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During the evolution of discrete nonlinear systems with dynamics dictated by the discrete nonlinear 

Schrödinger equation, two quantities are conserved—system energy (Hamiltonian) and system density 
(number of particles). It is then possible to analyze system evolution in relations to an energy-density phase 
diagram. Previous works have identified a “thermalization zone” on the phase diagram where regular 
statistical mechanics methods apply. Based on these statistical mechanics methods we have now assigned a 
specific equilibrium temperature to every point of the thermalization zone. Temperatures were derived in the 
grand canonical picture through an entropy-temperature relation, modified to suit the nonlinear lattice 
systems. Generally, everywhere in the thermalization zone of the phase diagram, temperatures along a fixed 
system-density line, grow monotonously from zero to infinity. Isotherms on the phase diagram are concave. 
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Introduction.—Temperature is a key statistical parameter associated 

with physical systems that can be characterized by statistical mechanics 
methods. Somewhat unexpectedly, such are nonlinear systems with 
evolution dynamics dictated by the ubiquitous discrete nonlinear 
Schrödinger equation (DNLSE). Rasmussen et. al. have identified a 
thermalization zone on the phase diagram of DNLSE-governed systems in 
which regular statistical mechanics methods apply [1]. In the thermalization 
zone, self-trapping of energy does not occur and breathers are not formed. 
Rather, in a non-equilibrated system, a process of energy exchange starts, 
very slow at high nonlinearities,  until system equilibrium is reached with 
statistics that can be described by the equipartition function. This 
thermalization zone is bounded by zero and infinite temperature lines, as 
shown in Fig. 1. A system placed at a specific point within the 
thermalization zone, as determined by the initial excitation conditions, will 
reach a statistical equilibrium with a unique temperature. 

In this work we derive the system temperature between the zero and 
infinite temperature lines, and generate a map of temperatures in the strong 
nonlinearity (or strong interaction) limit. We have divided the 
thermalization zone into a cold zone and a hot zone and calculated entropies 
vs. energy to derive temperatures across the thermalization zone. 

The general notion of temperature of DNLSE systems have previously 
been applied in various studies: diffusion and nonequilibrium [2]-[5], 
instabilities [6], phase transitions [7]-[9],[10], breather evolution [11]-[14], 
equation solution [15], trapped ultra-cold atoms (BEC) [11],[16]-[21], 
dynamics at low temperatures [22], Bloch oscillations [22], beam steering 
[24], waves localization [25]. Our temperature expressions can therefore be 
useful to the study and unification of a wide range of physical systems. 
Franzosi derived an expression for temperatures in the microcanonical 
picture given systems with two first integrals [26]. Our study uses the 
common grand canonical picture. 

Equation and conserved quantities.—The fields’ evolution dynamics 
considered here is described by a normalized 1D periodic cubic [15] 
DNLSE [27] : 
 ݅ ܷ݀௠ሺݖሻ݀ݖ ൌ െሾܷ௠ିଵሺݖሻ ൅ ܷ௠ାଵሺݖሻሿ െ  ሻݖሻ|ଶܷ௠ሺݖ௠ሺܷ|߁

    (1) 
Here ܷ௠ is the complex field at site ݉ at position (or time) ݖ. The 

array consists of ܰ sites, assumed large, and periodic boundary conditions 
are employed. 

Correlations of two fields separated by ݇  sites are defined as 
 

ሻݖ௞ሺܥ ൌ 12ܰ ෍ ሾܷ௠כ ሺݖሻܷ௠ା௞ሺݖሻ ൅ ܷ௠ሺݖሻܷ௠ା௞כ ሺݖሻሿே௠ୀଵ  

    (2) 
To express energy quantities we apply the canonical transformation and 

write the complex field ܷ௠ as a product of an amplitude ݑ௠ (a real non-
negative number) and a phase factor - ݁݌ݔሺ݅߶௠ሻ, and define an angle 
difference ߠ௠: ܷ௠ ؠ ; ௠݁ ௜థ೘ݑ ௠ܫ  ؠ ܷ௠ܷ௠כ ൌ ௠ଶݑ  ; ௠ߠ  ؠ ߶௠ െ߶௠ାଵ. We refer to ܫ௠ as site densities (with dimensions of energy). 

