the model, where
the skyrmion profile is described by the linear Ansatz23,34

θa(ρ) = π
R (R − ρ)H(ρ − R), and φ = χ + Φ. Here the

variational parameters R and Φ describe the skyrmion
radius and helicity, respectively, and H(x) is the Heavi-
side step function. For this model total energy (8) with
Edmi = E n

dmi reads

En
tot

2πAL
= eex + εeε cos2 Φ− 2δ cos ΦR+R2eh, (10)

where the constants eex ≈ 6.1549, eε = eex − π2/4 and
eh = 1 − 4/π2 originate from the exchange, ε-term and
Zeeman contributions, respectively. Here δ = d π/4. The
energy expression (10) shows that the equilibrium he-
licity Φ is determined by the competition of the ε-term,
which tends to Φ = ±π/2 (Bloch skyrmion), and the DM
term, which tends to Φ = 0 (Néel skyrmion). In the same
time, the equilibrium skyrmion radius is determined by
the competiotion of the DM and Zeeman terms, and for
the Bloch skyrmion one has R = 0. Thus, the skyrmion
collapse is expected with the ε increasing. Indeed, the
minimization of the total energy (10) with respect to the
both variational parameters results in the critical value

uniform saturation along field

periodical 1D modulation

2D skyrmion lattice

skyrmion (Neel) 

excitations 

(a)

(b)

skyrmion (Bloch) excitations 

FIG. 2. Diagrams of the ground states for different kinds
of DMI. (a): the red line is determined by the condition
d = dnc(ε), it separates the uniform state and periodical 1D
modulation. The green region of the Néel skyrmion lattices is
determined by the conditions En

2d < En
1d and En

2d < 0 to the
right and to the left of the red line. The gray dashed line is
the line of collapse of the Néel skyrmions, it is determined by
the condition ε = εc(d). (b): colors have the same meaning
as on the panel (a), but periodical helical state and skyrmion
lattices are of Bloch type. The excitations in form of isolated
Bloch skyrmions are stable within all white region.

εc = δ2/(eεeh): if ε < εc then the equilibrium values of
the variational parameters R0 = δ/eh and Φ0 = 0 de-
termines the Néel skyrmion; if ε > εc that the minimum
of energy (10) is reached for R0 = 0 and Φ0 = ±π/2.
The latter corresponds to a collapsed Bloch skyrmion.
In other words, a stable Néel slyrmion exists for the case
ε < εc. Surprisingly, there are no intermediate states
with 0 < Φ0 < π/2 when ε > εc.

Skyrmion lattice — In order to estimate the region
of existence of the skyrmion lattice we use the circular
cell approximation34, when the lattice cell is approxi-
mated by a circle of radius R and the boundary con-
dition θ(R) = 0 is applied. The skyrmion profile is de-
scribed by the same linear Ansatz as for the case of an
isolated skyrmion. Minimizing the energy (10) per unit
cell En

2d = En
tot/(πR

2) one obtains the following equi-
librium values of the variational parameters Φn

0 = 0,
Rn

0(ε) = (eex + εeε)/δ, and the corresponding equilibrium
energy reads En

2d(ε) = 2AL
[
eh − δ2/(eex + εeε)

]
. For the

case E b
dmi the same procedure results in the ε-independent

values: Φb
0 = π/2, Rb

0 = Rn
0(0) and Eb

2d = En
2d(0).

Comparing energies of three states, namely, the en-
ergy of the uniform magnetization along field E = 0,
energy of the 1D periodical state (per period) E1d, and
energy of the skyrmion lattice per unit cell E2d, we deter-
mine the phase diagram of the ground states, see Fig. 2.
Note that for ε > ε0 ≈ 0.98 the skyrmion lattice is not
a ground state. Given the dependence of ε with the ex-
change coupling J0, temperature, and chemical potential,
the skyrmion lattice phase is likely to occur for a not too
high temperature range as compared to the Curie tem-
perature of EuS. . The dimensionless DM parameter d



5

can then be tuned by the external field to attain the in-
terval shown under the green area of Fig. 2(a).

Conclusions — We have shown that the effective mag-
netic energy for a TI-FMI heterostructure exhibits a
Dzyaloshinskii-Moriya term induced by tracing out the
surface Dirac fermions proximate to the FMI. A unique
feature of the effective energy as compared to other DM
systems is the presence of an additionally induced mag-
netic capacitance energy, given by a term proportional
to the square of the magnetic charge ∇ ·n. Despite hav-
ing a small magnitude in realistic samples, the interplay
between this term and the DM one yields a phase dia-
gram with interesting phase boundaries in the case of a
Néel DMI, which is the situation relevant for, e.g., Bi2Se3

samples proximate to a FMI. Our theory is directly rele-
vant for very recently synthesized TI - ferromagnetic thin

film heterostructures, in some of which the formation of
a skyrmionic magnetic texture has been observed19.
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