The DNLSE  [Eq. (1)] is non-integrable [28],[29], and has two 
constants of motion [15],[30],[31]. The first is the Hamiltonian ࣺ௔, the 
sum of two un-conserved quantities: ࣺ ௔ ൌ ࣺଶሺݖሻ ൅ ࣺସሺݖሻ with 
 ࣺଶሺݖሻ ൌ 2ܰ ෍ ሻே௠ୀଵݖ௠ሺݑ ሻݖ௠ାଵሺݑ ሻሿݖ௠ሺߠሾݏ݋ܿ ൌ ሻݖሻ ࣺସሺݖଵሺܥ2 ൌ 2߁ 1ܰ ෍ ௠ସݑ ሺݖሻே௠ୀଵ  

    (3) 
Here ࣺଶሺݖሻ is the “kinetic energy”, and ࣺସሺݖሻ the “interaction energy”. 
The Hamiltonian ࣺ௔ as defined above is site-averaged. The second 
conserved quantity, इ௔ ൌ ଵே ∑ ሻே௠ୀଵݖ௠ሺܫ  is the site-averaged density (or 
“norm” [2],[27] or “wave-action” [32]). 

Zones of the DNLSE phase diagram.—The DNLSE phase diagram ࣺ௔ሺइ௔ሻ (see Fig. 1) can be divided into three zones – a lower inaccessible 
zone, a central thermalization zone and an upper negative temperature zone 
[1]. The thermalization zone can be further divided into two – a lower cold 
zone and an upper hot zone. To be more specific, three limiting lines are 
defined as follows: zero temperature line ( ଴ܶ line): ࣺ௔ሺइ௔ሻ ൌെ݊݃݅ݏሺ߁ሻ2इ௔ ൅ ሺ1/2ሻ߁इ௔ଶ, an intermediate line (ܮ௜ line): ࣺ௔ሺइ௔ሻ ൌ ሺ1/2ሻ߁इ௔ଶ, and an infinite temperature line (ܶ ஶ line): ࣺ௔ሺइ௔ሻ ൌ  ୧ line is unique in terms ofܮ इ௔ଶ. The intermediate߁
excitation. To place a system on this line it can be excited by equal 
amplitudes and fully random phases [33]. To place a system above this line, 
excitation amplitudes must be  unequal. To place a system below this line 
excitation phases cannot be fully random. The ܮ୧ line also has a physical 
meaning: it becomes the upper border of the thermalization zone for ߁ ՜ 0 
and it becomes the lower border of the thermalization zone for ߁ ՜ ∞. 
Below we show that system temperature along most of the ܮ୧ line is ܶሺइ௔ሻ ؆ 2इ௔/|߁|. 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIG. 1. Zones on the DNLSE phase diagram. The zone between the ଴ܶ line 
(blue) and the ஶܶ line (red) is the thermalization zone [1]. The 
thermalization zone is further divided by the ܮ௜ line (green) into a `cold 
zone  ̀(white) and a `hot zone  ̀(light gray). In the present work we limit the 
discussion mostly to systems with strong nonlinearity (߁इୟ ب 1, that is, 
broadly to the right of the black vertical line at इୟ ൌ 6). The curves on the 
right are schematic representatives of  PDF curves for the densities for each 
line. 

Definition of temperatures in the strong nonlinearity limit.—According 
to the quantum phase model, entropy of DNLSE systems splits in the strong 
nonlinearity limit into a sum of entropies ݏఏ ൅  ூ [33],[34]. We define theݏ
DNLSE system temperature in the standard way (cf. the definition in [35]), 
with a small modification, 
 

஽ܶே௅ௌாሺइ௔, ࣺ௔ሻ ൌ ቆ߁ ,௦௬௦ሺइ௔ݏ߲ ࣺ௔ሻ߲ࣺ௔ ቇइೌ
ିଵ

 

    (4) 
 
where ݏ௦௬௦ ൌ ఏݏ ൅  ூ andݏ
ఏݏ  ؠ െ න ఏ࣪ሺߠሻ ݈݊൫ ఏ࣪ሺߠሻ൯  ଶ஠ߠ݀

଴  

ூݏ  ؠ െ න ூ࣪ሺܫሻ ݈݊൫݄ ூ࣪ሺܫሻ൯ ; ܫ݀  ݄ ൌ 1ஶ 
଴  

    (5) ఏ࣪ሺߠሻ and ூ࣪ሺܫሻ are equilibrium probability distribution functions (PDFs) 
for the relative angles (ߠ௠) or densities (ܫ௠) across all sites of the large 
array. The value of the scale parameter ݄ , with units of energy, is set at one. 

The entropy ݏூ of Eq. (5), is given by the Gibbs entropy equation [36], 
independent of the nonlinearity coefficient ߁. But in the microcanonical 
picture, the number of states of a DNLSE system grows exponentially with ߁ (ignoring the typically small kinetic energy contribution), and thus the 
entropy grows linearly with ߁. Here we keep the entropy dimensionless and 
insert the nonlinearity coefficient ߁ into the temperature definition [Eq. (4)]. 
The dimension of DNLSE system temperature is thus energyଶ. Indeed, as 
discussed below and as was verified by our ample numerical simulations 
across the high nonlinearity region of the DNLSE phase diagram, 
temperature is essentially equal to the density `variance ,̀ also with units of 
energyଶ. (If the PDF(I) is written as ூ࣪ሺܫሻ ן exp ሾെሺܽ/2ሻܫଶ െ  ሿ ܫܾ
then the density `variance  ̀is 1/ܽሻ. This equality is in complete analogy to 
the equality of temperature (times ݇஻/݉) and variance of velocity of gas 
molecules  (inverse of the coefficient multiplying ݒଶ) given by the familiar 
Maxwell-Boltzmann distribution. In both cases then - 

low temperature ՞ narrow  ௩࣪ሺݒሻ or ூ࣪ሺܫሻ, high temperature ՞ wide  ௩࣪ሺݒሻ or ூ࣪ሺܫሻ. 
Temperature calculation procedure.—In the following sections we 

derive expressions for the DNLSE system temperatures, based on equations 
(4) and (5). For that we need to find the entropy, and therefore the 
equilibrium PDFs for ܫ and ߠ for each point on the phase diagram ሺइ௔, ࣺ௔ሻ. We found it convenient to start by assuming particular 
excitation conditions that equilibrate to different regions of the phase 
diagrams, and from these to calculate the resulting PDFs. With two specific 
excitation profiles we are able to cover the entire thermalization zone. 

We show below that either exactly or to a very good approximation, the 
temperatures are given by the variance (ߪூଶ) of the equilibrium PDF of 
density ூ࣪ሺܫሻ. Since the variance is determined once the two parameters 
defining the equilibrium ூ࣪ሺܫሻ are determined, the temperature can be 
evaluated without calculating entropy and its derivative. 

Equilibrium temperatures of systems in the cold zone.—In this section 
we first derive analytic expressions for two equilibrium PDFs (density and 
phase-angle difference) and then, given these PDFs, derive the 
temperatures. We note that at zero temperature the system is in its ground 
state; The ground state is characterized by uniform amplitudes and zero ( Γ ൏ 0) or ߨ ( Γ ൐ 0) relative phase between neighbors. At the ground 
state, regardless of system density,  the variance of the density vanishes, ߪூଶ ൌ 0. 

(i) PDF expressions for the cold zone. A convenient statistical 
excitation to place a system in the cold zone is to excite all amplitudes 
uniformly with a value ݑ଴ and select the phase angles randomly from a 
limited window of width ߶଴. For ߁ ൏ 0 the phase window is set around 0 
for all sites. For Γ ൐ 0 the phase window is set around 0 for odd sites and 
around ߨ for even sites. A zero-width window (߶଴ ൌ 0) corresponds to 
excitation of the ground state. Broadening the phase window ߶଴ from 0 to 2ߨ will translate the system vertically on the phase diagram along a इ௔ ൌ ܶ ଴ଶ line from theݑ ଴ line up to the ܮ௜ line. 

By maximize system entropy (similar maximization is described in 
more detail in [37]) we have derived the following PDF expressions 
(superscript “cd” stands for “cold”): 
 

ூ࣪௖ௗሺܫሻ ൌ 1Ըூ ݁ିఎ௰ଶ ሺூିइೌሻమ  
Ըூ ൌ ඨ ߁ߟ2ߨ ቎1 ൅ ݂ݎ݁ ቌइ௔ඨ2߁ߟ ቍ቏ 

ఏ࣪௖ௗሺߠሻ ൌ इ௔ሻߟ଴ሺ2ܫߨ12 ݁ିሾଶఎइೌ ௖௢௦ሺఏሻሿ 
    (6) 
where ܫ଴ሺڄሻ is the modified Bessel function of the first kind. The parameter ߟ is defined by: 
ߟ  ቊ4इ௔ ቈන ሻߠሺݏ݋ܿ ఏ࣪ሺߠሻ݀ߠଶగ

଴ ൅ ଴቉ቋܥ ൅ 1 ൌ ଴ܥ 0 ൌ ሺ1 െ cos ߶଴ሻ/ሺ0.5߶଴ଶሻ ݊݃݅ݏሺߟሻ ൌ  ሻ߁ሺ݊݃݅ݏ
    (7) 

The PDFs of Eq.  (6) are determined by only one parameter - ߶଴ሺइ௔, ࣺ௔ሻ. System energy is related to this one parameter by the 
monotonically rising function: ࣺ௔ሺ߶଴ሻ ൌ 2इ௔ܥ଴ሺ߶଴ሻ ൅  .इ௔ଶ߁0.5
Inverting this equation (numerically)  yields ߶଴ሺइ௔, ࣺ௔ሻ. 

(ii)  Equilibrium temperatures in the cold zone. —Given the 
expressions ఏ࣪௖ௗሺߠሻ and ூ࣪௖ௗሺܫሻ from Eq.  (6), entropies (ݏఏ௖ௗ ,  ݏூ௖ௗ) are 
calculated via Eq. (5) and temperatures are derived using Eq. (4). Entropy 
curves and temperate curves are shown in Fig. 2(a) and Fig. 2(b), 
respectively. The dash-dotted line of Fig. 2(b) is given by the variance of ூ࣪௖ௗሺܫሻ, that is - ௖ܶௗሺइ௔, ࣺ௔ሻ ൌ 1/ሺ߁ߟሻ, showing an excellent match to 
the exact temperature, represented by the continuous magenta line. 



The sum of entropies curve can be well approximated by a logarithmic 
function of the form: ݏ௦௬௦ሺइ௔, ࣺ௔ሻ ൌ ݈݊൫ࣺ௔ െ ଵሺइ௔ሻ൯ܥ ൅  ଶ, asܥ
shown by the dashed line in Fig. 2(a). 
 
 
 
 
 
 
 
 
 
 
 

FIG. 2. System entropy and system temperature in the cold zone, for a fixed 
system density इ௔ ൌ 20. (a) System entropy as the sum ݏ௦௬௦ ൌ ఏ௖ௗݏ ൅ݏூ௖ௗ . The fitted curve (light dashed cyan) is a log curve. (b) System 
temperature. Magenta curve – calculated through Eqs. (5) and (4). Dashed-
dotted straight line - the derivative of the fitted log curve of entropy. The 
dashed cyan line in Fig. 2(b) is given by the variance of ூ࣪௖ௗሺܫሻ, showing 
excellent match to the exact temperature. Inset: temperature in the cold zone 
for higher nonlinearity coefficient (߁ ൌ 2.5). The curve indicates that as the 
value of the nonlinearity coefficient (߁ ൐ 0) increases, while the area of the 
entire cold zone shrinks relative to the total area of the thermalization zone, 
the slope of the line of system temperatures in the cold zone decreases. 

The derivative of this log-fitted curve results in a particularly simple 
dependence of system temperature on the coordinates in the cold zone: 
 

௖ܶௗሺइ௔, ࣺ௔ሻ ؆ ࣺ௔ െ ߁ଵሺइ௔ሻܥ ଵሺइ௔ሻܥ  ؠ െ݊݃݅ݏሺ߁ሻ2इ௔ ൅ 12  इ௔ଶ߁
    (8) 

For a fixed system density इ௔, ௖ܶௗሺइ௔, ࣺ௔ሻ of Eq. (8) grows 
linearly with energy: as system energy ࣺ௔ is increased from the ଴ܶ line to 
the ܮ௜ line, system temperature rises from zero to 2इ௔/|߁| . This linear 
approximation is particularly good at low temperatures, and is shown by the 
dash-dotted line in Fig. 2(b).  

Equilibrium temperatures of systems in the hot zone.—To calculate 
temperatures in the hot zone, we assume a different excitation statistic, with 
fully random phases and a non-negative Gaussian distribution of densities 
[35], 
 ܲሺݑ ൐ 0ሻ ൌ 1࣬௨ exp ቈെ ሺݑ െ ଶߪሻଶ2ߤ ቉ 

    (9) 
with ࣬௨ appropriate normalization constant. 

We have previously derived analytic equilibrium PDF expressions for 
such excitations. The lower part of the hot zone is still characterized by 
strong correlations between the sites, and we deal with it first. At higher 
temperatures, correlations are weak and simpler analysis can be employed. 

(i) Temperatures in the strong correlations region.—On and just above 
the ܮ௜ line, the strong field correlations characterizing systems in the cold 
zone persist [33],[37]. Therefore, for systems placed in this region the 
kinetic energy term [ࣺଶሺݖ௦ሻ ൌ  ௦ሻ] cannot be neglected and must beݖଵሺܥ2
included in the formulation of the temperature. As in the cold zone, both 
angle-associated entropy ݏఏ௦௖ , and intensity-associated entropy ݏூ௦௖ 
contribute, and the system’s entropy in the strong correlations region is 
given by the sum: ݏ௦௖ ൌ ఏ௦௖ݏ ൅  ூ௦௖  [33],[37]. Expressions for the PDFsݏ 
in this strong correlation region,  ூ࣪ ௦௖ሺܫሻ and ఏ࣪ ௦௖ሺߠሻ were derived ( [37] 
Eq. 16). These are given in terms of the two excitation parameters ሺߤ,  ሻߪ

through the statistical excitation moments - ሾܯଵሺߤ, ,ሻߪ ,ߤଶሺܯ ,ሻߪ ,ߤସሺܯ  ሻሿ ([37] Eq. 12). The conserved quantitiesߪ
are related to the excitation moments as इ௔ሺߤ, ሻߪ ൌ ,ߤଶሺܯ ,ߤሻ and  ࣺ௔ሺߪ ሻߪ ൌ ,ߤସሺܯ߁0.5 ,ߤሻ. To determine ሺߪ  ሻ, one needs to invertߪ
these two relations for ሾܯଶሺߤ, ,ሻߪ ,ߤସሺܯ ,ߤሻሿ, solve for ሺߪ ,ଵܯ௦௖ሺߟ ሻ and forߪ ,ଶܯ  ଷሻ ([37], Eq. 16). With those PDFs we can calculate theܯ
related entropies and the related temperature, ܶ ௦௖ሺइ௔, ࣺ௔ሻ. 

(ii) Temperatures in the weak correlations zone.—For points above the ܮூ line and towards the ܶ ஶ line, the interaction energy dominates. Under the 
weak correlation approximation (or “weak coupling limit” [32]) the small 
kinetic-energy term (ࣺଶ ൌ  ଵ) can be neglected and the PDF for theܥ2
intensity becomes [32] - 
 

ூ࣪௪௖ሺܫሻ ൌ 1࣬ூ ݁ିఢூమିఈூ  ;   ߳ ൒ 0 

  (10) 
with ࣬ூ an appropriate normalization constant. The two parameters ߳ሺइ௔, ࣺ௔ሻ and ߙሺइ௔, ࣺ௔ሻ are fixed such that the two conserved 
quantities ሺइ௔, ࣺ௔ሻ are given by the first and second moments of this 
distribution. 

The associated entropy is worked out to be ݏ௪௖ሺइ௔, ࣺ௔ሻ ൌ݈݊ሾ࣬ߨூሺइ௔, ࣺ௔ሻሿ ൅ ଶఢሺइೌ,ࣺೌሻࣺೌ௰ ൅ ,ሺइ௔ߙ  ࣺ௔ሻइ௔. It turns out only 
one term contributes to the temperature, leading to: 
 

௪ܶ௖ሺइ௔, ࣺ௔ሻ ൌ ቆ߁ ,௪௖ሺइ௔ݏ߲ ࣺ௔ሻ߲ࣺ௔ ቇइೌ
ିଵ ൌ 12߳ሺइ௔, ࣺ௔ሻ 

  (11) 
Note the difference by a factor of 2 compared with the temperature in 

Ref. [12]. We see from Eq. (11) that the temperature in the weak 
correlations zone of the DNLSE phase diagram is independent of the 
nonlinearity coefficient ߁. Further, the temperature in the weak correlations 
zone of the DNLSE phase diagram coincides with the ‘variance’ [1/2߳ሺइ௔, ࣺ௔ሻ] of the grand canonical Gaussian distribution of equilibrium 
densities ூ࣪௪௖ሺܫሻ. Here and in the text below we use ‘variance’ to stand for 
the variance of a given ܲܨܦሺܫ ൒ 0ሻ as if calculated for െ∞ ൏ ܫ ൏ ∞ 
and a renormalized PDF. 

The two temperature curves ௦ܶ௖ሺइ௔ ൌ ,ܥ ࣺ௔ሻ and ௪ܶ௖ሺइ௔ ൌܥ, ࣺ௔ሻ cross. The overall temperature curve for the hot zone is obtained by 
switching from ௦ܶ௖ሺइ௔ ൌ ,ܥ ࣺ௔ሻ to ௪ܶ௖ሺइ௔ ൌ ,ܥ ࣺ௔ሻ at their crossing 
point. 

Equilibrium temperatures of systems on the DNLSE phase diagram.—
Fig. 3 shows the overall curve of temperatures from the ଴ܶ line to the ஶܶ 
line (for a fixed system density). It is obtained by switching from derivation 
through ఏ࣪௖ௗሺߠሻ and ூ࣪௖ௗሺܫሻ between the blue and the green markers, to 
derivation through ఏ࣪௦௖ሺߠሻ and ூ࣪௦௖ሺܫሻ between the green and the gray 
markers, to derivation through ூ࣪௪௖ሺܫሻ form the gray marker and on. The 
result is a single continuous curve as shown in Fig. 3. The dotted line shows 
the ‘variance’ of the density PDF, which provides a good approximation for 
the temperature over most of the range.  A full map of temperatures 
calculated for the strong nonlinearity zone of the DNLSE phase diagram is 
shown by Fig. 4. 
 
 
 
 
 
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIG. 3. A representative curve of temperatures of DNLSE systems at fixed 
system density (इୟ ൌ 50). The inset is a zoom-in to low system-energy 
values. The blue-green-red vertical markers mark the crossing of the 
( ଴ܶ, ,௜ܮ ஶܶ) lines. The vertical gray line marks the position of switching 
from strong correlations to weak correlations in the hot zone as applied to 
temperature calculations. The dashed line is the ‘variance’ of the density 
distribution (see text) that provides an excellent approximation to the 
temperature over most of the energy range. 

Discussion and conclusion.— We have seen that excitations of the 
DNLSE system, depending on their initial values of density and energy, 
thermalize to particular  equilibrium states.  There is a set of non-statistical 
excitations that seems to violate this thermalization claim. Namely - the set 
of eigenmodes of the linear system. These are characterized by equal 
amplitudes, equally-spaced phases and uniformly modified propagation 
wavenumbers {ܷ௠,௤ሺݖሻ ൌ ൫݅ሺ݉ൣ݌ݔ଴݁ݑ െ 1ሻߙ௤൯൧݁݌ݔ൫݅݇௭௤ݖ൯ ; ௤ߙ  ; ܰ/ߨ2ݍؠ ݇௭௤ ൌ ௤ ൅ߙݏ݋2ܿ ; ଴ଶݑ߁ ݍ ൌ െܰ/2, … 0, … ܰ/2 െ 1}. 
Mathematically, field amplitudes of these excitations will remain unaltered, 
thus corresponding to a zero temperature. However, these modes are 
unstable. If small noise is added (either amplitude noise or phase noise), the 
perturbed modes will thermalize according to their position in the 
thermalization zone. 

We have demonstrated that the ‘variance’ of the PDF of the density 
provides an excellent approximation for the temperature. As can be 
observed in Fig. 3, the only region where this approximation is less accurate 
is the transition region  between strong and weak correlations in the hot 
zone, a region where our entropy-based derivation and PDFs are less exact. 
Note that the ‘variance’ is the true variance of the PDF in the lower range of 
temperature, but broader than the actual variance in the high temperature 
region, where the ‘variance’ is calculated as if negative values for the 
density were allowed. 

Our temperature analysis holds for both signs of the nonlinearity 
coefficient (߁). In the temperature definition given by Eq. (4) both ߁ and ߲ࣺ௔ appear. Now, it is clear from the definition of the phase diagram, that 
if ߁ changes signs, the entire diagram flips through the horizontal mirror-
line of ࣺ௔ ൌ 0, i.e. ࣺ௔ ՜ െࣺ௔. Thus, as both ߁ and ߲ࣺ௔ change signs 
simultaneously, temperatures remain positive and their values are 
independent of the nonlinearity sign. Note also that the temperature-related ܫଶ coefficients - ሺ߁ߟሻ or ߙ in the ூ࣪ሺܫሻ expressions are always positive, 
independent of the nonlinearity sign. Note that flip of the nonlinearity sign 
will NOT in general place a system on an equivalent point of the flipped 
phase diagram. 

These results hold for all 1D nonlinear systems of equal sites that 
evolve under the DNLSE dynamics – optical waveguides, polymer chains, 
etc., including systems of trapped ultracold atoms that evolve under the 
dynamics of the equivalent Gross Pitaevskii equation, and they can be easily 
extended to higher dimensional systems. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIG. 4. Equilibrium temperatures of systems in the strong nonlinearity zone 
of the DNLSE phase diagram (note the loge  scale of the map. Values 
below 1 were numerically raised to 1.). Blue, green, and red lines are ሺ ଴ܶ, ,௜ܮ ஶܶሻ lines, respectively. The region below the ଴ܶ line is 
inaccessible, and the one above the ஶܶ line is the negative temperatures 
region. The black area next to the ஶܶ line represents very high yet not 
numerically calculated temperatures. The dark line crossing the map is a 
constant temperature line (ܶ ൌ 500). The inset shows a curve of 
temperatures (on a loge scale) vs. system energy for a constant system 
density at the right-edge of the map (इୟ ൌ 50, cf. Fig. 3). The curve 
shows very fast temperature rise getting closer to the ܶ ஶ line. 

We are thankful to Oren Raz for many fruitful discussions. This work 
was supported by DIP - German-Israeli Project Cooperation, by the BSF-
NSF grant #2014719, by Icore - Israeli Centre of Research Excellence 
“Circle of Light”, and by the Crown Photonics Center. 
 
* uri.levy@weizmann.ac.il 
 
[1] K. Ø. Rasmussen,  T. Cretegny, P. G. Kevrekidis, and Niels 

Grønbech-Jensen, Phys. Rev. lett. 84, 17, 3740 (2000). 
[2] S. Iubini, S. Lepri, and A. Politi, Phys. Rev. E 86, 1, 

011108  (2012). 
[3] A. Eisner and B. Turkington, Physica D: Nonlinear 

Phenomena 213, 1 , 85-97 (2006). 
[4] S. Lepri, (2015).  http://www2.yukawa.kyoto-

u.ac.jp/~ykis2015.ws/Presentation/Lepri.pdf  
[5] D. M. Basko, Phys. Rev. E 89, 022921 (2014). 
[6] B. Rumpf and A. C. Newell, Phys. Rev. lett. 87, 5, 054102 

(2001). 
[7] E. Small, R. Pugatch, and Y. Silberberg, Phys. Rev. A 83, 

1, 013806 (2011). 
[8] E. Small et al., (2011). See supplemental material at 

[http://link.aps.org/supplemental/10.1103/PhysRevA.83.01
3806]. 

[9] G. Situ, S. Muenzel, and J. W. Fleischer, arXiv preprint 
arXiv:1304.6980 (2013). 

[10] P. Buonsante, R. Franzosi, and A. Smerzi, Phys. Rev. E 95, 
5, 052135 (2017). 

  



 
[11] P. G. Kevrekidis, The discrete nonlinear Schrödinger 

equation: mathematical analysis, numerical computations 
and physical perspectives, Vol. 232. Springer Science & 
Business Media, (2009). 

[12] B. Rumpf, Physica D: Nonlinear Phenomena 238, 20, 
2067-2077 (2009). 

[13] A. Trombettoni and A. Smerzi, Phys. Rev. Lett. 86, 11, 
2353 (2001). 

[14] H. Hennig, T. Neff, and R. Fleischmann, Phys. Rev. E 93, 
3, 032219 (2016). 

[15] S. Chatterjee and K. Kirkpatrick, Commun. Pure Appl. 
Math. 65, 5, 727-757 (2012). 

[16] A. Polkovnikov, S. Sachdev, and S. M. Girvin, Phys. Rev. 
A 66, 5, 053607 (2002). 

[17] V. S. Bagnato, D. J. Frantzeskakis, P. G. Kevrekidis, B. A. 
Malomed, and D. Mihalache, arXiv preprint 
arXiv:1502.06328 (2015). 

[18] E. H. Lieb, R. Seiringer, J. P. Solovej, and J. Yngvason, 34, 
Springer Science & Business Media, (2005). 

[19] A. Smerzi, S. Fantoni, S. Giovanazzi, and S. R. Shenoy, 
Phys. Rev. Lett.79, 25, 4950 (1997). 

[20] S. Raghavan, A. Smerzi, S. Fantoni, and S. R. Shenoy, 
Phys. Rev. A 59, 1, 620 (1999). 

[21] J. Choi, S. Hild, J. Zeiher, P. Schauß, A. Rubio-Abadal, T. 
Yefsah, V. Khemani, D. A. Huse, I. Bloch, and C. Gross, 
Science 352, 6293, 1547-1552 (2016). 

[22] C. B. Mendl and H. Spohn, J. Stat. Mech.: Theory Exp. 8, 
P08028 (2015). 

[23] D. N. Christodoulides, F. Lederer, and Y. Silberberg, 
Nature 424, 6950, 817 (2003). 

[24] S. Droulias, Y. Lahini, Y. Kominis, P. Papagiannis, Y. 
Bromberg, K. Hizanidis, and Y. Silberberg, New J. Phys. 
15, 9, 093038 (2013). 

[25] S. Flach, Nonlinear Dynamics: Materials, Theory and 
Experiments, pp. 45-57. Springer, Cham, 2016. 

[26] R. Franzosi, J. Stat. Phys. 143, 4, 824-830 (2011). 
[27] J. C. Eilbeck and M. Johansson, in Localization and energy 

transfer in nonlinear systems, pp. 44-67. 2003. 
[28] M. J. Ablowitz and B. Prinari, In Françoise J P Naber G L 

and Tsou S T eds. 2006. Encyclopedia of mathematical 
physics 5 Amsterdam etc.: Elsevier pp. 552 

[29] N. Finlayson and K. J. Blow,Chaos, Solitons & Fractals 4, 
8-9, 1817-1834 (1994). 

[30] A. K. Sarma, M. A. Miri, Z. H. Musslimani, and D. N. 
Christodoulides, Phys. Rev. E, 89 5, 052918 (2014). 

[31] N. Korabel and G. M. Zaslavsky, Physica A Stat. Mech. 
Appl. 378, 2, 223-237 (2007). 

[32] B. Rumpf, Phys. Rev. E 77, 3, 036606 (2008). 
[33] Y. Silberberg, Y. Lahini, Y. Bromberg, E. Small, and R. 

Morandotti, Phys. Rev. lett. 102, 23, 233904 (2009). 
[34] S. D. Huber, B. Theiler, E. Altman, and G. Blatter, Phys. 

Rev. Lett. 100, 050404 (2008). 
[35] C. Kittel and H. Kroemer, Thermal physics, W. H. Freeman 

and Company, twenty-first printing, (2000). 
[36] M. Popovic, arXiv preprint arXiv:1711.07326 (2017). 
[37] U. Levy, K. Yang, N. Matzliah, and Y. Silberberg, J. Phys. 

B At. Mol. Opt. 51, 3, 035401 (2018).
 


